


THE PHYSICS OF POLARIZED TARGETS

Magnetic resonance is a field that has expanded to a wide range of disciplines, both in 
basic research and in its applications, and polarized targets have played an important role 
in this growth. This volume covers the range of disciplines required for understanding 
polarized targets, focusing in particular on the theoretical and technical developments 
made in dynamic nuclear polarization (DNP), nuclear magnetic resonance (NMR) 
polarization measurement, high-power refrigeration and magnet technology. Beyond 
particle and nuclear physics experiments, dynamically polarized nuclei have been used 
for experiments involving structural studies of biomolecules by neutron scattering and 
by NMR spectroscopy. Emerging applications in magnetic resonance imaging (MRI) are 
also benefiting from the sensitivity and contrast enhancements made possible by DNP or 
other hyperpolarization techniques. Topics are introduced theoretically using language 
and terminology suitable for scientists and advanced students from a range of disciplines, 
making this an accessible resource to this interdisciplinary field.
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Preface

Spin is the Rosetta stone of physics. It has proved many theoretical models and disproved 
others; it is inconceivable to study and explain matter, radiation and interactions with-
out including the spin of the constituent particles and structures. For example, the Pauli 
exclusion principle is needed to understand the structure of atoms, and this is based on the 
knowledge that electrons are spin ½ fermions of which only one can occupy a given quan-
tum state. Atomic electrons pair with opposite spins so as to build magnetically neutral 
matter, the most common state of solids and fluids. Also the conduction electrons in metals 
may form Cooper pairs with opposite spins, which explains superconductivity. These pairs 
behave as bosons with zero or integer spin. Quantum statistics of these half-integer or inte-
ger spin particles is the basis of low-temperature properties of quantum fluids and solids.

The Pauli exclusion principle is also seen in the electron degeneracy pressure of white 
dwarfs and in the neutron degeneracy pressure of the neutron stars that stabilize these 
astronomical objects. The degeneracy pressure generates the repulsive magnetic force due 
to the exchange interaction. It is only the gravity force that makes the neutron star collapse 
into a black hole.

Going deeper into matter, the understanding of nuclear structures requires the introduc-
tion of the spin for their constituent protons and neutrons, the nucleons. These, in turn, are 
built of quarks and gluons which are spin ½ fermions for the first and spin 1 bosons for 
the latter; this knowledge is vital for the understanding of the structure and interactions of 
nucleons in nuclear matter.

In the Foreword of his book Spin in Particle Physics, Elliott Leader states that ‘spin is 
an essential and fascinating complication in the physics of elementary particles’, a reversal 
of the slogan of the 1960s that ‘spin is an inessential complication of particle physics’. 
The slogan, an anecdote, can be understood from the historic fact that in the 1960s new 
particles were discovered almost on a monthly basis by analyzing bubble chamber pictures 
from which the particle masses could be determined. This was clearly more rewarding than 
wrestling with the complicated equipment and enormous statistics required for the study of 
the interactions of these particles in fine detail.

Spin polarized targets, the subject of this book, are an important tool and part of such 
complicated equipment. Other tools include polarized sources and polarized secondary 
beams, and the acceleration, storage and polarimetry of such beams. Our focus here is on 
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x Preface

the polarized solid targets that are particularly suitable for scattering experiments in sec-
ondary beams, but also important for the experiments in intense primary beams of protons 
and electrons; their intensity has developed steadily to reach now levels close to that of 
unpolarized beams.

In the course of the development of the polarized target techniques in the 1960s and 
1970s, many disciplines were brought together: solid state physics and chemistry, elec-
tron spin spectroscopy, NMR spectroscopy, cryogenics, microwave, magnet and radiofre-
quency techniques. All of these needed to be pushed beyond their known limits in order 
to satisfy the growing needs of the particle physics experiments. Truly multidisciplinary 
skills were required.

The techniques developed for polarized targets helped also these scientists, in turn, in 
their own specialized disciplines. Among their achievements are the studies of nuclear 
magnetism and pseudomagnetism started in the 1970s, of large biomolecules by spin con-
trast variation started in the 1980s and of high-resolution NMR spectroscopy using DNP of 
rare spins more recently. Also, dissolution DNP was invented for the signal enhancement 
in MRI. These are good examples of the cross-fertilization and spin-offs resulting from the 
multidisciplinary collaborations.

The book is organized in the following way. The first two chapters describe the generic 
spin and its resonance in a high magnetic field, first without other interactions and then 
including interactions among themselves and with the constituents of the solid lattice. 
These chapters can be skipped by those who are already experts in magnetic resonance. 
Chapter 3 then focuses on the behavior of paramagnetic (unpaired) electron spins as is 
needed for the understanding of dynamic nuclear polarization in solids, which is the topic 
of Chapter 4.

Nuclear spins and their resonance in the solid lattice are discussed in Chapter 5, before 
describing the measurement of nuclear spin polarization in Chapter 6. Chapter 7 deals with 
the preparation and handling of the solid polarized target materials, and Chapter 8 focuses 
on the refrigeration of such materials during dynamic polarization using microwave irradi-
ation. The required magnet and microwave techniques are the topics of Chapter 9.

Chapter 10 lists briefly other methods of generating high nuclear spin polarization, also 
used in particle physics experiments but, in particular, as used in new chemical and bio-
medical applications. Finally, the design and optimization of experiments with polarized 
targets are discussed in Chapter 11, focusing specifically on high-energy particle scattering 
experiments.
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1

1
Introduction to Spin, Magnetic  

Resonance and Polarization

In this chapter, we shall review the mathematical formalism required for the understanding 
of the spin physics of polarized targets. Particular focus is given to the problems treating 
the situations that are favorable for obtaining high polarizations: high magnetic field and 
low lattice temperature.

In the following sections we shall first discuss the concept of the spin and magnetic 
moment and work out in detail some standard quantum mechanical problems involving 
these variables. The quantum statistics of a system of spins is then overviewed, before 
briefly introducing the thermodynamics of spin systems. Most of these can be found in 
well-known textbooks of quantum mechanics, such as those of Dicke and Wittke [1] and 
of Landau and Lifshitz [2], and of magnetic resonance, such as Abragam [3], Goldman [4], 
Abragam and Goldman [5] and Slichter [6]. The main justification for presenting textbook 
material is that we need to make frequent reference to this basic formalism. Three further 
reasons are:

(1) to introduce a consistent notation and vocabulary;
(2) to refer uninitiated readers to the basic source literature for further reading; and
(3) to introduce the SI units.

There are differences in the way how some basic entities are defined in the textbooks, and 
therefore a consistent notation and vocabulary are useful in developing the theory of spin 
dynamics.

Magnetic resonance is one of the last fields of physics where the old Gaussian units are 
still commonly used, or they are mixed with the MKSA units, which is a subset of SI units. 
Because the SI units have been almost exclusively used for more than 25 years in most 
other fields of physics, we have made an effort to extend this to magnetic resonance. We 
shall also refer to Appendix A.1 where the SI unit system is compared with CGS Gaussian 
system (Tables A1.1 and A1.2). In the same appendix the fundamental physical quantities 
and variables, relevant for magnetic resonance, are defined in Table A.1.3, and the physical 
constants are listed in Table A.1.4, both in the SI system of units.

The basic results and terminology of this chapter will be used in Chapter 2 to describe 
various interactions of spin systems in general, and those of electron spin systems more 
specifically in Chapter 3. The basic groundwork is equally important for dynamic nuclear 
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2 Introduction to Spin, Magnetic Resonance and Polarization 

polarization (DNP) which is the subject of Chapter 4 and for nuclear magnetic resonance 
(NMR) that is discussed in Chapter 5.

1.1 Quantum Mechanics of Free Spin

1.1.1 Spin

The angular momentum vector J has the same units as the Planck constant ℏ and can there-
fore be expressed for a rigid body as

 = �J I,  (1.1)

where the vector I is called spin. The components of I are unitless numbers in classical 
mechanics, whereas in quantum mechanics they are unitless operators performing rota-
tions about the three coordinate axes. Macroscopic rigid bodies can have a large spin, the 
components of which can be incremented or decremented in steps of 1 that is very small 
in comparison with the length of I, whereas elementary particles have a definite maximum 
projection I of I on any coordinate axis. This maximum projection I is called the intrinsic 
spin, or briefly the spin.

The concept of the intrinsic spin of an elementary particle was controversial until Dirac’s 
relativistic theory of electron became accepted after the experimental discoveries of the 
positron and of the creation and annihilation of electron-positron pairs. Since then spin has 
played a fundamental role in particle physics, proving and disproving many theories. The 
most famous proofs are probably those of the quantum electrodynamics (QED) based on 
the Lamb shift of atomic hydrogen and on the anomalous magnetic moment of the electron, 
and the tests of unified electroweak theories based on the accurate measurements of parity 
violation parameters in atomic, nuclear and high-energy interactions.

It has been suggested that the intrinsic spin may have a still deeper meaning in physics 
through general relativity [7, 8], possibly explaining the existence of the three types of 
charged leptons, the electron e, the muon µ and the tau lepton τ.

For the main purpose of this book, we do not need to specify whether the spin of a 
particle is due to intrinsic angular momentum, or due to the motion of a complex compos-
ite system (such as quarks and gluons or partons in a hadron, or nucleons in a nucleus). 
Landau and Lifshitz [2] discuss this in the context of nonrelativistic quantum mechanics. 
They note that the law of conservation of angular momentum is a consequence of the 
isotropy of space in both classical and quantum mechanics. They remark, however, that 
in quantum mechanics the classical definition of the angular momentum r×p of a particle 
has no direct significance owing to the fact that the position r and momentum p cannot be 
simultaneously measured. In other words, neither r nor p of the constituents has signifi-
cance for observations of a complex system of particles, with a probe which does not break 
the structure.

Thus, a stable composite particle, in a definite internal state with given internal energy, 
has also an angular momentum of definite magnitude J, due to the motion of the constituent 
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 1.1 Quantum Mechanics of Free Spin 3

particles. This angular momentum can have 2 I + 1 orientations in space. With this under-
standing of the angular momentum, its origin becomes unimportant, and Landau and 
Lifshitz [2] thus arrive at the concept of an ‘intrinsic’ angular momentum which must be 
ascribed to a particle regardless of whether it is ‘composite’ or ‘elementary’.

When discussing the dynamics of a system made of these composite (in the sense 
described above) particles, such as nuclei or electrons in a solid lattice built of ions, atoms 
or molecules, the origin of the angular momentum of the stable composite becomes unim-
portant; however, a reserve must be made on electronic spins with regard to spin-lattice 
relaxation, for example.

This ‘intrinsic’ angular momentum which is not connected with the dynamics of the 
solid material is called the spin to distinguish it from the orbital angular momentum. 
Paramagnetic electrons in a solid are said to possess an effective spin when only the lowest 
magnetic states of the ground-state multiplet are populated; in this case the term ‘spin’ must 
be understood as a shorthand notation.

The complete wave function of a particle with a spin depends on the three coordinates 
of the particle and on the spin variable. The spin variable is a discrete one, and it gives the 
projection of the intrinsic angular momentum on a selected direction in space. The selec-
tion of this direction is often the key problem to be solved. Only in a steady high magnetic 
field, this direction is parallel or close to the field vector.

1.1.2 Spin and Magnetic Dipole Moment

In classical electromagnetic theory, the magnetic moment1 µ�  of a volume containing cur-
rents with density jm is (see, for example, Ref. [9] p. 130):

 ∫µ τ( )= ×
τ

�
dr j1

2
,m  (1.2)

where r is the vector pointing to the volume element dτ. If the currents can be considered 
as charge densities ρe moving with a velocity u, the magnetic moment becomes

 dr u1
2

.e∫µ ρ τ( )= ×
τ

�  (1.3)

This resembles the mechanical angular momentum

 dJ r um∫ ρ τ( )= ×
τ

 (1.4)

of mass densities ρm moving at a velocity u. If the system is composed of identical particles 
with mass m and charge e, the gyromagnetic ratio, γ, defined as

1 As discussed in Appendix A.1, in SI units the unit of magnetic moment is [ µ] = Am2; the magnetic energy of the dipole is then 
E = µ·B, magnetic field being expressed in [B] = Vs/m2 = Tesla.
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4 Introduction to Spin, Magnetic Resonance and Polarization 

 γ µ
=

J
, (1.5)

becomes

 γ =
e
m2

 (1.6)

for the case where µ and J are parallel.
In classical mechanics there is no general reason why these vectors should be paral-

lel, but in quantum mechanics this is the case for closed systems. However, when adding 
the quantum mechanical angular momentum vectors of the system, the resultant magnetic 
momentum vector does not generally align with the angular momentum vector. A way of 
understanding this is that because the magnetic moment component perpendicular to J 
cannot be determined simultaneously with that along J (it can be thought to undergo rapid 
rotation around the axis), the only observable is the projection of µ along J. This gives rise 
to the structural g-factor, which is particularly important in electron spin resonance.

In the case of a complex structure, the gyromagnetic ratio is written in the terms of the 
g-factor as

 
ge
m2
,γ =  (1.7)

where the factor g contains the entire description of the magnetic structure. For electrons 
we also often write

 
�
g

,Bγ
µ

=  (1.8)

where we have introduced the fundamental constant Bohr magneton

 e
m2

.B
e

µ = �  (1.9)

We note here that for a negatively charged pointlike particle the gyromagnetic factor and 
the magnetic moment are always negative. In the literature the symbol β is often used for 
the Bohr magneton, but we reserve here this symbol for the inverse spin temperature.

Free pointlike charged particles (such as electron or muon) have the g-factor close to the 
Dirac value g = 2. The deviations are often given using an anomalous magnetic moment a 
defined by

 g a2(1 ).= +  (1.10)

The deviation can be measured to a high accuracy using a Penning trap for electrons or a 
storage ring for muons; comparisons with theoretical calculations have given important 
proofs of QED and QCD and restrained the limits of any substructure of the leptons [10].
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 1.1 Quantum Mechanics of Free Spin 5

As was discussed in the previous subsection, the spin angular momentum variable is a 
discrete one. Therefore, the magnetic moment projection on the axis of quantization also 
has only discrete values. This quantum mechanical fact, which will be discussed below in 
this chapter, is seen in a striking way in magnetic resonance measurements which are the 
basis of a large industry today.

The gyromagnetic ratio and the magnetic moment can be positive or negative, depend-
ing on not only the sign of the charge of the pointlike particle but also the structure of the 
complex system made of constituents. In this book we shall always assume, however, that 
the magnetic moment of the nucleus or electron is parallel or antiparallel to its spin angular 
momentum, depending on the sign of the gyromagnetic ratio:

 µ γ= Î,
�

��  (1.11)

where the vectors µ
��  and Î  now are taken as quantum mechanical operators. The three com-

ponents of these vectors can be mathematically represented by the so-called spin matrices, 
which will be discussed below.

1.1.3 Spin Operator Algebra

For simplicity, we shall eliminate here the vector notations but maintain the operator 
symbols with circumflex for a while in order to make the operators clearly distinct from 
constants. The spin operator Î  thus has the projections =I j x y zˆ ( , , )j  along the three coor-
dinate axes in the same way as the angular momentum operator = �J Iˆ ˆ . The algebra with 
operators requires the knowledge of their commutation relations2 which, for the rotation 
operators, are obtained by considering infinitesimally small (elementary) rotations about 
the coordinate axes. For example, by performing a small rotation first around the x-axis and 
then around the y-axis, and then rotations about the same axes in reverse order and direc-
tion, the net result is a small positive rotation about the z-axis. The same can be achieved 
by comparing small rotations around the x- and y-axes, with rotations made around y- and 
x-axes. The difference of these two is a small rotation about the z-axis. This can be mathe-
matically represented as a commutation relation

 − ≡   =I I I I I I iIˆ ˆ ˆ ˆ ˆ , ˆ ˆ .x y y x x y z

Cyclic permutation of the subscripts gives the following commutation relations for the spin 
operator components:

 

  =

  =

  =

I I iI

I I iI

I I iI

ˆ , ˆ ˆ ,

ˆ , ˆ ˆ ,

ˆ , ˆ ˆ .

x y z

y z x

z x y

 (1.12)

2 See, for example, Landau and Lifshitz [2] Chapters IV and VIII, and Dicke and Wittke [1] Chapters 9 and 12.
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6 Introduction to Spin, Magnetic Resonance and Polarization 

It is remarkable that these equations, based on the sole assumption that the space is isotro-
pic, result in all the physics of spin. Notably, because the spin components do not commute, 
only one of them can be measured at a time, and the remaining two being not simultane-
ously measurable. Some other immediate results are briefly reviewed below.

The square of the ‘magnitude’ of Î

 I I I Iˆ ˆ ˆ ˆ
x y z

2 2 2 2= + +  (1.13)

commutes with all three components of I as a consequence of Eq. 1.12:

   =I Iˆ , ˆ 0,2  (1.14)

i.e. Î 2  and any one of the components of Î  are simultaneously measurable.
Instead of Î x and Î y  it is often more convenient to use the complex combinations

 = ±±I I iIˆ ˆ ˆ ,x y  (1.15)

which satisfy, based on Eq. 1.12 directly, the relations

   =+ −I Iˆ , ˆ 0,  (1.16)

 I I Iˆ , ˆ ˆ ,z




 = ±± ±  (1.17)

and

 = − ±± ∓I I I I Iˆ ˆ ˆ ˆ ˆ .z z
2 2  (1.18)

Let us assume that m is the eigenvalue of Î z :

 I mˆ .zψ ψ=  (1.19)

The operators ±Î  are now seen to be ladder operators with respect to the eigenvalue m 
of Î z , because

 ψ ψ( )( )= ++ +I I m Iˆ ( ˆ ) 1 ˆ ,z  (1.20)

which can be obtained using Eq. 1.17 or Eq. 1.12 directly.
Because of relation 1.14, the eigenfunction ψ can be chosen so that it simultaneously 

satisfies Eq. 1.19 and

 I aˆ ,2ψ ψ=  (1.21)

where a is the square of the magnitude (i.e. length squared) of the spin vector, which we 
shall evaluate now. Firstly, because both expectation values and their sum

 +I Iˆ ˆ
x y
2 2

must be positive, from Eq. 1.13 it is clear that the expectation values of Î 2  and Î z  satisfy

 ≥I Iˆ ˆ ,z
2 2
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 1.1 Quantum Mechanics of Free Spin 7

which gives

 ≥a m .2  (1.22)

As a consequence of Eq. 1.20, the difference 2I of the greatest (+I ) and least (–I ) possible 
eigenvalue m of Î z  must be an integer; I may take then any half-integer3 value 0, 1/2, 1, 
3/2, etc., and

 = − − + … −m I I I I, 1, 1, .  (1.23)

If m has its maximum value I, then ψ =+Î 0 , and, using Eq. 1.18,

 I I I I Iˆ ˆ 0 ˆ ˆ ˆ ;z z
2 2ψ ψ( )= = − −− +  (1.24)

from this and Eq. 1.19 with m = I, we get

 a I I Iˆ 1 .2 ( )= = +  (1.25)

The eigenvalue of the operator Î 2  is therefore I(I + 1), where I is called the spin quan-
tum number and gives the maximum projection of the spin vector along an axis. Speaking 

of spin I therefore means speaking of a vector with magnitude ( )+I I 1  and maximum 
projection on any axis of I. For simplicity we shall use in the rest of the book, unless ambi-
guities or clarity require otherwise, the same symbol I to denote the spin vector operator Î  
and the spin quantum number I (or spin in short); possible confusions between these should 
become clarified by the context.

1.1.4 Matrix Representation of the Spin Operator

A quantum mechanical operator can be represented by a matrix acting upon a state vector 
which represents the wave function. The elements or components of these have a direct 
physical significance and can be related to the expectation values of the observables.

The wave function of a particle with spin I has 2I + 1 components; the squares of the 
magnitudes of these components give the probability of the magnetic states m. The spin 
operator in matrix representation has (2I + 1)·(2I + 1) elements

 

I I I m I m

I I i I m I m

I m

1
2

1 ,

2
1 ,

,

x m m x m m

y m m y m m

z m m

, 1 1,

, 1 1,

,

( ) ( )
( ) ( ) ( )( )

( )( )
( )

= = + − +

= − = + − +

=

− −

− −

 (1.26)

where m is the magnetic quantum number; the rest of the elements are zero.

3 The orbital angular momentum operator L can take only integer values of Lz, which is the consequence of restricting the form 
of the wave function to represent simple orbital motion. This restriction is by no means valid for complex wave functions such 
as that of the nucleon, whose constituents undergo relativistic motion.
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8 Introduction to Spin, Magnetic Resonance and Polarization 

The most important case is spin I = 1/2, for which the matrix components of the spin 
vector operator of Eq. 1.26 are:

 

=












= −











=
−











I

I i
i

I

1
2

0 1
1 0

;

1
2

0
0

;

1
2

1 0
0 1

.

x

y

z

 (1.27)

These 2×2 matrices are called Pauli spin operators, often denoted by σ ≡ 2I; their direct 
multiplication gives

 13 ,2σ = ⋅  (1.28)

where 1 is the unit matrix

 ≡








1 1 0

0 1
.

Equation 1.28 is clearly compatible with the value given by Eq. 1.25 for I. Moreover, sim-
ilar direct multiplication yields

 ia b a b a b,σ σ σ( )( )⋅ ⋅ = ⋅ + ⋅ ×  (1.29)

where a and b are any constant vectors. Furthermore, by replacing a and b by any unit 
vector e we get immediately

 σ( )⋅ =e 1
p2

 (1.30)

and

 σ σ( )⋅ = ⋅
+

e e.
p2 1

 (1.31)

According to relations 1.29–1.31, any scalar polynomial of the components of σ can be 
reduced to terms independent of σ and to a term linear in σ; furthermore, any scalar function 
of σ reduces to a linear function, if it can be expanded as a Taylor series. These relations will 
be used in calculating traces involving the density matrix, without resorting to the so-called 
high-temperature approximation. This is a very important property of the Pauli spin oper-
ator for the theory of DNP at low temperatures, where high polarizations can be obtained.

In the case of I = 1/2, both Eqs. 1.25 and 1.28 yield Î 3
4

2 = . If the spin is in a state 

where one of its components (say, in the z-direction) has its maximum value of =Î 1
2z , 
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 1.1 Quantum Mechanics of Free Spin 9

then Ix and Iy have zero expectation values, but = =I Iˆ ˆ 1
4x y

2 2 . As will be seen 
in Section 1.1.6, this can be understood by the precession of the spin vector which 
makes the components perpendicular to the axis of quantization oscillate sinusoidally.

For spin I = 1 we get the matrix representations of the components:

 

I

I i

I

1

2

0 1 0
1 0 1
0 1 0

;

2

0 1 0
1 0 1
0 1 0

;

1 0 0
0 0 0
0 0 1

.

x

y

z

=
















= −
−

















=
−

















 (1.32)

These will be used explicitly in an example in Chapter 5.

1.1.5 Magnetic Energy Levels

Let us now consider a particle with spin I in a magnetic field B0, with the field vector lying 
along the z-axis so that B0 = kB0. The spin is associated with the dipole moment Iˆ ˆ�µ γ= , 
where the gyromagnetic factor γ is defined by Eq. 1.6. The magnetic energy of the particle 
is then (in operator form)

 H
�

�� B IBˆ ˆ ,z0 0µ γ= − ⋅ = −  (1.33)

and the Schrödinger equation

 Eˆψ ψ=H  (1.34)

has 2I + 1 eigenvalues

 γ= − �E m B ,m 0  (1.35)

because the eigenvalues of Î z  go from m = –I to m = +I, as was shown in Eq. 1.23. The 
magnetic energy level splitting is often visualized as shown by Figure 1.1a.

1.1.6 Larmor Precession

The time-dependent Schrödinger equation

 i
t

ˆψ ψ= ∂
∂
�H  (1.36)
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10 Introduction to Spin, Magnetic Resonance and Polarization 

Figure 1.1 (a) The magnetic energy levels for a free particle with spin I = 3/2 and gyromagnetic 
factor γ in a steady magnetic field B0. (b) The possible projections of the spin of a free particle in a 
steady field along the z-axis of the field and perpendicular to it, for spins I = 1/2, 1, 3/2 and 2. The 
perpendicular component rotates in its plane with undetermined phase angle
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 1.1 Quantum Mechanics of Free Spin 11

can be directly integrated by inserting Eq. 1.33 and using the Iz of Eq. 1.26. Taking spin I = 
1/2 and choosing initial conditions so that the spin at t = 0 points in the positive x-direction 
(has the maximum component Ix), we get

 0 1

2
1
1
,ψ ( ) =









  (1.37)

which satisfies

 ψ ψ( ) ( )=I 0
1
2

0 .x

The solution of Eq. 1.36 is found straightaway:

 t e
e

1

2
,

i t

i t

/ 2

/2

0

0

ψ ( ) =












ω

ω

−

+
 (1.38)

where the angular frequency ω0 has the value

 ω γ= − B .0 0  (1.39)

The expectation values

 ψ ψ= =I I j x y* , ,j j  (1.40)

of the Pauli spin matrix components x and y of Eqs. 1.27 can be now evaluated by directly 
inserting them to Eq. 1.40; the resulting

 
I t

I t

1
2

cos ,

1
2

sin

x

y

0

0

ω

ω

=

=

 (1.41)

show that the projection of the spin vector in the x–y plane freely rotates at an angular fre-
quency ω γ= − B 0 0  which is the Larmor precession frequency. A coordinate transformation 
to a frame rotating at this frequency removes the time dependence of the rotating components; 
in this frame the spin has an eigenvalue I

1
2

†ψ ψ= , i.e. 〈I  †〉 is time independent. The 
transformation to the rotating frame is a key technique in the understanding of saturation in 
magnetic resonance; it will be discussed in more detail in the next section.

In the above example, the initial state of the spin was Ix = 1/2. The preparation of the 
spin into the wanted initial state can be made using several techniques. The theoretically 
simplest one requires rotating the field by 90° much faster than the Larmor precession. 
Technically this is possible only at low field values. In high fields a transverse field oscil-
lating at the angular frequency ω0 can be applied for such a duration that the spin pointing 
originally in the z-direction is tilted by 90° (this is called a 90° pulse), or by sweeping the 
frequency of a small transverse field slowly to ω0 and then reducing its amplitude to zero 
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12 Introduction to Spin, Magnetic Resonance and Polarization 

(adiabatic demagnetization to zero field in rotating frame). These techniques will be dis-
cussed in Chapters 2 and 11.

The classical treatment of the above example gives exactly same result for ω0, and is best 
done by using the rule of transforming the time derivative dA(t)/dt of vector A to a frame 
rotating at speed ω:

 ω ( )=
∂
∂

+ ×
�d

dt t
tA A A . (1.42)

The classical equation of motion of magnetic moment in a field B0 is obtained by equating 
the time change of the angular momentum dJ/dt to the magnetic torque µ ×

�
B0 . By using 

the gyromagnetic ratio of Eq. 1.5 we get

 
t
J J B . 0γ ω

γ
∂
∂

= × +






�
 (1.43)

By selecting ω γ= −
�

B 0 , the explicit time dependence of J disappears. In this frame J 
is a stationary vector, which means that in the original frame its component perpendicular 
to B0 rotates in the plane normal to B0 at the angular frequency ω0 = –γ B0 of Eq. 1.39, the 
Larmor frequency.

1.1.7 Spin Resonance and Rotating Frame

In Chapters 1 to 6 we shall often use exponential operators of the form eA. Let us assume 
operators A and B and their commutator C = [A,B] = AB – BA, which is assumed to com-
mute with both operators so that [C,A] = [C,B] = 0. We shall need the following general 
relations concerning such operators A, B and C:

 e e e eA B A B C /2=+ −  (1.44)

and

 e e e e .A B C B A/2=+  (1.45)

In the special case of commuting operators C = 0 and their exponential functions are seen 
to commute so that

 e e e .i A B iA iB=( )+  (1.45′)

For commuting A and B we also have

 =Ae e A.B B  (1.46)

The commutation rules of the exponential operators simplify the solution of the Schrödinger 
equation if the Hamiltonian has no explicit time dependence. Introducing the exponential 
operator U = exp(–iωtIz ) one can derive the following transformation rules using the spin 
matrices and their commutation relations:
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 1.1 Quantum Mechanics of Free Spin 13

 
U I U I

U I U I e

;

.
z z

i t

1

1

=

= ω

−

−
± ±

±
 (1.47)

The first of these follows immediately from Eq. 1.46, because Iz  commutes with itself and 
therefore with its exponential. The second one can be proven by noting first that the com-
mutation rule 1.17 directly gives

 I I I I I I I1 ,z z z( )= ± + = ± +± ± ± ±

where 1 is a unit matrix of same dimension as Î z . Multiplying n – 1 times from the left we 
then obtain

 ( )= ± +± ±I I I I1 .z
n

z

n

Expanding now U–1 into Taylor series and using the above we find

 U I i t I
i t
n

I I

I e I e U

1
1! !z

n

z
n

i t I i t

1

11 z

ω ω( )= + +…+ +…












= =ω ω( )

−
± ±

±
± +

±
± −

which, after multiplying from the right by U, yields the second one of Eqs. 1.47. Expressing 
now Ix and Iy in the terms of I± from definition 1.15, it is straightforward to show that

 
ω ω

ω ω

= +

= − +

−

−

U I U I t I t

U I U I t I t

cos sin ;

sin cos .
x x y

y x y

1

1
 (1.47′)

These are seen to represent rotation of the x–y plane about the z-axis by an angle of ωt. The 
use of the transformation to such a rotating frame is illustrated with the following example, 
which gives the exact solution of a basic problem in magnetic resonance.

Let us consider a particle with spin I in a high steady field B0 along z-axis, superposed 
by a small field B1(t) = B1exp(iωt) perpendicular to it and rotating with angular frequency 
ω. The spin Hamiltonian is then

 γ ω ω( )= + = + +



H H H � B I B I t I tcos sinz x y0 1 0 1

and the Schrödinger equation

 

i
t

B I B I t I t

I I e I e

cos sin

2

z x y

z
i t i t

0 1

0
1

ψ ψ

γ ω ω ψ

ω ω ψ

( )

∂
∂

=

= − + +





= + + 






ω ω
+

−
−

+

H

 (1.48)

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108567435.002
https://www.cambridge.org/core


14 Introduction to Spin, Magnetic Resonance and Polarization 

will now have to be solved (here we have written ω1 = –γB1). To find the exact solution, 
transformation to a rotating frame will be done by the substitution

 U e .e
i I t

e
zψ ψ ψ= = ω−

The new equation

 i
t

U U iU Ue
e

1 1ψ ψ{ }∂
∂

= −− −H�  (1.49)

can be simplified by the rules 1.44–1.46 and the commutation relations 1.12; the resulting 
equation

 i
t

I Ie
z x e0 1

ψ ω ω ω ψ{ }( )∂
∂

= − +  (1.50)

has the solution

 e 0 ,e
i I I t

e
z x0 1ψ ψ ( )= ω ω ω( )− − +   (1.51)

where ψe(0) = ψ(0). Using Eq. 1.48 this can be written in the form

 e e 0 ,i I t ia te Iz0ψ ψ ( )= ω ω( )− − − ⋅  (1.52)

where

 a sign 0

2

1
2γ ω ω ω( ) ( )= − − +  (1.53)

and e is a unit vector with components

 e
a

e e
a

, 0 , .x y z
1 0ω ω ω

= = =
−

 (1.54)

We can now determine the probability amplitude Am′m of finding the spin in the state m′ 
at time t, after initially in state m at t = 0:

 A m e e m0 ,mm
i I t i a te I( )z0 ψ ( )= ′ ω ω( )

′
− − − ⋅

which gives the probability Pm′m = |Am′m
 |2 for transition m → m′:

 P m e m0 .m m
i a te I( )

2

ψ ( )= ′′
− ⋅  (1.55)

For spin 1/2 this becomes, using the Pauli spin matrices 1.27 and their multiplication rules 
1.28–1.31,

 θ=
−
P at

sin  sin
2

,1
2

, 1
2

2 2  (1.56)
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 1.1 Quantum Mechanics of Free Spin 15

where sin θ = ω1/a. By examining this result, one may show that in the frame rotating at 
angular frequency ω, the frequency of the field B1 in the laboratory frame, the spin axis 
(along which I has maximum projection) precesses at an angular frequency 1.53 around a 
constant effective field

 B BB k ie 0 1

ω
γ

= −






+  (1.57)

of magnitude

 aBe γ
=

and angle

 arctan 1

0

θ
ω

ω ω
=

−

with respect to the z-axis. The exact resonance occurs at frequency –ω0; the spin then 
rotates around the effective field Be = B1i at a frequency ω1, inverting the direction of its 
z-component with intervals

 
π
ω

π
γ

= =
T

B2
.

1 1

We note that we now know the exact time evolution of one of the components of the spin; 
the components perpendicular to that remain unknown because of their unknown phase 
angle at the time when the rotating field was turned on.

In solving the above problem, we made a transformation to a rotating coordinate system, 
a technique that allows to treat many problems in an elegant way. We shall return back to 
this technique in several sections of this book.

The generalization of the above treatment to arbitrary spin is tedious and we shall omit 
it here.

The motion of the spin axis is illustrated in Figure 1.2 without rotating field (in the sta-
tionary frame) and in the rotating frame with ω = ω0. The classical motion of an angular 
momentum associated with a parallel magnetic moment is exactly same; the only differ-
ence is that once the component of the spin in the direction of the quantum mechanical spin 
axis is determined, the components perpendicular to it exist but their phase angles cannot 
be measured, whereas the classical angular momentum can be fully described in such a 
way that it does not have undetermined perpendicular components. A way of proving this 
mathematically involves the transformation from the quantum description to the classical 
one, by going to the limit I → ∞, at which the perpendicular component with undetermined 
phase angle will become zero.
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16 Introduction to Spin, Magnetic Resonance and Polarization 

The important results 1.56 and 1.57 are exact and are valid in any time scale; the time-de-
pendent perturbation theory gives a different (and unphysical) behavior near the resonance 
of a single (or non-interacting) spin. However, the transition probability

 
W m m f B m I m f

I m I m f

2 1
2

1

2
1 ,

m m, 1 2 1

2
2

1
2

2

1
2

π ω π γ ω

πω
ω

( ) ( )

( )( ) ( )

= − = −

= + − +

−
+

�
H

 (1.58)

calculated using time-dependent perturbation theory, correctly describes the behavior of an 
assembly of spins which has a resonance shape function f (ω) due to interactions among the 
spins; this treatment obviously requires that Wt ≪ 1. It can be also shown4 that as long as 
Wt ≪ 1, the exact solution convoluted with the lineshape function is equivalent to Eq. 1.58.

For Wt ≫ 1 and for intermediate times, the evolution of the magnetization of a general 
spin system under saturation requires the introduction of relaxation mechanisms and the 
use of a quantum statistical treatment. Equation 1.58 is then valid only in some special 
cases such as in liquids where frequent collisions of the molecules carrying spins destroy 
the phase coherence of the spins and result in rapid spin-lattice relaxation. In solids this 
does not happen, and it was only after the pioneering work by Redfield [11] and Provotorov 
[12] that the saturation of magnetic resonance in solids was well understood. An intro-
ductory discussion of quantum statistics will be given below, and the quantum statistical 
treatment of saturation in solids will be discussed in Chapter 2.

Figure 1.2 (a) Larmor precession of spin I in steady field B0 oriented along the z-axis in the stationary 
coordinate frame xyz; (b) Larmor precession of spin I in effective field Beff in the coordinate frame 
x′y′z rotating at the Larmor frequency ω0

4 See the excellent and instructive discussion of Ref. [3], pp. 27–32.
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 1.2 Quantum Statistics of a System of Spins 17

1.2 Quantum Statistics of a System of Spins

1.2.1 Polarization and Spin Temperature

Up till now we have discussed the behavior of one isolated spin in a magnetic field which 
may have a small time-dependent transverse component. We have thus avoided all ques-
tions related with the interactions among the spins and with their environment, and we have 
also simplified the previous treatment by not introducing any macroscopic effects. We shall 
now introduce the mathematical basis for the quantum statistical treatment of problems 
related with spin systems, which allows to take both into account rigorously.

Let us consider a large array of spins I in a solid sample at high magnetic field B0 (unless 
mentioned otherwise, we shall always assume high external field along the z-axis). The 
spin Hamiltonian ℋ is the energy operator of the particle and it is often written in the 
general form

 
B I

I

  

,
z

z

0 1

0 1

γ
ω

= − +

= +

H H

H

�

�
 (1.59)

where we have introduced the definition of the Larmor frequency ω0 from Eq. 1.39. Here 
the first part on the right-hand side describes the magnetic dipole energy in the steady field 
discussed in Section 1.1.5, and the second part H1 includes all other interactions, such as 
those with any other particles with spin and magnetic dipole moment, with time-dependent 
external fields, or interactions of a possible nuclear electric quadrupole moment with an 
electric field gradient tensor. There are many other possible small contributions to H1; these 
will be discussed in some detail in Chapter 2. We emphasize that the definition of a high 
field is that the magnetic dipole energy operator, the Zeeman Hamiltonian, dominates the 
second part H1.

Let us first ignore the small H1 and hence assume that the spin system is composed 
of many non-interacting individual spins with the Zeeman Hamiltonian H γ= −� B I Z z0 ,  
giving rise to the magnetic levels γ= − �E m B m 0  of Eq. 1.35. The generally uneven dis-
tribution of populations among the magnetic levels m gives rise to the need of parameters 
defining the average orientation in a spin system. Because spin I can be in one of the 2I +1 
states, it is clear that 2I parameters are needed to fully describe the relative (arbitrary) pop-
ulations of these levels. The orientation parameters are most generally defined as expec-
tation values of irreducible spin tensors [13], of which the vector polarization (or simply 
polarization)

 P
I
II
z=  (1.60)

and tensor polarization (or alignment)

 A
I I

I

I I I

I

3 3 1
I

z z
2 2

2

2

2

( )
=

−
=

− +
 (1.61)
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18 Introduction to Spin, Magnetic Resonance and Polarization 

are the simplest ones. In the above expressions the expectation value 〈Q〉 of operator Q is 
the average over the sample volume. For spin 1/2 the polarization P is the only non-zero 
one; for spin 1 the parameters P and A completely define the distribution of the states in 
thermal equilibrium. The P may vary from –1 to +1 for all spins, while A (for spin 1) may 
get values from –2 to 1. For spin 3/2 and above, the higher parameters remain small (in 
thermal equilibrium distribution) unless P is near unity.

In high field the Zeeman energy H γ= −� B I Z z0  is much larger than the remaining part 
H1 of the spin Hamiltonian, according to our definition. This suggests the use of pertur-
bation theory for the calculation of the behavior of the spins interacting with their envi-
ronment. Moreover, as the material is composed of order NA ≈ 1023 particles with spin, it 
is entirely impractical to sum up explicitly the Hamiltonians 1.59 for all individual spins. 
This forces one to introduce statistical methods in the treatment of the behavior of the spin 
system.

The introduction of quantum statistics and perturbation theory can be made in a purely 
formal way, and one can beautifully demonstrate the validity and power of these in the 
treatment of a very wide variety of problems. Rather than resorting to such formalism at 
this point, we shall first introduce two simple and plausible concepts:

(i) Spin relaxation processes do exist and will reasonably fast bring the system to the ther-
mal equilibrium corresponding to a definite distribution of populations of the magnetic 
energy levels γ= − �E m B m 0  of Eq. 1.35;

(ii) In the steady state, the probability pm that a magnetic state m of energy Em of a spin will 
be occupied is proportional to the Boltzmann factor:

 p em

E
k T
m

B∝
−

,

where T is the temperature of the spin system, and kB is the Boltzmann constant.
The spin relaxation processes of concept (i) will be discussed in Section 2.4; they are 

very important from the point of view of DNP as well. The concept (ii) will be formally 
derived in Section1.2.2.

The Boltzmann distribution leads trivially to the polarization

 P
I
I I

mp

p

me

I e

1 ;I
z m I

I

m

m I

I

m

m I

I E
k T

m I

I E
k T

m

B

m

B

∑

∑

∑

∑
= = ==−

+

=−

+
=−

+ −

=−

+ −
 (1.62)

here the sums are over the possible spin states m. This can be also expressed using hyper-
bolic functions by
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P x I

I
I x

I
x

x
B
k T

2 1
2

coth 2 1 1
2

coth ;

2
,

I I

B

0γ

( ) ( )= = + + −

=

B

�
 (1.63)

which is the well-known Brillouin function. Figure 1.3 shows the function for some values 
of I. For spin I = 1 the Brillouin function can be also written

 BP x x
x

4 tanh
3 tanh

.1 1 2( )= =
+

 (1.63')

When the magnetic level populations are in thermal equilibrium corresponding to the 
Boltzmann distribution, the alignment AI  is uniquely related with the polarization PI . 
Provided that quadrupole effects do not broaden the levels substantially, this high-field 
relation for spin I = 1 is simply

 A P2 4 3 .1 1
2= − −  (1.63")

Negative values of alignment therefore cannot be obtained if the spin system is in internal 
thermal equilibrium. Relationship 1.63″ is shown in Figure 1.4.

Figure 1.3 Brillouin function for spins I = ½, 1, 3/2 and 2
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20 Introduction to Spin, Magnetic Resonance and Polarization 

For higher spin in thermal equilibrium, the alignment and other higher orientation 
parameters are also uniquely related with the polarization, but the relationships are tran-
scendental functions of complexity increasing with the spin and with the order of the 
parameter.

The spin polarization is associated with the static magnetization or magnetic moment 
density:

 ∑µ γ γ= = =M
V

n I n IP1
 ,I

i
z
i

I I z I I I� �  (1.64)

where the sum is over the spins I in the volume V, and nI = NI /V is the number density of 
the particles with the spin I in the sample. By defining5 the static susceptibility

 
M
B

,0
0

0

χ
µ

=  (1.65)

where µ0 = 4π·10–7 Vs/Am is the permeability of free space, we see that

 � n I
B

PI I
I0

0

0

χ
µ γ

=  (1.66)

5 In SI system, the usual definition is B = µ0(H + M) = (1 + χ0) μ0H, which deviates slightly from the definition of Eq. 1.65. In high 
external field the difference is insignificant in dilute paramagnetic systems and totally negligible in nuclear magnetism, even at 
high polarizations.

Figure 1.4 Relationship for spin I = 1 between the vector polarization and alignment (also called 
tensor polarization), when the magnetic level populations are in internal thermal equilibrium. We note 
that alignment higher than 1 or negative can only be obtained when the magnetic level populations 
are distributed non-thermally
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 1.2 Quantum Statistics of a System of Spins 21

is linear in PI . This result is important for the measurement of polarization.
For spin =I 1 2  the Brillouin function reduces to B1/2(x) = tanh x, giving

 P
B

k T
tanh

2
tanh 1

2
,I

B
1
2

0
0

γ
αω= =







�
 (1.67)

where we have defined the inverse spin temperature α

 
k T

 ,
B

α = �  (1.68)

and expressed the magnetic field in the terms of the Larmor frequency of Eq. 1.39, which is 
defined to be always positive when calculating level populations or polarization.6

At high temperature7 (i.e. when P ≪ 1), the expression of PI  simplifies to

 
P

B I C
T

C
I
k

1
3

;

1
3

,

I
I

B

0

0

αγ

ω

( )

( )
=

+
=

=
+�

 (1.69)

which is the well-known Curie law of the static paramagnetic susceptibility proportional 
to T–1:

 
n I I

k T
1

3
.I I

B
0

0
2 2

χ
µ γ ( )

=
+�

 (1.70)

The static longitudinal susceptibility is thus always positive (at any positive spin tem-
perature), which means that the thermal equilibrium magnetization is always parallel to the 
magnetic field, according to Eq. 1.65. The spin polarization, as defined in Eq. 1.62, has then 
the same sign as the spin temperature when the gyromagnetic ratio γ is positive, and oppo-
site sign when γ is negative; this is the consequence of defining a temperature to describe 
the energy level population ratios for the magnetic moment, the orientation of which can 
be parallel or antiparallel to the spin angular momentum vector.

In the case of high spin densities with large magnetic moments, the magnetization and 
therefore the static susceptibility deviate slightly from the Curie law. The magnetization of 
the spins I (we assume that there are no other spin species in the sample) is given by the 
exact form of Eq. 1.64, where the PI  at high temperature is defined exactly by Eq. 1.69. 
The Larmor precession frequency depends on the internal static field B Hint 0 intµ= , where8

6 The negative sign in Eq. 1.39 follows from the need to have the lowest magnetic level of the electron (which has negative γ) 
occur when m = –1/2. This is entirely arbitrary and has historic origin.

7 This assumption is not done unless stated explicitly.
8 This ignores the fact that for like spins the molecular field is higher by a factor of 3/2, resulting from the correct treatment of the 

dipolar fields and interactions. Furthermore, the discussion presented here disregards the facts that crystal structure influences 
the molecular field, and that the sample shape also contributes to the internal field. These will be discussed in Sections 1.3.4 and 
1.3.6, and in Chapters 2 and 5. In addition, the influence of the interactions of nuclear moments with the electrons is ignored.
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 = +H H M,int  (1.71)

which gives

 B H .0 int 0 intω γ γ µ= − = −

Using these we can rewrite the magnetization of Eq. 1.64:

 M
T
T
H ,C
int=

where we have defined the Curie temperature TC

 T
n I I

k
1

3
. C

I I

B

0
2 2µ γ ( )

=
+�

 (1.72)

The static susceptibility can now be solved

 M
H

M
H M

T
T T

.C

C
0

int

χ = =
−

=
−

 (1.73)

We remind that it is required that T ≫ TC and that P ≪ 1 in order that Eq. 1.73 be valid. 
These conditions are not always met in polarized targets, as we shall discuss below. 
Equation 1.73 resembles closely the Curie–Weiss law, with the difference that no molecu-
lar field coefficient was introduced in the relation between the static magnetization and the 
internal field in Eq. 1.71.

We note that if we write in Eq. 1.69 ω γ= B0 0 , the equation is exact for all situations 
where P ≪ 1, because the Larmor frequency measures the internal field rather than the 
applied field. It offers a sound basis for the measurement of spin polarizations via calibra-
tion in thermal equilibrium at high temperature. This will be discussed in Chapter 6.

It is instructive to examine the size of the correction of Eq. 1.73 to the Curie law 1.70 in 
polarized target materials. Table 1.1 gives TC in a typical material 1-butanol doped with 5% 
of water and 1020 spins/cm3 of a paramagnetic complex EHBA-Cr(V):

Table 1.1 Parameters related with the laws of Curie and of Curie–Weiss at 2.5 T magnetic field, for 
1-butanol glass doped with 1020 spins/cm3 of a paramagnetic complex EHBA-Cr(V). For the nuclear 
spins, the last column also gives the thermal equilibrium polarization at 1 K temperature.

Particle Spin
ω0 /2π nI TC C (Eq. 1.69)
(Hz) (spins/cm3) (K) (K)

·Cr(V) 1/2 69.3 × 109 1.0 × 1020 7.676 × 10–4 1.6629
proton 1/2 106.5 × 106 0.79 × 1023 1.427 × 10–6 2.5508 × 10–3

deuteron 1 16.35 × 106 0.79 × 1023 9.002 × 10–8 5.2311 × 10–4
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We see that the Curie temperature causes insignificant correction for the nuclear sus-
ceptibilities at 1 K temperature. The same is not exactly true for the electronic spins, but 
because their polarization is nearly complete at or below 1 K temperature, in a 2.5 T field, 
the Curie–Weiss law becomes insignificant. None of the spin systems has a risk of under-
going spontaneous magnetization, because the range of the temperatures in the polarized 
targets is well above TC. Note, however, that if some phase separation and crystallization of 
the paramagnetic compound would occur, there could be a magnetic phase transition in the 
microcrystals, if the molecular field effect would be strong in them.

The last column in Table 1.1 lists the coefficient C of Eq. 1.69 which gives the nuclear 
spin polarization P = C/T at high temperature in 2.5 T field. If the Curie–Weiss law is 
replaced by the Curie law, the error in the proton polarization in thermal equilibrium at 1 K 
is 1.4 ppm, which is insignificant in view of the accuracy with which the lattice temperature 
can be determined.

1.2.2 Density Matrix

The above equations are practical for handling static situations in high field and at any tem-
perature (apart from the cases where high temperature was specifically required). For spin 
dynamics, involving time-dependent fields and interactions among the spins, the density 
matrix techniques9 offer suitable tools and allow to also define the concept of spin tem-
perature in the low effective field Be (equivalent of Eq. 1.57 for single spin) of the rotating 
frame. It also enables the rigorously correct handling of the calculation of saturation, line-
shapes and relaxation times in solids.

The density matrix ρ of a system which is an assembly of a large number N of constitu-
ents is defined most generally by its elements

 d ,ij i j∫ρ ψ ψ τ=  (1.74)

where integration is over the space in order to average over the ensemble. The expectation 
value of an operator Q  can be shown to be

 ρ{ }=Q QTr ,  (1.75)

and the time variation of the density matrix obeys the von Neumann–Liouville equation

 H�i
d t
dt

t, ,
ρ

ρ
( ) ( )=    (1.76)

which can be obtained directly from the Schrödinger equation. In case of a time-indepen-
dent Hamiltonian, writing the density matrix ρ (0) at t = 0, ρ (t) is then given by

9 For more complete introductory discussion, see Ref. [4].
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 ρ ρ( ) ( )= − +H H� �t e e0  ,i t i t/ /  (1.77)

which leaves the eigenvalues and diagonal elements of ρ(t) constant in time. The off- 
diagonal elements of ρ(t) exhibit undamped oscillatory behavior.

Averaging over the lattice variables can be assumed in many cases, so that ρ(t) = 
Trlattice{ρspin+lattice(t)} involves only the spin variables of the system. In evaluating the dipolar 
interaction energy, the sum over the lattice variables is, however, mostly left explicitly in 
the expressions.

We may use often the following relationships for calculating the steady-state equilibrium 
of the observable Q:

 
d Q
dt

i Q
Q
t

, ,=   +
∂
∂

H
�  (1.78)

which is easily derived from Eqs. 1.75 and 1.76.
If the Hamiltonian does not have explicit time dependence, i.e.

 
H

t
0,

∂
∂

=

which states that the forces of the system are conservative, then it follows directly from 
Eq. 1.78 that

 
Hd
dt

0=  (1.79)

which states that the total energy is conserved.10

The Boltzmann (or canonical) distribution is obtained by maximizing the entropy

 ρ ρ{ }= −S k  Tr lnB  (1.80)

at constant energy E = Tr { ρ ℋ}. The resulting density matrix is

 ρ = − −H

Z e ,kT1  (1.81)

where Z is called the partition function which performs the normalization Tr{ ρ} =1 and is 
given by

 =












−H

Z eTr .kT  (1.81a)

The density matrix has the diagonal elements

 
H

ρ =
−

Ae .i
kT
i

 (1.82)

10 See Ref. [1] p. 125 or Ref. [14] p. 34.
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where we have written

 H Hi ii =  (1.83)

using the eigenfunctions |i〉 of ℋ.
The matrix ρ is also sometimes called the spin polarization matrix; the resemblance of its 

diagonal elements in Eq. 1.82, with the classical expression of magnetic level population 
and polarization of Eq. 1.62, is obvious.

Throughout this book we are interested in high polarizations, which require high field 
and low temperature. Most of the results of spin dynamics in the literature are obtained by 
using the so-called high-temperature approximation of the density matrix

 ρ = −








− HZ

k T
1 ,

B

1  (1.84)

which requires that the first term in the Taylor expansion be small; this is obviously not 
valid at low temperatures. However, this linearized density matrix allows to calculate 
explicit rate equations for the transient behavior of spin temperatures. Experiments in the 
low-temperature regime have shown that in many favorable cases the conclusions based 
on the high-temperature approximation 1.84 are valid also at low temperatures, at least 
qualitatively.

The strength of the density matrix formulation of the statistical state of an array of 
spins lies in the fact that it allows the definition of the spin temperature in the rotating 
frame in which the transverse RF field is static. The spin temperature may be very 
much different from the lattice temperature of the solid material. This concept has been 
verified many times experimentally and it is the only way to theoretically explain many 
subtle phenomena in NMR and EPR. We shall frequently return to this in the Chapters 
2–5.

We note that the spin temperature can be either positive or negative because the energy 
spectrum of the eigenvalues of the spin Hamiltonian is limited upwards. The diagonal ele-
ments of the density matrix are always positive and sum up to 1, whereas the off-diagonal 
elements are smaller by several orders of magnitude and oscillate in time at a frequency 
close to the Larmor frequency.

To illustrate the use of the density matrix in explicit form, we shall calculate the polar-
ization P = 〈Iz〉/I of Eq. 1.60 for an assembly of N identical spins Ii  = I :

 P
I
NI

I

NI
.z i

N

z
i

1
∑

= = =

These nuclear spins are bound in a solid medium with which they are in thermal equilib-
rium, but they are not interacting strongly with each other (the spin density can be thought 
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26 Introduction to Spin, Magnetic Resonance and Polarization 

to be very small). Adding up the individual spin Hamiltonians of Eq. 1.33, we get then the 
simple total Hamiltonian

 ∑ω=H � I ,
i

z
i

tot 0

where the lattice interaction part and the spin-spin interaction part are assumed to be neg-
ligibly small (all relaxation times are long but not infinite). Before evaluating the density 
matrix of Eq. 1.81 we must average the total Hamiltonian over the ensemble of the N spins 
(which is equivalent to averaging over the lattice variables), because the state of any spin i 
can be regarded as independent of the states of all other spins:11

 ∑ ω ω= = =
=

H H � �
N N

I I1 1
,

i

N

z
i

z0 tot
1

0 0

where the last step is not only a shorthand notation but means that the z-component of 
averaged spin matrix can be used to represent spin in the Hamiltonian. The density matrix 
is now

 e

e

e

eTr Tr
.

kT

kT

I

I

/

/

z

z

0

0

0

0

ρ
{ } { }

= =
α ω

α ω

−

−

−

−

H

H
 (1.85)

We may now calculate the expectation value of Iz using Eq. 1.75:

 I I

e I

e
Tr

Tr

Tr
.

i

N

z
i

i

N

z
i

I

i

N

z
i

I
1 1

1

z

z

0

0
∑ ∑

∑
ρ

{ }
=












=












α ω

α ω
= =

−

=

−
 (1.86)

We note that   =I I, 0z
i

z
j  because the spins do not interact and use Eqs. 1.44–1.46 for 

rearranging the terms under the trace so that we may evaluate the diagonal components.
To obtain the diagonal elements of Eq. 1.82 we shall consider the eigenvalue m of Iz in 

eigenstate ψm for one of the independent spins:

 I m .z m mψ ψ=  (1.87)

By applying the operator Iz n − 1 times from the left, we get

 I m ;z
n

m
n

mψ ψ=  (1.88)

for all functions f  (aIz), which can be expanded into a Taylor polynomial, we shall then find

 f aI f amz m mψ ψ( ) ( )=  (1.89)

11 This follows from the assumption that the spins are not strongly interacting. If we do not make such an assumption, the interaction 
piece must be also included in the Hamiltonian. This situation may be valid at very low spin temperatures, corresponding to nearly 
complete spin polarization. The argument has been developed using the notions of basic quantum mechanics in Ref. [6], pp. 157–160.
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and

 f aI I f am m .z z m mψ ψ( ) ( )=  (1.90)

By inserting these under the traces of Eq. 1.67, with αω=a – 0  and

 f aI ez
Iz0( ) = α ω−

we get

 P
N I e

NI e

me

I e

Tr

Tr
,

z
I

I

m I

I
m

m I

I
m

z

z

0

0

0

0

∑

∑

{ }
{ }

= =
α ω

α ω

α ω

α ω

−

−

=−

+
−

=−

+
−

 (1.91)

which is identical to Eq. 1.62.
Although this result can be derived in many simpler ways, the above one is based on the 

formal quantum statistics, and it demonstrates several key features of the density matrix 
techniques which will be needed later on in this book. One of these is that there was no 
need to resort to the ‘high temperature’ approximation to obtain the result; the reason why 
we found no complexity arising from the exponential function was that the operator in 
question ( Iz

 ) commutes with the entire Hamiltonian, and therefore with the density matrix.
In high external field, the above total Hamiltonian, the so-called Zeeman energy 

Hamiltonian, is usually much larger than the terms describing the spin-spin interactions 
and the lattice interactions. These can then be considered as perturbations to the main prob-
lem, which can be solved first using the simplified density matrix. Further examples on the 
use of the density matrix will be given in the following chapters.

1.3 Thermodynamics of Spin Systems

1.3.1 Thermodynamic Functions and Measurement of Spin Temperature

Let us consider a system of NI spins I which is sufficiently isolated from its surroundings 
so that it can reach an internal thermodynamic equilibrium at an inverse spin temperature

 β =
�
k T

.
B

 (1.92)

The equilibrium entropy per spin, corresponding to the maximum of Eq. 1.80, is

 

S
N k

k T
Z

k T
Z Z

Tr ln Tr ln
exp /

,

1 Tr ln Tr ln

I B

B

B

ρ ρ ρ

ρ ρ
β

{ } ( )

{ } { }

= − = −
−












= + = +

H

H H
�

 (1.93)
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where the partition function Z was given by Eq. 1.81 and the expectation value of the 
energy, obtained from Eq. 1.75, is

 H HTr . ρ{ }=  (1.94)

The fact that entropy must always be positive, regardless of the spin temperature for exam-
ple, follows directly from its quantum statistical definition. This is extremely general and 
independent of the nature of the subsystem, because the entropy is proportional to the loga-
rithm of the number of quantum states which must be always greater than unity.12 Similarly, 
the quantum statistics directly gives the result that entropy is an additive quantity, i.e. that 
the entropy of a composite system is the sum of the entropies of its parts. Moreover, the 
maximum entropy of a spin system corresponds to totally disordered spins which have all 
(2 I + 1)NI diagonal elements of the total density matrix equal to 1, yielding therefore the 
maximum spin entropy S k I N I/ ln 2 1 ln 2 1B

N

I
I( ) ( )= + = + .

We have shown in detail the steps leading to the final result of Eq. 1.93 because in the 
literature this formula is sometimes given with different signs. We have chosen the present 
formula as it makes evident that the first term is always negative, whereas the second term 
is always positive because Z is always greater than 1.

The partition function Z of Eq. 1.81 alone can be used for deriving all thermodynamic 
variables of a quantum statistical system. The Gibbs free energy, for example, is

 G k T Zln .B= −  (1.95)

The change of the free energy is the work done on the body in a reversible isothermal pro-
cess. The free energy is related to the total energy and entropy by

 = −G E TS, (1.96)

which can be obtained directly from Eqs. 1.93 and 1.95, and the entropy is

 S
k T

T Z Z T
Z
Z
T

ln ln ,
B

( )= ∂
∂

= + ∂
∂

 (1.95′)

which is easily verified to give the same result as Eq. 1.93.
The absolute temperature, or simply the temperature, of a body is defined by the second 

law of thermodynamics

 =
T

dS
dE

1
. (1.97)

The temperature as well as entropy are purely statistical quantities and are meaningful only 
for macroscopic bodies. Definition 1.97 can be used for the experimental determination of 
the spin temperature by supplying a known quantity ΔQ of heat to an isolated spin system 
and measuring the corresponding change ΔS in entropy, yielding

 T Q
S
.D

D
=  (1.98)

12 For a more complete account, see the excellent discussion on entropy by Landau and Lifshitz [14], pp. 22–32.
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The known quantity of heat can be supplied by NMR techniques which will be discussed 
in subsequent chapters, whereas the entropy can be measured from the nuclear polarization 
at such high field that the Zeeman energy of Eq. 1.59 dominates the interaction energy. 
The transition to the high field and back must be done adiabatically, i.e. sufficiently fast so 
that the system does not exchange too much energy with the surroundings, but also slowly 
enough so that the internal thermal equilibrium is conserved in the spin system during the 
field ramp.

The specific heat CB at constant magnetic field is obtained from the entropy

 C T S
T

.B
B

= ∂
∂  (1.98′)

This parameter is important for magnetic cooling applications.
The above treatment of the thermodynamic functions and relations is extremely general, 

although not very transparent. The relations derived up till now can be used for handling all 
interactions, even in the case of phase transitions. We shall now move to dealing with the 
more specific and simpler high-field situation where more explicit results can be obtained, 
valid also at low spin temperatures.

1.3.2 Entropy in High Magnetic Field

When the Zeeman energy is large in comparison with the interaction energy so that the 
latter can be ignored, the density matrix is given to a good approximation by

 Z Iexp z
1

0ρ βω( )= −−  (1.99)

and the partition function is

 Z ITr exp ,z0βω{ }( )= −  (1.100)

which satisfies the requirement ρ{ } =Tr 1. Using these and the definition of entropy 1.80 
we find

 

S
k

I Z I Z

IP m

Tr ln ln

ln exp .

B
z z

m I

I

0 0

0 0∑

ρ βω βω

βω βω

{ }( )

( )

= − − − = +

= + −










= −

 (1.101)

By recalling from Eq. 1.39 that w0 = –g  B0, and by using the same definition of x – / 20βω=  
as in the Brillouin function of Eq. 1.63, the expression for the high-field entropy per spin 
becomes

 S
k

IxP xm2 ln exp 2 .
B m I

I

∑ ( )= − +










= −

 (1.102)
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We note that if γ changes sign, then both x and P change sign and therefore the first term 
in Eq. 1.102 stays always negative. The same is true when the spin temperature changes 
sign.

It is straightforward but tedious to show that the sum under the logarithm can be 
expressed in the terms of the hyperbolic functions:

 xm
I x
x

exp 2
sinh 2 1

sinh
.

m I

I

∑ ( ) ( )
=

+

=−

 (1.103)

Inserting this and using in the Brillouin function we may finally write the high-field entropy 
explicitly

 S
k

x x I I x
I x
x

coth 2 1 coth 2 1 ln
sinh 2 1

sinh
.

B
( )( ) ( ) ( )

= − + + +
+

 (1.104)

The relation between the entropy and polarization must then be solved by eliminating x 
from Eqs. 1.63 and 1.104 numerically, if the entropy must be determined from the mea-
sured high-field polarization. As was said above, this is the basis for the measurement of 
the absolute spin temperature when an accurate secondary thermometer is not available.

At high temperatures, the first term tends to zero as –x2, whereas the second term con-
verges to ln(2I + 1). This latter result can also be inferred directly from the definition of the 
entropy of Eq. 1.80, because the diagonal elements of the density matrix tend to 1 when the 
temperature goes to infinity, and its off-diagonal elements are 0 in equilibrium. The upper 

Figure 1.5 Entropy of non-interacting spin systems in internal thermal equilibrium, in a high field 
and in the absence of possible magnetic phase transitions that can be expected in low effective field 
at polarizations approaching 1 or –1

0.0 0.5 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

Polarization

E
nt

ro
py

  S
/k

B

Spin I = 3/2
Spin I = 1
Spin I = 1/2

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108567435.002
https://www.cambridge.org/core


 1.3 Thermodynamics of Spin Systems 31

bound of the entropy is therefore ln(2 I + 1), i.e. the logarithm of the number of possible 
quantum states that the spin I spin can occupy.

For spin 1/2 the entropy can be expressed in the terms of polarization directly:

 
S
k

P P
P

P
ln 2 1

2
ln 1 ln

1

1
.

B

2( ) ( )
( )= − − +

+

−









  (1.105)

Figure 1.5 shows the high-field entropy per spin for the cases of I = 1/2, 1 and 3/2. 
The entropy per spin reaches its maximum of ln(2I + 1) at P = 0. We see that the entropy 
becomes zero for both positive and negative maximum polarization as can be expected, 
because both cases correspond to maximal order in the spin system.

1.3.3 Interacting Spin System in the High-Temperature Approximation

The high-temperature approximation can be used in situations where the exponential in 
the density matrix of Eq. 1.81 is so small that it can be accurately described with its Taylor 
series truncated after the first two terms:

 ρ β( )≅ − H
Z

11
, (1.106)

where 1 is a unity matrix of the same dimension as the Hamiltonian. This situation arises 
when β is small enough, i.e. the temperature must be high. In this case the energy of the 
spin system is

 H H H H H
� �Z I

Tr 1 Tr
2 1

Tr ,2 2ρ β β { }{ } ( )= = −








= −
+

 (1.107)

where we have used the knowledge that { } =HTr 0 and that Z = 2I + 1 at high tempera-
tures. The entropy is obtained by inserting this energy to Eq. 1.93:

 S
N k

Z
k T

I
Z

Tr ln ln ln 2 1 Tr .
I B B

2

2
2ρ ρ β { }{ } ( )= − = + = + −

H
H

�
 (1.108)

In this expression we have again emphasized the fact that the entropy per spin is evaluated, 
by showing NI explicitly on the left; this is done because the spin density enters in the 
interaction piece which is a part of the general spin Hamiltonian.

We shall now introduce spin interactions, although their detailed discussion will be left 
to Chapter 2. Let us take the important case where the dominant spin interaction is due to 
the magnetic dipolar force between the nuclei. The Hamiltonian is then

 H H H H� BI ,Z z D1 γ= + = − +  (1.109)

where HD  is the so-called dipolar Hamiltonian which describes the interaction of the dipole 
moment with the dipolar field. The dipolar field itself is the sum of magnetic fields arising 
from the neighboring magnetic dipoles and has both static and fluctuating components. 
With this the trace of the squared Hamiltonian becomes
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 H H� �B I I B BTr Tr Tr Tr ,z D z
2 2 2 2 2 2 2 2 2 2

loc
2γ γ{ } { } { } { }( )= + = +  (1.110)

where we have defined the local field Bloc

 
B

B B I

Tr

Tr

Tr

Tr
,D

Z

D

z

loc
2

2

2

2

2

2 2 2 2γ

{ }
{ }

{ }
{ }

= =
H

H

H

�
 (1.111)

which measures the mean strength of the dipolar field. This field and its evaluation will 
be discussed in more detail in the next chapter, and we only need to know here that Bloc 
has a value around 10–4 T for most nuclear spins with a high density typical of solid target 
materials.

The trace in the denominator can be evaluated immediately, based on the commutation 
rules and algebra of the spin operator. This is done by first evaluating the trace of the 
square of the spin operator { }ITr ˆ2  (we now use explicitly the operator symbol to avoid 
confusion). From Eq. 1.25 we learned that for all magnetic states m the eigenvalue of Î 2  is

 I I Iˆ 1 ,2ψ ψ( )= +  (1.112)

which means that the matrix representation of the squared spin vector has diagonal ele-
ments all of which have the magnitude I(I + 1). Because there are altogether 2I + 1 diagonal 
elements, the trace sums up to

 { } ( )( )= + +I I I ITr ˆ 1 2 1 .2  (1.113)

On the other hand, we know that the trace of an operator is independent of the represen-
tation so that the traces of the squares of all spin components must be equal, from where 
it follows that

 I I I I I ITr ˆ Tr ˆ Tr ˆ 1
3

1 2 1 .x y z
2 2 2{ }{ } { } ( )( )= = = + +  (1.114)

The entropy can now be written, using the fact that at high temperatures Z = 2 I + 1,

 S
N k

I
I I

B Bln 2 1
1

3
.

I B

2 2
2

loc
2β γ ( )( ) ( )

= + −
+

+  (1.115)

To evaluate more easily the magnitude of the deviation of the entropy from its maximum 
value, we may finally insert the Curie temperature of Eq. 1.72:

 S
N k

I
T
T n k T

B B
ln 2 1 1 ,

I B

C

I B

2
loc
2

0µ( )= + −
+

 (1.116)

where nI is the number density of the spins I. The entropy reduction from the maximum is 
seen to be the ratio of the magnetic and thermal energy densities, multiplied by the ratio 
TC

  /T. The Curie temperatures, listed in Table 1.1, are around 1 µK, and it is therefore clear 
that extremely low spin temperatures are required for a substantial entropy reduction in 
external magnetic fields which are of the order of the local field Bloc. At high field and 
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high polarization, however, the entropy may be substantially reduced from the maximum, 
although Eq. 1.116 is not exactly valid then.

The specific heat is now obtained from Eq. 1.116 using Eq. 1.98′:

 C
N k

T
n k T

B B
2

.B

I B

C

I B
2

2
loc
2

0µ
=

+  (1.116′)

In the above it was implicitly assumed that the spin interactions feel the same temperature 
as the Zeeman energy reservoir. This requires that the Zeeman levels are broadened so that 
a sufficient overlap occurs, and is true only at rather low fields, of the order of Bloc. The 
internal thermal equilibrium of the two reservoirs is established in a time scale of T2, the 
decay time of the free-precession NMR signal, whereas the Zeeman and dipolar reservoirs 
relax towards the lattice temperature at very much slower rates T1Z and T1D ≈ T1Z/3, respec-
tively. When the magnetic field is changed, the Zeeman reservoir is cooled or heated if the 
field change happens at a constant entropy, whereas the dipolar reservoir is not influenced 
by the field change. Similarly, if an adiabatic demagnetization or magnetization is made 
in the rotating frame at high enough effective field, the dipolar reservoir is unaffected, 
whereas the Zeeman reservoir is cooled or heated. The specific heat which is experimen-
tally measurable (by using a resonant method) is then

 
C
N k

T
n k T

B
2

.B

I B

C

I B
2

2

0µ
=  (1.116″)

Goldman [4] and Abragam and Goldman [5] discuss the quasi-equilibrium of the spin sys-
tems at high fields and make the reasonable assumption, well verified by several types of 
experiments, that the systems can be described by the density matrix with two temperatures

 
I

I

exp

Tr exp
.Z z D

Z z D

0

0

ρ
β ω β

β ω β{ }
( )

( )=
− − ′

− − ′

H

H
 (1.117)

In the high field HD  is replaced by the so-called secular part of the dipolar Hamiltonian ′HD ,  
which has the important property that it commutes with the Zeeman Hamiltonian. The 
reasons for this will be discussed in Chapter 2.

At high temperatures and fields, the Hamiltonian and density matrix become

 
I

I
Z

;
1

z D

Z z D

0

0

ω

ρ
β ω β

= + ′

=
− − ′

H H

H

�
 (1.118)

and in the above low-field equations the squared local field must be replaced by
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 (1.119)
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Let us now consider the non-adiabaticity arising from the dipolar interactions when the 
field is lowered to such a value that thermal contact is established between the reservoirs. 
This field Bm is called the ‘mixing field’ and was discussed in [15]. Demagnetization is 
started from the initial field and temperature Bi and βi, and the two reservoirs are initially 
at the same temperature. During the field ramp the Zeeman temperature is evolving as  
βZ = βi Bi /B until the ramp is stopped at the mixing field value and the two inverse tempera-
tures are allowed to equalize again to a common final value βf, which is obtained by requir-
ing that during the thermal mixing the total energy of the spin system must stay constant:

 H H H H H
B
B

I ITr Tr 1 Tr 1 .i
i

m
m z i D f m z f Dβ ω β β ω β{ }( ){ } = + − ′


















= + − ′  (1.120)

Ignoring the small term β ′Hi D  it is straightforward to calculate the final inverse tem-
perature [15]
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 (1.121)

where the last factor describes the non-adiabaticity which in materials such as silver can be 
about 0.99 at Bm = 0.25 mT [15]. The losses in polarization and temperature in this case are 
1%, and the loss of entropy is 2% because of its T–2 dependence. Such non-adiabaticities 
can lead to important corrections in the measurement of the absolute temperature which 
requires the cycling between high and low fields.

If thermal mixing is performed after a first demagnetization and the Zeeman reservoir is 
then again cooled at high field before a second demagnetization, the dipolar reservoir stays 
cold during this field cycle. A second thermal mixing then results in a much lower loss in 
polarization or temperature because the dipolar reservoir already was much colder.

Similar experimental findings have been made in the rotating frame. The non-adiaba-
ticities here have a practical importance for the polarization losses occurring during the 
adiabatic reversal of polarization.

1.3.4 Thermodynamics at High Polarization

At low spin temperature, which is synonym of high polarization and strong reduction of 
entropy, the handling of entropy becomes more complicated, both conceptually and in the 
terms of the mathematical tools. Abragam and Goldman [5] introduce the density matrix 
1.117 and the partition function

 H �Z I, Tr exp /Z Z z D0β β β ω β{ }( )( ) = − − ′  (1.122)

with two inverse temperatures. These are the Lagrange multipliers of the maximization of 
the entropy while keeping energy constant. The partition function yields the Zeeman and 
dipolar energies
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 I I ZTr ln , ;z z
Z

Z0 0ω ω ρ
β

β β{ } ( )= = − ∂
∂

� � �  (1.123)

 ZTr ln , .D D Zρ
β

β β{ } ( )′ = ′ = − ∂
∂

H H �  (1.124)

The problem is that both energies depend on both temperatures, although in the high-field 
region the two temperatures are separately constants of motion. This results from the fact 
that the two Hamiltonians depend on the same spin variables, and therefore their expecta-
tion values are not independent of each other, except in the high-temperature limit where 
the dipolar energy stays practically constant. We are therefore not dealing with the simpler 
situation where there are two independent heat reservoirs.

In addition to the energies, the partition function 1.122 yields again all thermodynamic 
quantities such as the entropy

 S
k

Z ITr ln ln , / .
B

Z Z z D0ρ ρ β β β ω β{ } ( )= − = + + ′H �  (1.125)

A diagrammatic method allows to calculate the expansion of these in the terms of β [5] for a 
given lattice symmetry and sample shape. These calculations are beyond our present scope, 
and we recommend reading the impressive results on the non-linear effects on the dipolar 
energy, spin polarization, free energy, entropy and transverse susceptibility obtained by the 
team of Abragam and Goldman [5].

1.3.5 Cooling by Adiabatic Demagnetization of a Spin System

The adiabatic demagnetization of a paramagnetic electron spin system was the primary 
method for reaching the millikelvin temperature region until the end of 1960s when dilution 
refrigeration became a practical method of continuous cooling. At the same time supercon-
ducting magnet technology had rapid progress and fields over 5 T in large volumes became 
soon available. These enabled the practical application of the nuclear magnetic cooling 
which requires precooling at temperatures below 20 mK and fields in excess of 5 T.

Interestingly, the theoretical understanding and practical tools for the quantum statistical 
treatment of spin systems under strong saturation also developed at the end of the 1960s 
[16]. These led to practical equipment for the DNP yielding spin temperatures of the order 
of few millikelvin in 2 T to 5 T fields, and to the understanding of the behavior of the spin 
temperature in the rotating frame under strong saturation. The latter gave the basis for the 
adiabatic demagnetization in the rotating frame (ADRF).

This wealth of methods offered interesting possibilities for the exploration of the 
untouched land of nuclear magnetism which could now be approached by two differ-
ent schemes: (1) Demagnetization of a metallic sample precooled itself in a high field 
to a temperature below 1 mK by the demagnetization of a large nuclear refrigerator;  
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and (2) demagnetization in the rotating frame of the nuclear spins in a dielectric sample, pre-
cooled by dynamic nuclear cooling to a spin temperature of a few millikelvin at high field.

The reversal of polarization after demagnetization was of interest to the research teams 
undertaking work in nuclear magnetism. In static field this can be accomplished by a dia-
batic field reversal, and in the rotating frame it can be obtained by a fast passage through 
the resonance line. It has also a practical potential, although yet largely unexplored, for 
polarized targets.

Adiabatic Demagnetization in the Laboratory Frame and Cooling  
of Conduction Electrons

Equation 1.104 shows that when the magnetic field is changed adiabatically (at constant 
entropy) in the high-field region, the ratio B/T must stay constant and the temperature must 
decrease proportional to the field. The strongly reduced nuclear spin entropy therefore can 
be used for cooling the electrons in a metal, if the thermal contact between the conduction 
electrons and the nuclear spin system is good. This is the case in many metals such as 
copper. Moreover, the thermal conductivity of the electronic system is quite good so that 
copper and other similar metallic materials can be used for cooling samples attached to it.

The thermal contact between the nuclear spins and the conduction electrons is good 
because of the relatively fast spin relaxation time obeying the relation

 τ κ
=
T

,
e

1  (1.126)

where κ is the Korringa constant and Te is the temperature of the conduction electrons. The 
Korringa constant depends on the magnetic field at low field values by

 B
B B
B B

,
2

loc
2

2
loc
2κ κ

α( ) =
+

+∞
 (1.127)

and also on temperature at very high polarization and low field [17].
When the demagnetization is carried out from the initial field and temperature Bi and Ti 

to the final field Bf, the final spin temperature is

 T
B
B
T ,f

f

i
i=  (1.128)

assuming that the final field is so high that the thermal mixing between the Zeeman and 
dipolar reservoirs is slow. The nuclear spin system will then start to warm up due to the 
inevitable heat leak. The evolution of the spin temperature is obtained using the specific 
heat of the high-temperature approximation of Eq. 1.116″ by integration

 t dt
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which yields a linear increase of the inverse spin temperature if the heat leak is constant. It 
is clear that the demagnetization should be stopped at the highest possible field which can 
yield the required temperature, because the experimental time depends on the square of the 
field value. Similarly, the control of the heat leak is a determining factor for the ultimate 
temperature which can be reached.

During this evolution the electron temperature will settle in a quasi-equilibrium with the 
spin temperature; assuming exponential relaxation these temperatures are related by [15]
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The lowest Te which can be reached is then equal to 2T, and it is obtained by demagnetizing 
to
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opt 0κµ
=  (1.131)

When demagnetizing to a field where mixing with the dipolar (or interaction) reservoir 
takes place, the cooling of this reservoir causes some increase of entropy. In the high tem-
perature approximation, the adiabatic efficiency of Eq. 1.121 was

 S
S

B

B B
1 ,m

m
2

loc
2

D = −
+ ′

 (1.132)

when thermal mixing between the Zeeman and dipolar energy reservoirs was made at the 
field Bm. An adiabatic sweep below this field is possible when the sweep speed is slow 
in comparison with the mixing time constant which is a rapidly decreasing function of 
decreasing B. A slow reversal of the field, however, would result in an adiabatic increase of 
temperature after zero crossing, without any possibility of obtaining negative temperatures.

Diabatic Reversal of Polarization in the Laboratory Frame
When a rapid field flip is made from a value B to –B (opposite direction), in the high-tem-
perature model the final temperature is related to the initial one by

 T T
B B
B B

,f i

2
loc
2

2
loc
2= −

+
−

 (1.133)

because only the Zeeman temperature is reversed and not the dipolar one; the equation 
is obtained by recalling that energy is conserved after the field flip. The flip is therefore 
followed by an irreversible increase of entropy when the Zeeman reservoir warms the 
interaction reservoir to a negative temperature. Experiments with Ag show [15] that for 
P < 0.6 the loss of polarization is 4% as predicted by Eq. 1.133 for a 250 µT flip field, but 
when the polarization is higher, the flipping efficiency is strongly reduced so that the final 
polarization cannot exceed –0.65 even for the initial polarization of 0.85. The decrease can 
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be partly understood by the fact that the high-temperature approximation overestimates the 
heat capacity of the Zeeman reservoir at high P, while the heat capacity of the interaction 
reservoir may be underestimated. The irreproducibility of the results may also suggest that 
if the entropy is below the critical value, transitions between the magnetic phases can cause 
large irreversibility during the field flipping.

Adiabatic Demagnetization in the Rotating Frame (ADRF)
It should be first noted that in metals the ADRF is impractical because the high-frequency 
field does not penetrate the sample but rather heats up the electronic system. On the other 
hand, in dielectric samples the flipping or ramping of the static field, ramped first to a low 
value, is impractical because the sample must contain paramagnetic electronic spins which 
cause rapid nuclear spin relaxation at low magnetic fields; these paramagnetic spins are 
required for obtaining a high DNP.

The motion of an isolated spin in a high static field B0 superposed with a small transverse 
rotating field B1 could be understood as precession about an effective field Be defined by 
Eq. 1.57. The isolated, i.e. non-interacting, spin can be manipulated reversibly by changing 
the effective field slowly in comparison with the effective Larmor precession frequency 
in the rotating frame. In the more practical case of interacting spins, the relaxation rates 
between the lattice, the Zeeman reservoir and the spin interaction reservoir must be taken 
into account in evaluating in the outcome of ADRF.

If the transverse field is small compared with the effective field, we have Be = (Δω/ω0)B0 
as the effective field; if this field is large in comparison with the linewidth, no thermal 
mixing occurs between the Zeeman and dipolar reservoirs, and the two reservoirs can be at 
different temperatures in the time scale t ≈ T1, which can be hours or even days.

When the effective field approaches the local field, the situation changes. If in addition 
the strength of the transverse field is larger than that required for the linear approximation, 
but still small in comparison with the local field, one must use the Provotorov equations 
in order to determine the time evolution and equilibrium values of the temperatures of the 
various energy reservoirs. We shall therefore leave the detailed discussion of ADRF to the 
Chapter 2, where the dynamic behavior of interacting spins is better understood. Here we 
shall focus on the static results and on the similarities between the ADRF and adiabatic 
demagnetization in the laboratory frame.

Let us now perform ADRF from such a large effective field that no thermal mixing 
occurs, down to the mixing field

 b B ,m
m m

0
0ω

γ
ω ω

γ
= + =

−
 (1.134)

where the relaxation between the Zeeman and dipolar interaction energy reservoirs is rea-
sonably fast in comparison with the spin-lattice relaxation. The relaxation takes place at a 
constant total energy, and the final inverse temperature, in the high-temperature approxi-
mation, is analogous with that of Eq. 1.121:

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108567435.002
https://www.cambridge.org/core


 1.3 Thermodynamics of Spin Systems 39

 B

b B B

b B

b B B
,f i

i

m

m

m
2

1
2

loc
2

2
1
2

2
1
2

loc
2

β β=
+ + ′

×
+

+ + ′
 (1.135)

where the second term on the right describes again the non-adiabaticity due to the mixing. 
The losses in entropy can again be of the order of 1% in favorable cases. If the effective 
field is further reduced so slowly that the dipolar and Zeeman temperatures are always in 
good equilibrium with each other, the common inverse temperature undergoes reversible 
changes with the effective field:
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where it was taken into account that the rotating field B1 must be very small in comparison 
with both the local field and the mixing field.

The ADRF can be stopped at any effective field and the transverse field can be adiabat-
ically reduced to zero. If this is done at the frequency ω0, all available Zeeman order is 
transformed to dipolar order, and if the initial polarization is sufficiently high, magnetic 
ordering may take place in the nuclear spin system.

The above expressions are further slightly modified due to the finite relaxation rates 
between the various energy reservoirs, to be discussed in Chapter 2.

Polarization Reversal by Adiabatic Passage in Rotating Frame
If the frequency or field sweep is continued through zero effective field, the Zeeman tem-
perature will be adiabatically reversed. In this process there is no adiabatic loss equivalent 
to that of the field flip given by Eq. 1.133, because in the rotating frame one can proceed 
adiabatically through zero effective longitudinal field without losses due to relaxation, 
provided that the spin-lattice relaxation times are much longer than the time spent in the 
passage.

In practice, the strength of the transverse field and the sweep rate of the steady field are 
optimized so that the losses due to relaxation are minimized. The polarization loss in the 
reversal by polarization reversal by adiabatic passage in rotating frame (APRF) is then 
reduced to that due to the loss of entropy when performing the thermal mixing, and to the 
loss due to other spins whose temperature remains untouched during the passage. At very 
high polarization the above results based on the high-temperature approximation are quali-
tatively valid, but nuclear magnetic phase transition phenomena may reduce the efficiency 
of the polarization reversal, as will be noted below.

The reversal can be performed starting from positive or negative polarization and spin 
temperature, and the sweep of the frequency or field can be started from above or below, 
with the same results. To reduce losses due to thermal mixing, however, it is best to per-
form thermal mixing at positive Zeeman temperature when the initial polarization is posi-
tive, and at negative Zeeman temperature when the initial polarization is negative.
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A more complete discussion of the polarization reversal by APRF, involving the relax-
ation phenomena, will be given in Chapters 2 and 11.

1.3.6 Nuclear Magnetic Phase Transitions

The susceptibility of Eq. 1.73 diverges at temperature TC which suggests that a nuclear 
spin system could undergo a magnetic phase transition in the vicinity of TC. When a more 
precise estimation is made including the first non-linear term beyond the high-temperature 
approximation, the susceptibility reads [15]
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1

,L
C

C
0

0

χ χ
χ( ) ( )=

− + −
=

− + −
 (1.137)

where χ = T T/C0 , L = 1/3 is the Lorenz constant, and R is the strength of other possible 
interactions, notably the Ruderman–Kittel interaction and exchange interaction in metals. 
D is the demagnetizing factor in the direction of the external field, which depends on the 
shape of the sample. L and D depend on the dipolar interactions. The divergence can be 
considerably shifted from the simplest prediction, and phase transitions can happen at both 
positive and negative temperatures.

More refined calculations can be made taking into account the high polarization of  
the nuclei. These are based on the mean-field models, on the spherical model, on high- 
temperature expansion and other quantum spin theories and on Monte Carlo simulations, 
and yield realistic and even quantitative estimates for the antiferromagnetic transition tem-
perature at zero field [15].

Lounasmaa and coworkers in Otaniemi have pioneered the study of nuclear magne-
tism in simple metals such as Cu, Ag and Rh, reviewed in [15]. They have determined 
the experimental zero-field transition temperatures TN = 58 ± 10 nK for natural Cu and 
0.56 ± 0.06 nK for natural Ag. The experimental critical fields are 270 ± 10 µT and 100 
± 10 µT, respectively, extrapolated to T = 0 K. The lower and upper critical entropies for 
the transition which has a metastable coexistence of paramagnetic and antiferromagnetic 
phases are Sc1 = (0.48 ± 0.04) kB ln 4 and Sc2 = (0.61 ± 0.03) kB ln 4 for Cu, both isotopes 
of which have I = 3/2.

In Ag at negative temperatures, ferromagnetic ordering is expected, and this has been 
observed below the experimental critical temperature of Tc = –1.9 ± 0.4 nK. Monte Carlo 
simulations give a theoretical value close to this. The critical entropy for obtaining the fer-
romagnetic transition is Sc = 0.82 kB ln 2 (both Ag isotopes with spin have I = 1/2).

Lounasmaa and Oja [15] also reviewed the work done by other groups on nuclear mag-
netism in Tl, Sc and AuIn2 where the exchange interaction is strong. This should lead to 
higher transition temperatures and makes the spin-lattice relaxation so fast that the conduc-
tion electrons are in thermal equilibrium with the nuclear spins. While the interpretation 
of the results for Tl and Sc are difficult, AuIn2 shows a first-order ferromagnetic phase 
transition at a surprisingly high Curie point of TC = 35 µK [18].

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108567435.002
https://www.cambridge.org/core


 1.3 Thermodynamics of Spin Systems 41

The nuclear magnetic ordering in the rotating frame was first observed in CaF2 by the 
Saclay group in 1969 [19, 20]. A transition to ordered state was observed in the NMR dis-
persion signal when ADRF was performed to zero effective field, with initial polarizations 
–P ≫ 0.3. It was not possible to determine the transition temperature in these experiments, 
but it was found that when the steady field was along the |100| crystal axis, antiferromag-
netic order resulted at T < 0, whereas a ferromagnetic order with sandwich domain struc-
ture was found for |111| direction. For positive temperatures a transition to helical order 
was found with field along the |111| axis. Neutron scattering experiments at Saclay with 
LiH similarly revealed an antiferromagnetic transition, with TN = –1.1 µK [21–23]. The 
Leiden group [24] studied Ca(OH)2 and found a transition to ferromagnetic state with Tc = 
–0.9 ± 0.2 µK [25]. This was also obtained at initial polarizations –P > 0.3 before ADRF.

From the foregoing it appears clear that nuclear spin ordering cannot take place in a high 
magnetic field, where the DNP is performed. In the dilute electron spin system, however, 
ordering is quite possible, if the spin concentration is high enough, or if the spins are not 
uniformly distributed. In such a case the exchange interaction will strongly shorten the 
electron and nuclear spin-lattice relaxation times, which entail fairly low DNP.

The nuclear magnetic ordering is likely to cause substantial loss of polarization when 
performing the reversal of polarization by adiabatic passage. This will be discussed in 
Chapter 11 where polarization reversal techniques in polarized targets are described.
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2
Resonance and Relaxation of Interacting Spin Systems

In this chapter we shall first outline the types of interaction of spins, which are most import-
ant for solid polarized targets: the magnetic dipole interaction, the quadrupole interaction, 
the spin-orbit interaction, the hyperfine interaction and some other direct and indirect spin 
interactions. These, and in particular the dipolar interaction, are then used in the discussion 
of the magnetic resonance phenomena, such as the resonance lineshape and saturation. The 
relaxation of spins, which is phenomenologically introduced already in the saturation, is 
then overviewed in greater depth, before closing with a section on sudden and adiabatic 
changes of spin systems in the rotating frame.

2.1 Interactions of Spin Systems

2.1.1 Magnetic Dipole Interactions among Spins in Solids

Let us first calculate the magnetic field due to a classical magnetic dipole moment 
�µ  placed 

at the origin. This is obtained most conveniently from its magnetic scalar potential at the 
point r: 1

 
�

V
r

r r
4

,m
0

3

µ
π

µ( ) = ⋅  (2.1)

the gradient of which gives the magnetic induction:

 = =V
r r r

B r r r r
4 4

3 .m
0

3
0

3 5

µ
π

µ µ
π

µ µ( )= − =
⋅





= − − ⋅






� �
�

 (2.2)

Choosing the θ = 0 axis of the spherical polar coordinate system along the direction of the 
dipole (see Figure 2.1a), we obtain

1 The magnetic scalar potential is defined as the energy needed to move a unit magnetic pole from infinity to point r, θ. The 
magnetic scalar potential is a single-valued function only if there are no currents present. However, upon taking the gradient for 
obtaining the magnetic induction B, the terms involving currents disappear.
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= −
∂

∂
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The local field due to a dipole, at constant radius r, has thus a magnitude

 
r

B
r4 2loc

0
3

0
3

µ
π

µ µ
π

µ≤ ≤  (2.4)

and a direction which varies from antiparallel in the horizontal plane to parallel on the θ = 0 
axis. The lower limit applies in the plane perpendicular to the dipole moment and the upper 
one on the axis θ = 0.

It is interesting to note the strength of this field at atomic distances, in the case of usual 
hydrocarbon polarized target materials. For example, glassy 1-butanol has the density 
ρ = 0.97 g/cm3, and the atomic density of hydrogen is

 n
f N
M

0.79 10  cm ,H
H A

H

23 3ρ
= = ⋅ −  (2.5)

where fH = 0.135 is the free hydrogen fraction of all nucleons in the material, and MH is the 
molar weight of hydrogen. The average distance between the protons is therefore

x

y

z
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Bdipolar

φ

r

Bθ

x

y

z

φ

r12

a)

b)
µ2

µ

µ1

θ

θ

Figure 2.1 (a) Magnetic dipole in the polar coordinate system; (b) two magnetic dipoles in the polar 
coordinate system
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 = =−r n 0.233 nm,H

1
3  (2.6)

and we may immediately calculate the strength of the local field Eq. 2.3, due to the nearest 
neighbor proton, by introducing the magnetic moment of Eq. 1.7 and reminding ourselves 
of Eq. 1.25:

 n B n n I I
4 2

2 1 0.3846 mT.p H loc p H H p p p
0 2 0 2

0

µ
π

µ
µ
π

µ µ γ ( )≤ ≤ = + =�  (2.7)

In the Gaussian units the local field is therefore in the range 2 gauss to 4 gauss.
If two classical magnetic dipoles 

�
1µ  and 

�
2µ  are separated by the vector r12, we may now 

calculate the magnetic energy of the dipole 
�

2µ  in the field of the dipole 
�

1µ  using Eq. 2.2:

 E
r r

B
r r

4

3
.21 1 21

0 1 2

12
3

1 12 2 12

12
5

�
� � � �

µ
µ
π

µ µ µ µ( )( )
= ⋅ =

⋅
−

⋅ ⋅











 (2.8)

We note that the dipolar energy is invariant under the inversion of r and under the inversion 
of the indices 1 and 2. The dipole energy E12 of the moment 

�
1µ  in the field of 

�
2µ  is therefore 

equal to E21.
In discussing the dipolar spin interactions, two important cases must be treated some-

what differently: the case of low external fields B0 ≈ Bloc and the case of high external 
fields B0 ≫ Bloc. We are here interested mainly in high external fields, which have potential 
for high dynamic polarization and where perturbation theory can be easily applied. This 
consists of solving the Zeeman Hamiltonian first (Eqs. (1.19) and (1.23)) for each spin and 
then treating the dipolar term as a small perturbation. Before the application of the per-
turbation, each of the spins in the pair therefore is found in a state with definite magnetic 
quantum number m1 and m2.

In high field the energy of Eq. 2.8 has various components, with different time variations 
due to the Larmor precession of the magnetic dipole moments. The components along the 
static field give rise to a static part, whereas the transverse components give parts that oscil-
late at the sum and difference frequencies of the Larmor precessions of the spins in the pair.

The quantum mechanical expression for the dipolar energy is obtained by replacing the 
classical vectors 

�
1,2µ  by their operator counterparts of Eq. 1.11. Doing this and reorganiz-

ing slightly the expression, we shall obtain the well-known dipolar Hamiltonian

 
�
r

I I I Ir r
 4

ˆ ˆ 3 ˆ ˆ ,21
0

2
1 2

12
3 1 2 1 12

0
2 12

0H
µ γ γ

π ( )( )= ⋅ − ⋅ ⋅



  (2.9)

where we have deliberately kept the spins and the gyromagnetic factors distinct. By rewrit-
ing the spin operators in component form, and by expressing the Ix and Iy in terms of the 
raising and lowering operators of Eq. 1.15, we may rewrite Eq. 2.9

 
�
r

A B C D E F
421
0

2
1 2

12
3H

µ γ γ
π

= + + + + +   (2.10)

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108567435.003
https://www.cambridge.org/core


46 Resonance and Relaxation of Interacting Spin Systems

with

 A I I 1 3 cos ,z z1 2
2θ( )= −  (2.11a)

 B I I I I1
4

1 3cos ,1 2 1 2
2θ( )( )= − + −+ − − +  (2.11b)

 C I I I I e3
2

sin cos ,z z
i

1 2 1 2 θ θ( )= − + φ+ + −  (2.11c)

 D I I I I e C3
2

sin cos *,z z
i

1 2 1 2 θ θ( )= − + =φ− − +  (2.11d)

 E I I e3
4

sin ,i1 2
2 2θ= − φ+ + −  (2.11e)

 F I I e E3
4

sin *,i
1 2

2 2θ= − =φ− − +  (2.11f)

where we have expressed the unit vectors r° in terms of the polar coordinates θ and ϕ (see 
Figure 2.1b) and omitted the circumflex above the spin operators for simplicity (as usual). 
This form of presenting the dipolar Hamiltonian is particularly convenient when calcu-
lating the magnetic resonance absorption lineshape, because it enables us to separate the 
relevant terms for each possible resonance line from those which give insignificant effects.

For a large array of spins, the dipolar Hamiltonian is obtained by performing the dou-
ble sum over the spin pair indices in Eqs. 2.11a–f. Using quantum statistics, we may then 
calculate lineshapes, transition rates and relaxation times in various spin systems. We shall 
return to these in the subsequent sections.

In summing over all spins, we shall meet two different kinds of spin pairs: the like spin 
pairs (with Ij = Ik and γj = γk ) and the unlike spin pairs (with different gyromagnetic factors 
and, possibly, spins). The high-field energy levels reveal the significant difference between 
these two cases. The frequencies corresponding to the transitions representing the various 
terms in Eqs. 2.11a–f are substantially different, as one may expect from the classical pic-
ture. Let us first discuss the various terms in the simplified case of two spins 1/2. We note 
that A, which is completely diagonal in the matrix representation, describes the static part 
of the interaction, due to the static component of the local field. The term B has no diagonal 
elements in the matrix representation and causes the simultaneous reversal of the two spins, 
which must have opposite orientations. These two terms make no change in the total mag-
netization, and according to first-order perturbation theory, they contribute in first order to 
the splitting of the energy levels of the system. The terms A and B commute with the unper-
turbed Hamiltonian in the case of like spins, whereas only A commutes with 0H  in the case 
of unlike spins. Therefore, in the latter case B is discarded from the secular part of the 
Hamiltonian, which enters in the calculation of the lineshapes and transition probabilities.

The term B is the ‘flip-flop’ term which causes fast rearrangement of dipolar energy for 
like spins and entails cross-relaxation for spins with slightly different Larmor frequencies. 
This term is very important for dynamic nuclear polarization when the electron resonance 
line has inhomogeneous broadening.
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The terms C and D mix states with total magnetic quantum number differing by one unit. 
Their effect is seen to produce the correct eigenstates of the total Hamiltonian (comprising 
of the Zeeman and the dipolar terms) as small admixtures with states differing by one unit 
of angular momentum | Σ mj 〉 + α | Σ mj – 1〉, where α ≪ 1. A perpendicular resonant field 
causes transitions due to these terms in first-order perturbation theory proportional to this α.

The terms E and F join states with both spins down to those with both spins up; they 
cause transitions in which Δm = ±2. The terms C, D, E and F therefore have only off- 
diagonal elements, and they produce admixtures of the zero-order (unperturbed) states 
into the exact states. The admixtures can be calculated using the second-order perturba-
tion  theory; these are proportional to α2. These terms are important in the ‘solid effect’ 
 mechanism for dynamic nuclear polarization.

Table 2.1 summarizes the states linked by the dipolar interaction terms. The terms A and 
B shift energy levels and therefore broaden the resonance lines. In the case of like spins, 
the term B allows cross-relaxation transitions to happen between the neighboring spins, 
leading to spin diffusion. In the case of unlike spins, the term B does not contribute to the 
broadening of the two main resonance lines, because it does not commute with the unper-
turbed Hamiltonian but it allows second-order cross-transitions to occur near the angular 
frequency |ω1 – ω2|.

The spin Hamiltonian which is relevant in the spin dynamics under saturation (weak or 
strong) near the main resonance at the Larmor frequency in high field is now

 H H H ,Z D= + ′  (2.12)

where the part representing the Zeeman energy is

 B I ,Z
j

j j0�H ∑γ=  (2.13)

and the secular part of the dipolar spin Hamiltonian is

 
r

I I I I
8

1 3cos 3 .D
j k

j k

jk
jz kz j k

0
2

3
2∑

µ
π

γ γ
θ( )( )′ = − − ⋅

≠

�
H  (2.14)

This can be seen to commute with the unperturbed Zeeman Hamiltonian � IZ z0H ω= − .  
When j and k label unlike spins, we have to remove I I I Ijz kz j k− ⋅  from the term in the last 

Table 2.1 States linked with the terms of the dipolar interaction of Eqs. 2.11a–f.

Dipolar interaction term Δ(m1 + m2) Δ m1 Δ m2

A 0 0 0
B 0 ±1 − (±1)
C 1 0, 1 1, 0
D −1 −1, 0 0, −1
E 2 1 1
F −2 −1 −1
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48 Resonance and Relaxation of Interacting Spin Systems

parentheses, because the term B for unlike spins influences magnetic resonance only at 
frequencies |ωj – ωk|, assumed to be far from the Larmor frequency of the species under 
consideration.

In a high magnetic field the dipolar energy reservoir represented by the Hamiltonian of 
Eq. 2.14 is isolated from the Zeeman energy, and these two reservoirs can therefore stay at 
different temperatures for much longer periods than time T2 required by the establishment 
of the thermal distribution itself in each of the reservoirs. A transverse magnetic field, rotat-
ing at a frequency close to the Larmor frequency, may ‘mix’ rapidly these reservoirs, and 
therefore the dipolar interaction leads to several peculiar resonance phenomena, which will 
be discussed in Section 2.3. The establishment of the thermal equilibrium by relaxation 
will be discussed in Section 2.3, and phenomena related with strong transverse fields will 
be treated in Section 2.4.

2.1.2 Quadrupole Interaction

A nucleus in a state of definite angular momentum has a charge distribution with cylin-
drical symmetry. Classically this is understood by the effect of averaging of the charge 
distribution due to rotation. Upon reorientation of the angular momentum, the quadrupole 
energy thus depends only on the difference between the charge distributions parallel and 
transverse to the angular momentum vector. This difference is measured with the constant 
eQ, where Q is the quadrupole moment of the nucleus and one of the nine components 
of the general quadrupole operator needed in the full description of the interaction of the 
charge distribution of the nucleus with the generalized electric field gradient tensor. The 
electric field gradient tensor can be diagonalized by transforming to a suitable coordinate 
system 0xyz; this simplifies the quadrupole Hamiltonian to

 
eQ

I I
V I I V V I I

4 2 1
3 ,Q zz z xx yy x y

2 2 2 2( ) ( )( )( )
=

−
− + − −



H  (2.15)
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=
∂
∂
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∂
∂
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∂
∂

Because Laplace’s equation V V V 0xx yy zz+ + =  is valid for the electric field due to the atomic 
electrons in the nucleus, the gradient tensor can be characterized by two parameters

 eq V V
z
,zz

2

2= ≡ ∂
∂

 (2.16)
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called the electric field gradient, and

 
V V

V

V
x

V
y

V
z

,xx yy

zz

2

2

2

2

2

2

η =
−

≡

∂
∂

− ∂
∂

∂
∂

 (2.17)

which is called the asymmetry parameter. Here V is the potential giving rise to the electric 
field. The detailed derivation of the Hamiltonian (Eq. 2.15) requires the use of Glebsch–
Gordan coefficients, irreducible tensor operators and the Wigner–Eckart theorem, and is 
beyond the scope of this book. We refer the reader interested in the derivation to the mono-
graphs of Abragam [1] and Slichter [2].

The electric field gradient is often axially symmetric, in which case the z-axis can be 
conveniently chosen along the symmetry axis. This gives η = 0, which simplifies the calcu-
lation of the quadrupolar lineshape. The resulting lineshapes in high field will be discussed 
in Chapter 5.

Nuclear spins in states m = ±1/2 have opposite values of the projections of the spin 
vector on the z-axis. The quadrupole energy is same in these two states, if the charge distri-
bution is axially symmetric. No quadrupole shift nor broadening can therefore be observed 
in transitions between the states m = ±1/2. Furthermore, if the nucleus is in a definite state 
of spin 1/2 and parity, its charge distribution is spherically symmetric and has therefore no 
quadrupole moment. Consequently, the spin 1/2 nuclei cannot have quadrupole effects in 
their magnetic resonance.

In order to determine the energy levels, it is more convenient to write the Hamiltonian 
with Zeeman and quadrupole interactions in the coordinate system where the z′ -axis is 
parallel to the magnetic field. We may choose to rotate the coordinates about the y-axis so 
that

I I Icos sin ,z z xθ θ= +′

where θ is the polar angle between the field and the principal axis of the electric field 
 gradient tensor. Assuming that η = 0, we get

 BI ,z Q�H Hγ= − +  (2.18)

where

 H
e qQ

I I
c I I I c c I I I c I I

8 2 1
3 1 3 1 3 1 ,

1
2

.Q z z

2
2 2 2

2
2 2( )( ) ( )( ) ( ) ( ){ }=

−
− − + + − + +

−
+











′ ′ + − + −

 (2.19)

Here c = cosθ and I I iI .x y= ±± ′ ′  Because the Zeeman term dominates in high field, the 
quadrupole term can be treated as a perturbation, yielding the magnetic energy lev-
els E E E Em m m m

(0) (1) (2)= + + + …  with shifts from first- and second-order perturbation 
 calculations given by [3]
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 E Bm,m
(0) γ= −�  (2.20)

 �E c m a3 1 3 ,m Q
(1) 2 2ω ( )= − −   (2.21)

 E m c c m a c m a
9

2
4 1 8 4 1 1 2 2 1m

Q

L

(2)
2

2 2 2 2 2 2
ω
ω ( )( ) ( ) ( )= − − − + + − − + −





�
 (2.22)

in the case that the gradient tensor is axially symmetric so that η = 0. Here B Lω γ=  is the 
Larmor frequency, θ is the angle between the magnetic field vector and the principal axis 
of the electric field gradient tensor, and

 
e qQ

I I
a I I c

8 2 1
; 1 ; cos .Q

2

ω θ
( ) ( )=

−
= + =

�
 (2.23)

We note that the first-order energy level shifts are symmetric with respect to m, which splits 
the resonance line to 2I components. In contrast to this, the second-order energy level shifts 
are antisymmetric with respect to m, which leaves the first-order frequency differences 
for symmetric transitions m – 1, m and – (m – 1), – m unchanged. The second-order term, 
however, changes the powder lineshape substantially, if ωQ /ωL is not much smaller than 1, 
because of the more complex dependence on cosθ.

The quadrupolar lineshapes are discussed in Chapter 5, where also the exact energy 
levels are calculated, valid at all field values and without perturbation theory, for the case 
of axially symmetric field gradient tensor. The implications of the quadrupole lineshape to 
the measurement of polarization are discussed in Chapter 6.

Because the nuclear quadrupole moment couples to the electric field gradient which 
depends on the molecular and lattice structure, thermal excitations such as phonons 
can couple with the Hamiltonian (Eq. 2.15) causing spin-lattice relaxation in solids. 
Theoretical estimates, however, are in disagreement with the observed much shorter 
relaxation times in cubic crystalline solids (see Ref. [1], p. 414). This will be briefly 
 discussed in Section 2.3.4.

2.1.3 Spin-Orbit Interaction

The magnetic moment of an unpaired electron moving in an electric field E is coupled to 
the orbital motion with the Hamiltonian

 
�e
m c

S E p
2

,SO
e
2 2H ( )= ⋅ ×  (2.24)

which is called in short the spin-orbit Hamiltonian. If the electric field is a function of 
radius only so that

 
r
E rE r r

 ( ) ( )=  (2.25)
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then we have

 
E r
r

E r
rE p r p L,

( ) ( )
× = × = �  (2.26)

where L is the orbital angular moment operator. The spin-orbit Hamiltonian (2.24) can now 
be written in terms of the spin-orbit coupling constant λ as

 L S.SOH λ= ⋅  (2.27)

The Hamiltonian describing an unpaired electron belonging to an atom can then be written 
in the general form

 
p
m

V gH L H S L S
2

,B e

2

0 0 0µ µ µ λ= + + ⋅ + ⋅ + ⋅H  (2.28)

where p is the momentum and V0 the atomic potential of the electron. Note that we have 
used here the magnetic field strength H rather than the magnetic induction B in order to be 
able to separate the magnetic field due to the orbiting electron under the spin-orbit coupling 
term. In a free hydrogen-like atom with spherically symmetric electric field, this interac-
tion leads to the splitting of the states of given L and S to degenerate levels, and to the   
well-known Landé g-factor

g
J J L L S S

J J
1

1 1 1

2 1
J

( ) ( ) ( )
( )

= +
+ − + + +

+

which varies from 2 to 1 with increasing L.
For solid materials the symmetry of the electric field is lifted by the potential which 

binds the paramagnetic atom, so that the Hamiltonian must be written as

 
p
m

V V gH L H S L S
2

,  B e

2

0 1 0 0H µ µ µ λ= + + + ⋅ + ⋅ + ⋅  (2.29)

where V1 is the crystal potential of an unpaired electron belonging to an atom, ion or molecule. 
The treatment of the problem now depends on whether the crystal potential term is smaller 
or larger than the spin-orbit coupling. This has been addressed comprehensively by Slichter 
( [2], pp. 503–516), and we shall limit ourselves here to quote the main points and results.

When the spin-orbit term dominates, the treatment is somewhat similar to that of the free 
atom, in which case J = L + S is a good quantum number, with values between L + S and 
|L – S | and eigenvalues of the spin-orbit Hamiltonian

 E J J L L S S
2

1 1 1 .SO

λ ( ) ( ) ( )= + − + − +   (2.30)

The effect of V1 is then taken into account by assuming that it arises from fixed charges 
replacing the lattice around the atom, so that the potential can be expanded into spherical 
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harmonics. Taking only the lowest terms, two cases illustrate the symmetries of main 
importance:

 V A x y1
2 2( )= −  (2.31)

or ( )= −V B z r' 3 ,1
2 2  (2.32)

where A and B are constants. The first one corresponds to a field due to charges sym-
metrically in the x-y plane and the second to an axially symmetric field. Using the 
Wigner–Eckart theorem one can show that the potential can be replaced now by an 
operator

 C J JJ x y1
2 2H ( )= −  (2.33)

or C J J' 3 .J z1
2 2( )= −H  (2.34)

The magnetic field terms can now be treated analogously to the free atom case which 
allows their replacement by the Zeeman operator

 g H Jz J B 0µ µ= ⋅H  (2.35)

which can be combined with the above Eqs. 2.33 and 2.34 to yield an effective Hamiltonian

 C J J g H JJ x y J Beff
2 2

0µ µ( )= − + ⋅H  (2.36)

or C J J g H J3J z J Beff
2 2

0µ µ( )′ = ′ − + ⋅H  (2.37)

which are seen to closely resemble the Hamiltonian (Eq. 2.18) of a nucleus with electric 
quadrupole moment. Such a Hamiltonian yields, using first-order perturbation theory, mag-
netic energy levels and Larmor frequencies which depend on the angle between the mag-
netic field and the axis of symmetry of the field due to the lattice. In the case of spin-orbit 
coupling this anisotropy can be very large when the coefficient CJ is large. This situation is 
often seen with rare-earth ions.

Slichter ([2], p. 514) estimates the coefficient for the case of axial field and J = 3/2 as

 C B r2
15

,3
2

2′ = −  (2.38)

where r 2  is the average value of r 2 for the p-states.
In the case that the crystal potential is much larger than the spin-orbit coupling, strong 

quenching of the orbital momentum happens due to the strength of the crystal field where 
the state of the electron cannot be described by a wave function with a definite value of L, 
i.e. L is not a ‘good’ quantum number. In terms of quantum mechanics, the requirement 
for the quenching of the angular momentum is that the eigenfunction describing the state 
of the electron must be possible to choose so that it is purely real in zero magnetic field, 
which happens when the state is non-degenerate. Physically this means that the electric 

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108567435.003
https://www.cambridge.org/core


 2.1 Interactions of Spin Systems 53

field of the crystal or molecule makes the electron orbit precess so that the electric current 
is reversed periodically, which averages the resulting field to zero. When a magnetic field 
is applied, however, some directions of the orbital moment are preferred and the electric 
current gives a non-zero field which couples to the electron spin. Such a quenched orbital 
moment gives rise to a g-factor which does not deviate markedly from ge. This situation is 
often seen in the free radicals in dielectric materials.

Slichter [2] explains this situation by treating first the truncated spin-orbit Hamiltonian

 
p
m
V V g H S

2 e

2

0 1 0µ= + + + ⋅H  (2.39)

in zero magnetic field, where the effect of V1 is to lift the orbital degeneracy. The resulting 
three energy levels of the p-state electron have a twofold degeneracy due to the electron 
spin. The two remaining terms of Eq. 2.29

 H L L SB 0µ µ λ⋅ + ⋅  (2.40)

are then treated perturbatively to second order, because their first-order effects vanish. The 
interference of these terms can be shown to lead to an effective Hamiltonian

 g
E E

S H
E E

S H ,e B
x z

y y
x y

z zeff 0µ µ λ λ
=

−
+

−









H  (2.41)

where the energy differences in the denominators refer to a specific case where the crystal 
field was created by placing two negative charges symmetrically on the y-axis and two 
positive charges symmetrically on the x-axis which makes the crystal field vanish on the 
z-axis.

Combining Eq. 2.41 with the electron Zeeman Hamiltonian leads to

 H g S H g S H g SB x xx x y yy y z zz z0µ µ ( )= + +H  (2.42)

with

 g g g g
E E

g g
E E

 ,  1  ,  1 .xx e yy e
z x

zz e
y x

λ λ
= = −

−






= −

−









  (2.43)

This can be understood as an anisotropic g-tensor which makes the resonant frequency 
dependent on the relative orientations of the applied field and the coordinate system of the 
crystal potential. It correctly describes the fact that for positive λ the shift in g is down and 
for negative λ it is up. The treatment does not, however, give any values for λ itself, which 
requires the knowledge of the atomic or molecular structure and the wave functions of the 
electron in its ground state and excited states.

The spin-orbit interaction for nuclear spins is briefly discussed by Abragam ([1], p. 174). 
In solids the nuclear orbital momentum is strongly quenched and vanishes in first order 
as for the paramagnetic electrons. The second-order interference term remains negligibly 

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108567435.003
https://www.cambridge.org/core


54 Resonance and Relaxation of Interacting Spin Systems

small because of the smallness of the spin-orbit coupling, caused by the large nuclear mass. 
The resulting frequency shift is overwhelmed by diamagnetic and chemical shifts and has 
not been experimentally observed. When the nuclear orbital motion is not quenched, how-
ever, the orbital and nuclear magnetic moments can be of the same magnitude. An extreme 
case is free molecular hydrogen in a beam where these are comparable.

2.1.4.  Hyperfine Interaction

The hyperfine interaction arises from the scalar magnetic coupling γeγnS·I between the 
magnetic moments of an unpaired electron and a nearby nucleus. It results from the overlap 
of the wave functions and can be represented in the general form2

 d r
r r

I S r
I r S r I S8

3

3
,e nHF

2 2
5 3∫ τ ψ γ γ π δ( ) ( ) ( )( )

= ⋅ +
⋅ ⋅

− ⋅










�H  (2.44)

where the first term of the integrand is derived from the Dirac equation and is non-zero for 
s-electrons (or when the electron wave function has s-component). The second and third 
terms, which arise from the dipolar coupling at distance r, are non-zero for electrons which 
are not in a pure s-state. The integration is over the electron coordinates.

The first term is also called the Fermi contact interaction. It gives rise to the isotropic 
hyperfine tensor which manifests itself as a splitting of the magnetic levels without broad-
ening. The other terms depend on the relative orientations of r and B and lead to an aniso-
tropic hyperfine tensor which splits and broadens the resonance lines.

The expression (Eq. 2.44) is linear in Ix, Iy and Iz, and Sx, Sy and Sz, and it can be shown 
that it can be reduced to the general form

 H = ⋅ ⋅ ≡ + +� A I S A I S A I SS A I .hf x x x y y y z z z  (2.45)

If there are several hyperfine nuclei in the molecule, very complicated EPR line struc-
tures may arise. In the case of only isotropic couplings the magnetic levels are

 E g B a m m . B
i

i i S∑µ= +






 (2.46)

In such cases the isotropic hyperfine constants ai may be resolved in dilute liquid samples. 
The EPR spectra with hyperfine interactions will be discussed in Chapter 3.

The hyperfine interaction will also be seen in the resonance of the hyperfine nuclei, 
which are split in the same way. The resonance frequencies are in the isotropic case and in 
high field

 B
am

,n
s

0ω γ= +
�

 (2.47)

2 For derivation, see, for example ( [2], p. 517 ).
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where mS is the projection of the electron spin on the direction of the magnetic field. The 
NMR of hyperfine nuclei will be treated in more detail in Chapter 5.

2.1.5 Other Spin Interactions

Although their effects are small and hardly visible in polarized targets, we shall briefly 
review some second-order effects involving the interaction of nuclear spins with the 
non-magnetic electronic systems in solids. These effects are due to the interaction of the 
electronic system with the applied field and with the nuclear spins, which may induce an 
internal field at the same or another nucleus. The magnetic interaction of the nuclear spin is 
therefore modified, leading to frequency shifts and smearing of the resonance frequencies. 
Among the resulting effects are the chemical shift in diamagnetic materials, and the Knight 
shift in metallic substances. We shall also briefly discuss the indirect coupling between 
nuclear spins in molecules due to their interaction with the electrons, and the exchange 
interaction between nearby paramagnetic electrons.

Chemical Shift of Nuclear Magnetic Resonance Frequency
High-resolution NMR shows that the resonance frequency of each nucleus depends on its 
chemical environment, with shifts in the range of 10 ppm for protons. The relative shift is 
constant and is expressed as

 1 ,Lω σ ω( )= −  (2.48)

where ωL is the Larmor frequency of the bare nucleus. However, as the field cannot be 
measured with high absolute accuracy, usually the shift is defined with respect to a known 
resonance line whose shift is thus arbitrarily defined to be zero.

The range of the chemical shift increases with the atomic weight; for fluorine the shift 
ranges 600 ppm. The shift is a powerful tool for the chemical analysis of diamagnetic 
materials.

The theoretical model for the chemical shift derived by Ramsey [4, 5] has been reviewed 
thoroughly by Abragam ([1], p. 175) and Slichter ([2], p. 92), and we shall only briefly 
discuss the basic principles before stating the results.

Because the influence of the nuclear dipole field on the electronic structure of the atom 
or molecule is extremely weak, one may treat the chemical shift in two parts, firstly deter-
mining the perturbation caused by the external field on the electronic orbits and then deal-
ing with the interaction of the nuclear spin with the sum of the external field and the fields 
due to the electronic orbits. The energy perturbation due to this interaction is

 E I
r

d
r j r

 ,chem 0
0
3∫µ γ τ
( )

= − ⋅
×

�  (2.49)

which can be seen to correspond to the interaction of the nuclear dipole moment with a 
field arising from the current density j0, by comparing the integral with Eq. 1.2.
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56 Resonance and Relaxation of Interacting Spin Systems

The formal calculation of the current density j0 belongs to the domain of theoretical 
molecular chemistry and we shall just note here that the two leading contributions in dia-
magnetic substances

 d pσ σ σ= +  (2.50)

are due to the diamagnetic shielding current and the paramagnetic moment, respectively. 
The paramagnetic moment is theoretically understood as a contribution from virtual 
excited states of the electrons. These terms have always opposite signs and they are of the 
same order of magnitude, which forces high accuracy in the theoretical modelling of the 
chemical shifts.

The chemical shifts are anisotropic so that they can be best measured in liquid state. 
Progress in high-resolution pulsed NMR has enabled recently their measurement also in 
solid samples, and it is interesting that such measurements in dynamically polarized mate-
rials have been made possible so that rare nuclei have become accessible for the experi-
ment. This will be discussed in Chapter 11.

Knight Shift in Metals
The coupling of the nuclear spin with conduction electrons in metals leads to a frequency 
shift which ranges from 2.5 × 10–4 for 7 Li to 2.5 × 10–2 for 199 Hg, and which obeys the fol-
lowing experimental observations:

1. The NMR frequency shift Δω is upwards with few exceptions.
2. The shift scales with the field.
3. The shift is almost independent of temperature.
4. The relative shift increases with increasing nuclear charge Z.
5. The shift is isotropic in cubic metals.

The Knight shift can be theoretically understood by describing the conduction band of the 
electron system as a weakly interacting (or even non-interacting) degenerate Fermi gas and 
calculating the field induced at the nucleus due to the influence of the external field. The 
electron wave functions are described by the Bloch functions

 u er ,s
i

sk k
k rψ ψ( )= ⋅  (2.51)

where Ψs  is the electron spin wave function and the plane wave part exp(ik·r) is modu-
lated by the function u(r) which has the periodicity of the lattice and which peaks at the 
nuclei positioned at r = 0.

The resulting frequency shift is

 K u8
3

0 ,
E

e
s

k

2

F

Dω
ω

π χ( )= =  (2.52)

where the total spin susceptibility of the electrons is defined by

 H ,z e
s

0µ χ=  (2.53)
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and the index EF refers to the Fermi surface, in the vicinity of which the electrons contrib-
ute to the susceptibility.

We note immediately that Eq. 2.53 qualitatively explains all of the listed features. The 
result is a positive constant, and because of the Fermi distribution, the susceptibility of the 
conduction electrons also is independent of temperature. With heavier nuclei the function 
u(r) peaks more heavily at r = 0, which explains their larger effect. Also, the quantitative 
calculations are in excellent agreement with the theory and its refinements.

In non-cubic metals, the Knight shift depends on the relative orientations of the crys-
talline axes and the applied field, and a tensor part must be added to the constant K. 
In axially symmetric crystals, such as those with tetragonal structure, the tensor causes 
broadening similar to the g-shift in electron resonance. The broadening is smaller than 
the shift itself.

The interaction between the conduction electrons and the nuclear spins also leads to a 
fast spin-lattice relaxation in metals, which was mentioned in Section 1.3.5 and which will 
be discussed further in Section 5.3.4.

Indirect Coupling between Nuclear Spins: Molecular Spin Effects

Nuclear spins have an effect on the electronic system on the molecular level, which can 
be rather strong, with the well-known extreme cases of H2 and D2. In heavier molecules 
with dissimilar nuclei, the effects on nuclear spins are called pseudo-dipolar and pseudo- 
exchange couplings. An example of a molecule where the symmetry effects lead to molec-
ular isomerism is solid CH4 with its molecular ortho, meta and para states with total nuclear 
spin of 2, 1 and 0. In solid NH3 the indirect coupling leads to a typical pseudo-exchange 
term mediated by the hyperfine coupling of the electron spins with the nuclear spins. The 
hyperfine coupling appears because the degeneracy of the s-part of the electron wave func-
tion is lifted by the nuclear spin coupling. A good introductory discussion to the indirect 
coupling between nuclear spins has been given by Slichter ([2], pp. 133–143).

The pseudo-dipolar coupling has the same bilinear spin dependence as the usual dipolar 
coupling (Eq. 2.9):

 I I I I Br rˆ ˆ 3 ˆ ˆ ,12 1 2 1 12
0

2 12
0

12( )( )= ⋅ − ⋅ ⋅



H  (2.54)

where the function B12 falls off as (1/r12 )
3 and vanishes if the electronic wave function at 

the nucleus has no non-s character. As for the usual dipolar coupling, the pseudo-dipolar 
coupling only influences the broadening of the lineshape but does not split or shift the lines.

The pseudo-exchange coupling

 J A I I ,pseudo 12 1 2= ⋅  (2.55)

where A12 is a constant, results from the s-character of the electron wave function at the 
nuclei 1 and 2. Similar to the Fermi contact term of the hyperfine interaction Hamiltonian, 
it leads to the isotropic splitting of NMR lines, which will be discussed in Chapter 5.
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58 Resonance and Relaxation of Interacting Spin Systems

The scalar coupling (Eq. 2.55) in solids narrows the nuclear spin resonance line for 
like spin pairs and broadens it for unlike spin pairs. In both cases the lineshape tends 
towards Lorentzian. A typical example is the proton NMR line of solid NH3, split in three 
 overlapping lines that become partially resolved at very high polarization.

Exchange Interaction for Electron Pairs

In molecules and solids electron spins pair off so that, apart from conduction electrons in 
metals and inner unpaired electrons in transition metal ions, unpaired paramagnetic elec-
trons tend to be a rare exception. The pairing of the electron spins due to the Pauli principle 
is thus an extremely strong phenomenon and is due to the fact that the electrons are identi-
cal. Another case is the nuclear spin pairing in the ground state of the H2 molecule.

Pairing of identical particles occurs also for paramagnetic electrons in solids, if they are 
not completely isolated from each other. As the paramagnetic electron wave functions in 
many molecules cover the whole molecule and extend slightly outside, molecule or ion 
pairs at close distance in solids may have a small overlap of the wave functions so that 
pairing and exchange effects can appear.

The scalar coupling

 JS Sexch 1 2H = ⋅  (2.56)

between electron spins in solids is due to electric rather than the magnetic forces which 
gave rise to indirect scalar coupling between nuclei. The exchange interaction leads to 
magnetic ordering in substances where the unpaired electrons are organized in a regular 
lattice and to transformation into spin glasses in less ordered structures. The magnetic 
ordering may result in a ferromagnetic or antiferromagnetic structure depending on the 
lattice symmetry and several other parameters.

In paramagnetic substances the electron exchange Hamiltonian leads to a fast spin- 
lattice relaxation which may be related with the rapid interchange of the z-components of 
oppositely oriented spin pairs. This may be associated with substantial line narrowing or 
broadening effects as well. In polarized targets the spin exchange is likely to set a limit to 
the paramagnetic concentration at about 1021 cm–3.

2.2 Magnetic Resonance of Interacting Spins in Solids

2.2.1 Power Absorbed from a Linearly Polarized Transverse Field

Let us consider a system of interacting spins in a high external field B0 and subjected 
to a linearly polarized transverse oscillating field B B t B e e2 cos ( )x

i t i t
1 1ω= = +ω ω− , which 

can be described as a superposition of rotating and counterrotating components, of such 
low amplitude that the response of the spin system remains linear. The conditions under 
which linearity is preserved will be discussed in Section 2.2.2. We shall calculate here first 
the resulting power absorption using the transverse magnetization on the one hand and 
the magnetic level transition probability (1.58) on the other, and find an expression for the 
absorption part of the transverse susceptibility.
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The transverse complex susceptibility function is defined by the relation between the 
rotating transverse field and the rotating transverse magnetization:

 M iM B e iM ,x y
i t

1 0
1µ χ ω χ ω( ) ( )= + = ′ − ′′ 

ω
⊥

−  (2.57)

where χ′ and χ″ are the real the imaginary parts of the function; these parts are called dis-
persion and absorption, respectively. Using this the average power absorbed in unit volume 
is
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t
t

BB
M1

2
Re 1

2
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1
1
2ωµ χ ω( ) ( ) ( )=

∂
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= ′′∗ −

�
 (2.58)

which explains the commonly used term ‘absorption’ part of the spin susceptibility. The 
term ‘dispersion’ follows from the fact that the velocity of propagation of an electromag-
netic wave which depends on this term becomes disperse because of the frequency depen-
dence of the term. Consequently, a sharp electromagnetic pulse, containing a wide spectrum 
of frequencies, turns gradually into one which is more smeared in the time domain, during 
propagation in the disperse medium.

The power absorption counted from the number of spin flips per unit time and volume is 
readily obtained from the transition probability of Eq. 1.58 and the magnetic level  populations 
pm (which do not need to satisfy the Boltzmann distribution required in Eq. 1.62):
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 (2.59)

where n =N/V is the number of resonant spins I per unit volume. After evaluation of the 
sum which is rather tedious but straightforward, and applying Eq. 1.91 we get
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2
1
2

� �
�∑π ωω

ω π γ ω ω( ) ( ) ( )= − − =
−
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 (2.60)

By equating the power absorbed by the spin system to the power lost (Eq. 2.58) from the 
field due to the absorption part of the complex susceptibility, we shall obtain the relationship

 n f IP I2
0

2χ ω
π

µ γ ω( ) ( ) ( )′′ = �  (2.61)

between the absorption part of the transverse susceptibility and the normalized lineshape 
function. If the spin polarization is expressed in terms of the static susceptibility of Eq. 
1.66, we shall find a simpler equation

 f
2

.0 0χ ω π ω ω χ( ) ( )′′ =  (2.62)
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If the width of the lineshape function in a high field is due to a distribution of the Larmor 
frequencies ω0 and is not small in comparison with the dipolar width, then the above 
expression should be replaced by

 f
2

,0χ ω π ω ω χ( ) ( )′′ =  (2.63)

which is valid even if the spin temperature is not constant in the spectrum. The tendency 
towards internal thermal equilibrium, however, is a strong phenomenon in equilibrium 
with the lattice, and usually becomes even stronger during dynamic polarization, as will be 
shown in Chapter 4. We also find that

 d f d
2 2

,
0

0
0

0∫ ∫
χ ω

ω
ω π χ ω ω π χ

( ) ( )
′′

= =
∞ ∞

 (2.64)

because the lineshape function was normalized.
Integrating Eq. 2.61 yields

 P I f d P I
n I

d2
,

0 0
2

0
∫ ∫ω ω

π µ γ
χ ω ω( ) ( ) ( ) ( )≡ = ′′

∞ ∞

�
 (2.65)

which holds for narrow absorption lines and is used for the measurement of polarization.
We note that no assumption needs to be made on the temperature or even on the thermal 

equilibrium in the spin system, because the definition of the polarization was invoked in 
direct relation to the level populations without a distribution function.

The above results are surprisingly accurate, as will be seen later in this chapter. This, 
however, is somewhat coincidental although it is difficult to point out the small inaccura-
cies which tend to cancel out at the end. The main disadvantage of the above remains that 
it does not permit to introduce spin interactions in a natural way. The lineshape cannot 
therefore be obtained from the first principles. Furthermore, it was implicitly assumed 
without justification that all magnetic energy levels were broadened by the same distribu-
tion function. A better theoretical introduction will therefore be given for the absorption 
lineshape in the next section.

2.2.2 General Properties of the Complex Susceptibility

The general linear response theory (see Ref. [6], pp. 302–306) allows one to relate the 
transient and steady-state responses of a system on the one hand and the real and imaginary 
parts of a function which relates the response of a system to excitation on the other hand. 
The theorem applies to all resonant systems satisfying certain criteria and is commonly used 
in magnetic and dielectric (optical) resonance, in circuit theory and in particle scattering.

The response is linear as long as the susceptibility at frequency ω is measured in time 
that is short in comparison with the time constant for the change of the Zeeman and dipolar 
temperatures due to the RF field. This will be discussed in detail in Section 2.2.4 based on 
Provotorov’s equations.
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A lengthy but instructive presentation has been given by Slichter (see Ref. [2] p. 59) 
on the linear response and transverse susceptibility. The treatment is based on the high- 
temperature approximation.

In this section we shall first outline the main points of the derivation given by Abragam 
and Goldman for the free precession signal and its relationship with the transverse sus-
ceptibility in the case of dipolar interactions [6]. This treatment deviates from the usual 
one in the way that the dipolar temperature is allowed to deviate from the Zeeman tem-
perature, which is possible when the susceptibility is measured in a time which is short 
in comparison with the time required for the equalization of the two temperatures. This 
requirement is easy to satisfy when the exciting transverse field is very small, and the 
requirement can be quantified using the treatment of Provotorov, which is the subject of 
the next section.

We shall then calculate the absorption part of the transverse susceptibility from the for-
mula based on the transition probability between magnetic levels broadened by unspecified 
spin interactions satisfying certain criteria and relate this to the formulas obtained using the 
dipolar interactions.

Response to a Pulse of Transverse Field
In high field and at high temperature our system of spins has the dipolar spin Hamiltonian 
(Eq. 2.14) and density matrix

 
kT

I
kT

1 1 ,
Z

z
D

D
0ρ ω= − − ′H�

 (2.66)

which is invariant under rotation about the z-axis so that it has the same expression in the 
rotating frame, in which a pulse of field B1 along the x-axis is produced during a short time 
τ . This induces a rotation of the spin vectors around the x-axis by an angle of 

 B ,1θ γ τ= −  

which transforms the initial Hamiltonian so that the initial density matrix becomes

 
�

H H Hρ ω θ θ θ θ θ( )( )= − − − − ′ − ′ +








kT

I I
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i I1 cos sin 1 1
2
cos 1 cos sin ,

Z
z y

D
D x D0

0 2
2

 (2.67)
whose evolution after the pulse is given by

 � �H Hρ ρ= − ′ ′t e e( ) ,i t i t/
0

/D D  (2.68)

and where the part 2H  is a combination of terms I I1 2
± ±  whose products with Ix, y have a trace 

equal to zero.
The precessing magnetization, which results from the transverse spin components, 

 follows their time evolution, given in the rotating frame by

 
�ρ ω θ { }( ) ( ){ }= =I t t I
kT

I G tTr ( ) sin Try y
Z

y
0 2  (2.69)
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and

 
�ρ ω θ θ { }( ) ( ) ( ){ }= =I t t I
kT

I d
dt
G tTr cos sin Tr ,x x

D
x

0 2  (2.70)

where the function G(t) is given by
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 (2.71)

and is called the free induction decay (FID) function. We note that the FID shape is given 
entirely by the dipolar Hamiltonian, whereas the size of the magnetization is linearly pro-
portional to the rotation angle of the excitation pulse, provided that it is very small. In the 
expressions in Eqs. 2.69 and 2.70 the fact has been used that the product ρ(t) Iy has only one 
term with non-zero trace. It should be noted also that there is no analytical method to calcu-
late the function G(t), but one has to rely on numeric methods in estimating it from the sum 
of the dipolar interaction terms over a reasonable fraction of the lattice around a given spin.

Response to Continuous Excitation by a Transverse Rotating Field
In the general theory of linear response formulated by Kubo and Tomita [7], the above FID 
signal of rotating magnetization is the response R0(t) to the excitation pulse

 E θδ( ) ( )=t t ,0

and this response, in the complex notation and when θ is very small, is

 R θ β β ω{ }( ) ( ) ( ) ( ) ( )= + = +











t I t i I t I

dG t
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i G tTr ,x y x Z0

2
0

 (2.72)

where we have simplified the notation by using the inverse spin temperatures β and βZ.
The continuous-wave excitation in the rotating frame is written in the complex notation as

 E γ ω( ) ( )= = −t B t e ,i t
1 1

D

where Δ = ω0–ω. The linear response to it in the rotating frame is proportional to the 
 complex susceptibility:

 R ω χ( ) ( )≡ − −t e ,i t
1 D D  (2.72′)

which can be written in terms of t0R ( )
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using the result (Eq. 2.72). The real and imaginary parts of the integral in the last form can 
be obtained by integrating the derivative of G(t' ) in parts:
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where the first term is zero because the FID response is damped to zero at infinity, and 
there is no response before the pulse at t’ = 0. The response to the continuous excitation 
can now be written

R ∫ω β ω β{ }( ) ( )= − ∆  ′ ′− ∆

−∞

+∞ + ∆ ′t I e iG t e dtTr ,x Z
i t i t

1
2

0

where it has been taken into account that the integration below zero yields zero, because 
there is no FID response before the excitation pulse. The integral therefore needs to be 
carried out from zero to infinity. By comparing this with Eq. 2.72′ we can identify the spin 
components in the rotating frame as:

 π ω β ω β{ }( ) ( ) ( )∆ = − − ∆ ′ ∆I I gTrx x Z
2

1 0  (2.73)

and

 πω β ω β{ }( ) ( ) ( )∆ = − ∆ ∆I I gTry x Z
2

1 0  (2.74)

where

 g G t t dt1 cos
0
∫π( ) ( )∆ = ∆
∞

 (2.75)

and

 g G t t dt1 sin .
0
∫π( ) ( )′ ∆ = ∆
∞

 (2.76)

It is notable that in the above the susceptibility does not obey the usual Fourier trans-
form relation with the pulse response, but the function g ( )∆  does. This follows from the 
form of the density matrix where the Zeeman and dipolar temperatures were allowed to be 
different but constant during the irradiation, because the RF field was assumed to be van-
ishingly small so that no mixing between the two parts of the Hamiltonian happens (it can 
be thought to be infinitely slow). The conditions under which this is valid can be obtained 
from the Provotorov equations which will be discussed in the next section.

Properties of the Complex Susceptibility at High Temperatures
The function g ( )∆  is symmetric about Δ = 0, i.e. g g( ) ( )−∆ = ∆ , and its integral is 

∫ ( )∆ ∆ =
−∞

∞
g d 1 . In the limit that the dipolar and Zeeman temperatures are equal and con-

stant, one obtains the usual relationship between the absorption and dispersion parts of the 
complex susceptibility and the lineshape function g ( )∆ :
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�

χ
ω

π
ω

{ }( ) ( ) ( ) ( )′ −∆ = ∆ = −
− ∆

′ ∆I I
kT

g1 Tr ,x x
1

2 0  (2.77)

 
�

χ
ω

π
ω

{ }( ) ( ) ( ) ( )′′ −∆ = ∆ =
− ∆

∆I I
kT

g1 Tr .y x
1

2 0  (2.77′ )

In this case the well-known Kramers–Krönig relations between the real and imaginary 
parts of the susceptibility follow directly from the above. Their proof is given in Refs. [1], 
[2] and we shall not repeat it here; the relations are

 P ∫χ ω χ
π

χ ω
ω ω

ω( ) ( ) ( )
′ − ′ ∞ =

′′ ′

′−
′

−∞

+∞

d1 ,  (2.78)

 P ∫χ ω
π

χ ω χ

ω ω
ω( ) ( ) ( )

′′ = −
′ ′ − ′ ∞

′−
′

−∞

+∞

d1 ,  (2.79)

where P denotes the principal value of the integral which avoids divergence due to the 
poles of the integrands, and which follows from the derivation of the equations based on 
the use of the integral theorem of Cauchy. The principal value of the integrals can be eval-
uated by taking the limit

 P ∫ ∫ ∫
ω

ω ω
ω

ω

ω ω
ω

ω

ω ω
ω

( ) ( ) ( )′

′−
′ =

′

′−
′+

′

′−
′











ε

ω ε

ω ε−∞

+∞

→
−∞

−

+

+∞f
d

f
d

f
dlim .

0
 (2.80)

The Kramers-Krönig relations allow one to compute one of the parts of the complex 
susceptibility if the other is known completely. Often, however, complete measurement 
of neither one is possible. We then need to know some general properties of the trans-
verse susceptibility of the spin system to be able to restrict the region of measurement. 
Firstly, we know that absorption is zero at zero frequency; this is also directly obtained 
from Eq. 2.79. Furthermore, the same equation shows that absorption is antisymmetric 
about zero frequency, and Eq. 2.78 indicates that dispersion is symmetric about zero fre-
quency. Secondly, direct integration of Eq. 2.79 gives the static susceptibility which is the 
dispersion at zero frequency:

 
P ∫

∫

χ χ χ χ
π

χ ω

ω
ω

π

χ ω

ω
ω

( ) ( ) ( ) ( )

( )

′ − ′ ∞ ≡ − ′ ∞ =
′′ ′

′
′

=
′′ ′

′
′

−∞

+∞

+∞

d

d

0 1

2 .

0

0

 (2.81)

This confirms that the static susceptibility is proportional to the integral of the lineshape 
function, Eq. 2.65, and gives the basis for the determination of polarization from the 
 integrated NMR signal.

Assuming that ( ) 0χ′ ∞ =  and a very narrow absorption line which can be approximated 
by antisymmetric delta function
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2 0 0 0 0χ ω π ω χ δ ω ω δ ω ω( ) ( ) ( )′′ = − − − −   (2.82)

satisfying the Eq. 2.74, we may integrate Eq. 2.71 to obtain the dispersion

 
P ∫χ ω χ

π
π ω χ

δ ω ω δ ω ω

ω ω
ω

ω χ
ω ω ω ω

χ
ω

ω ω

( ) ( ) ( ) ( )
′ − ′ ∞ =

− − − −

′−
′

=
−

+
+









 =

−

−∞

+∞

d1
2

1
2

1 1 .

0 0
0 0

0 0
0 0

0
0
2

0
2 2

 (2.83)

We note that this satisfies (0) 0χ χ′ =  only if ( ) 0,χ′ ∞ =  which can be expected because it 
was assumed for obtaining the absorption function. The dispersion function is plotted in 
Figure 2.2, where we may see that it is sizable at frequencies far from the resonance, and 
that it is a symmetric function about ω = 0. It becomes evident from the form of the integral 
that for narrow absorption lines the dispersion must behave much like Eq. 2.83 at frequen-
cies that are more than several linewidths away from the Larmor frequency.

If 0,χ ( )′ ∞ =  then Eq. 2.81 is identical to Eq. 2.64. This is not coincidental although the 
linear response theory was not introduced explicitly when calculating the response of the 
spin system to the oscillating transverse field.

The symmetry properties of the absorption and dispersion functions can be used for 
rewriting the Kramers and Krönig relationships in a way which is practical for analytical 
or numeric evaluations of one when the other is known:
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Figure 2.2 Dispersion lineshape for the case of narrow absorption line at ω = ω0. Note that the 
symmetric dispersion function extends far from the wings of the absorption and has the value of static 
susceptibility at zero frequency
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 P ∫χ ω χ
π

χ ω

ω ω
ω ω( ) ( ) ( )

′ − ′ ∞ =
′′ ′

′ −
′ ′

+∞

d2 ,
0

2 2
 (2.84)

 P ∫χ ω ω
π

χ ω χ

ω ω
ω( ) ( ) ( )

′′ = −
′ ′ − ′ ∞

′ −
′

+∞

d2 .
0

2 2
 (2.85)

The Kramers and Krönig relationship between χ ′ and χ ′′ is independent of the form of 
the Hamiltonian describing the interactions and it remains valid at low temperatures and at 
high polarization because no other assumptions than thermal equilibrium need to be made 
on the Hamiltonian and the density matrix describing the spin system.

Relation between the Transition Probabilities and Complex Susceptibility
Let us now assume the Boltzmann distribution of the magnetic level populations at high 
temperature and rewrite the susceptibility from Eqs. 2.58, 2.59 and 1.58 in the form

 �
�

kTZ
e a b E E ,

a b

E kT
x a b

,

/ 2
a∑χ ω ωπ µ δ ω( ) ( )′′ = − −−  (2.86)

where Z is the partition function (the sum of all Boltzmann factors, needed for normalizing 
the level populations so that their sum is 1). By using the integral form of the delta function

 
�

�x e dt1
2

,ixt /∫δ
π( ) =

−∞

+∞
−  (2.87)

we get

 
�∫ ∑χ ω ω µ µ( )′′ = ω( )

−∞

+∞
− − −

kTZ
e a b b a e e dt

2
.

a b

E kT
x x

i E E t i t

,

/ /a a b  (2.88)

Knowing that the states a  and b  are eigenfunctions of the Hamiltonian ℋ we find a 
more formal way of writing the above as

 
H H H� �∫ ∑χ ω ω µ µ( )′′ = ω

−∞

+∞
− − −

kTZ
a e e e b b a e dt

2
.

a b

kT i t
x

i t
x

i t

,

/ / /  (2.89)

The summation over a and b is in the matrix representation a trace

 ∑ µ µ µ µ{ }=− − − −� � � �H H H H H Ha e e e b b a e e eTr ,
a b

kT i t
x

i t
x

kT i t
x

i t
x

,

/ / / / / /  (2.90)

where, in the high temperature approximation, e kT/H−  is replaced by unity. Furthermore, by 
defining the operator

 � �t e e ,x
i t

x
i t/ /H Hµ µ( ) = −  (2.91)

we get a very compact expression
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kT Z

t e dt
2

Tr .x x
i t∫χ ω ω µ µ( ) ( ){ }′′ = ω

−∞

+∞
−  (2.92)

Comparing now with Eq. 2.70 shows that tTr x xµ µ{ }( )  is the correlation function which 
gives the FID envelope.

Defining the shape function

 g
kT Z

t e dt1
2

Tr x x
i t∫ω

χ ω

ω
µ µ( ) ( ) ( ){ }=

′′
= ω

−∞

+∞
−  (2.93)

and taking its Fourier transform we get

 
kT Z

t g e d1
2

Tr 1
2

.x x
i t∫µ µ

π
ω ω( ) ( ){ } = ω

−∞

+∞

 (2.94)

Setting t = 0 this becomes

 
kT Z

g d1
2

Tr 0 1
2

,x x ∫µ µ
π

ω ω( ) ( ){ } =
−∞

+∞

 (2.95)

which is the static susceptibility. The higher moments of the lineshape function can now be 
evaluated by taking the nth derivative of Eq. 2.94 at t = 0 which yields

 kT Z
d
dt

t i g d1
2

Tr
2

.
n

n x x
t

n
n

0
∫µ µ

π
ω ω ω( ) ( ){ } =

= −∞

+∞

 (2.96)

The normalized moments of the shape function become

 
g d

g d

d
dt

tTr

Tr 0
n

n
n

n x x
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x x
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∫
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ω ω ω

ω ω

µ µ

µ µ

( )

( )

( )

( )

{ }

{ }
= =−∞

+∞

−∞

+∞
=  (2.97)

which, by using the more explicit form (Eq. 2.91) and the von Neumann–Liouville  equation 
(1.76), can be put to the form

 
}i Tr{[ ,[ ,[ [ , ] ]

Tr
.n

n
x

x

n times

2
ω

µ

µ{ }
=











… …
�

� ������ ������
H H H

 (2.98)

The commutators under the trace can now be evaluated for a given Hamiltonian. This 
form is frequently used for obtaining the moments of the dipolar Hamiltonian perturbing 
the Zeeman Hamiltonian, in which case the commutation rules of the spin operators enable 
to systematically obtain explicit formulas which can be numerically evaluated, although 
rather tediously for the fourth and higher moments. We shall return to this in the next 
section.
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We emphasize that the relations for the absorption lineshape in this section were obtained 
in the high-temperature approximation. Abragam and Goldman [6] have extended the for-
mal theory of lineshapes to low temperatures which is of interest for polarized targets 
where high nuclear polarization must be measured. We shall outline their derivation and 
discuss the results in Chapter 5.

2.2.3 Van Vleck’s Method of Moments for Dipolar Lineshape

We shall now proceed to discuss the method which Van Vleck [8] originally developed 
to evaluate the moments of the absorption lineshape in the special case of broadening by 
the dipolar interactions only in crystalline solids. The Hamiltonian is then the sum of the 
Zeeman and dipolar parts of Eq. 2.12

 = + ′ ,Z DH H H  (2.99)

where only the secular terms A and B of Eq. 2.14 were retained of the total dipolar 
Hamiltonian (Eq. 2.9), written here for like spins so that γj = γk = γ :

 
r

I I I I
8

1 1 3cos 3 .D
j k jk

jz kz j k
0

2 2

3
2∑µ γ

π
θ( )( )′ = − − ⋅

≠

H
�  (2.100)

This was justified because the remaining terms lead to absorption at frequencies 0 and 2ω0 
which are far from the main absorption line centered around ω0, the moments of which one 
wishes to measure and calculate.

The moments of the lineshape function g(ω) were defined by Eq. 2.97 as

 
∫

∫
ω

ω ω ω

ω ω

( )

( )
= −∞

+∞

−∞

+∞

g d

g d
,n

n

but it is more practical to define also

 D

g d

g d

n

n∫

∫

ω ω ω ω

ω ω

( ) ( )

( )
=

− 〈 〉
−∞

+∞

−∞

+∞
 (2.101)

which can be immediately seen from Eqs. 2.97 and 2.101 to satisfy

 
0,

.2 2 2
ω ω

∆ =

∆ = −
 (2.102)
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In the case of dipolar interactions and high temperature, it can be shown in fact that all 
odd moments n∆  vanish. The second moment is also often denoted by D2 2= ∆ , where 
D is called the dipolar frequency.

We shall outline here briefly how their second and fourth moments are calculated. For a 
more complete presentation, we refer to [1] and [2].

We shall first note that the integral of the lineshape function and first moment ω  
can be evaluated quite generally at high temperature [2] based on the fact that the dipolar 
Hamiltonian is Hermitian. The results are

 g d
I I

N I
1

2
Tr

1

2

1

3
2 1 ,x

N2 2 2

� �
�∫ ω ω µ γ( ) ( ) ( ){ }= =

+
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+∞

 (2.103)
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{ }

( )

( )
= = =−∞

+∞
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+∞
�

�

 (2.104)

where N is the number of spins counted for the evaluation. This shows that the Larmor fre-
quency is the centroid of the lineshape function, which could be already expected because 
the moment ∆  and all odd moments vanish, meaning that the absorption line is symmet-
ric about its centroid.

The second and fourth moments are now obtained from Eq. 2.98:
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 (2.105)

 
I

I
1 Tr , ,

Tr
.

D D x

x

4
4

2

2� { }
∆ =

′ ′ 












H H

 (2.106)

The commutator of the dipolar Hamiltonian and Ix is
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 (2.107)

In the evaluation of the commutator use is made of the fact that Ijx + Ik x commutes with 
⋅I Ij k . Using the basic commutation rules (Eq. 1.12) we get now

I i
r

I I I I,
3
16

1 3cos
D x

j k

j k

jk
j z ky kz jy
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2 2 2
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and

 Tr I I I I
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2 4
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2
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�
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The double summation converges rapidly and can be put to the form involving a single 
sum only

 
r

N
r

1 3cos 1 3cos
,jk

jkj k k

jk

jk

2

3
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≠

 (2.109)

and the denominator of the second moment was already given in Eq. 2.103 above:

 ∑{ } ( ){ }= = + +I I I I N ITr Tr ( 1)
3

2 1 .x
j

jx

N2 2
 (2.110)

The second moment for a single spin species is now finally

 � I I
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  (2.111)

For a powder made of small crystals randomly oriented or for a glassy material the term 
θ( )− cos1 3 jk
2 2

 can be averaged before taking the sum; in this case the second moment 
becomes

 D I I
r

3
5 4

1
1

k jk

2 2 0

2
2 4

6� ∑µ
π

γ ( )= ∆ =






+  (2.112)

and if the distances between the nearest nuclei with spin I are uniform and equal to d, the 
sum can be evaluated for a simple cubic lattice

 
r d
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k jk
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which gives
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This is a result which will be used frequently in this and the following chapters.
The fourth moment is very tedious to evaluate and we give the result [8] only
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where the indices of the triple summation must be unequal, and
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The two last sums converge more rapidly than the first which is the same as in the second 
moment; a fairly accurate result is obtained by including only the nearest neighbors in 
them. If they are omitted, we have the ratio

 3,
4

2 2

ω

ω
=  (2.116)

which is the same as that evaluated for Gaussian lineshape. It can be therefore expected 
that the tails of the dipolar lineshape go to zero at least as rapidly as the Gaussian of the 
same half-width.

As an example, the normalized Gaussian function

σ π
( )∆ = σ∆f e1

2
– /22 2

gives the following results for the even moments

 σ σ σ= = = ⋅ ⋅ ⋅ ⋅M M M n; 3 ; 1 3 (2 –1) .n
n

2
2

4
4

2
2  (2.117)

The ratio

 M
M( )

34

2
2 =  (2.118)

gives a rather sensitive test for the assumption that an experimental lineshape is close 
to a Gaussian. The odd moments are all zero by definition that the line is symmetric 
and centered about ω0. The half-width at half-maximum (HWHM) for a Gaussian is 

2ln2 1.1774 1
2

σ σ∆ = =  which deviates only slightly from the square root of the second 

moment.
The second and higher even moments of the Lorentzian function

 f 1
2 2

δ
π δ( )∆ =

+ ∆
 (2.119)

diverge because the Lorenzian function goes to zero too slowly. Such a function is unphysi-
cal for a spin system in a solid, because it would require that the spins could approach each 
other to infinitesimally small distance, rather than the atomic distances which are in the 
order of few Å. If this distance of nearest approach is assumed to result in a cut-off α in the 
frequency spectrum of absorption around the resonance, the following results are obtained 
for the moments

 M M M

M

2 ; 2
3

;
6
.2 4

3
4

2

2

αδ
π

α δ
π

πα
δ( )

= = =  (2.120)

The modified Lorentzian function

 δ
π δ

( )∆ =
+ ∆

f
C

11.5

2.5 2.5  (2.120′)
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is often used to numerically simulate experimental NMR absorption spectra in glassy alco-
hol and diol target materials because the function fits the features of the experimental 
signals better that the Gaussian or Lorentzian functions. There is, however, no theoretical 
justification for this shape function, and its second and higher moments diverge. Similar to 
the Lorentzian shape, cut-off frequencies must be introduced if the moments are required 
for the analysis of experimental absorption lines.

The symmetric functions

 f
C

1c

c

2 1

2 2

δ
π δ( )( )∆ =

+ ∆

−

 (2.120″)

have a finite second moment for c ≥ 1 and a finite fourth moment for c ≥ 3. They are special 
cases of the functions

 f
C m x

1bc

b c

1δ
π ( )( )∆ =

+

−

 (2.121)

which has finite moments of order lower or equal to bc – 1. The lineshape parameter of 
these functions approaches the value 3 when c goes to infinity. Their properties will be 
discussed in Appendix A6.

2.2.4 Provotorov Equations and Saturation

Provotorov [9] derived in 1961 equations which describe the evolution of the Zeeman 
and dipolar temperatures when the RF field B1 is no longer small enough to justify the 
simplifying approximations of the linear response theory, where the Zeeman and dipolar 
Hamiltonians are unaffected by the presence of the perturbation. It is, however, assumed 
that the temperature is high, i.e. the Curie law (1.69) is valid, and that the RF field is 
smaller than the local field so that

 B D B .L1 1ω γ γ= << ≡ ′  (2.122)

The local field and the dipolar frequency D are given by

 B D
I

Tr

Tr
.L

D

z

2 2

2

2

2γ
{ }

{ }
( )′ = =

′
≅ ∆

H

 (2.123)

In the frame rotating at the frequency 0ω ω= − ∆ of the RF field the effective Hamiltonian 
is

 I I .z D x1ω= ∆ + +∗ ′H H� �  (2.124)

Before the application of the RF field the spin system is in equilibrium with the lattice and 
the (high-temperature) density matrix is
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 I1 ,Z z D0ρ β ω β= − − ′H  (2.125)

where we have defined the inverse temperatures for the Zeeman and the dipolar interactions

 

�

�

kT

kT

;Z
Z

D

β

β

=

=
 (2.126)

in the stationary frame. Because of the invariance of the Hamiltonian under rotation about 
the z-axis, the density matrix has the same form in the rotating frame:

 I1 .z Dρ α β= − ∆ −∗ ′H  (2.127)

Here we have defined the inverse Zeeman temperature in the rotating frame as

 α
ω

β=
∆

.Z
0  (2.128)

The energy without RF field is, using Eq. 1.75,

 H Hρ α β( ){ } { }= = − ∆ +∗ ∗ ∗Tr D Tr I .z
2 2 2  (2.129)

When turning the RF field on, the Hamiltonian and the density matrix are slightly modi-
fied, but as long as the inequality (Eq. 2.122) is satisfied, the energy is conserved because 
the effective Hamiltonian in the rotating frame has no explicit time dependence; this was 
shown by Eq. 1.79. The behavior of the spin temperatures after turning the RF field on is 
now obtained by taking the time derivative of Eq. 2.129:

 
d
dt

d
dt

t D d
dt

t ITr 0.z
2 2 2H α β { }( ) ( )= − ∆ +







=∗  (2.130)

The time evolution of the polarization in the rotating frame can be expressed in terms of the 
change of the Zeeman temperature:

 
d
dt
I I d

dt
tTr .z z

2 α{ } ( )= − ∆  (2.131)

On the other hand, this can also be derived using Eq. 1.78

 � �
d
dt

I i I
I
t

i
I, , .z z

z

z
=  +

∂
∂

=  
∗ ∗H H  (2.132)

where the partial time derivative of the operator Iz is zero because it has no explicit time 
dependence. Its expectation value can be evaluated using Eq. 2.124 which yields

 
d
dt
I I .z y1ω=  (2.133)
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This, in turn, can be related to the inverse temperatures using I y  from Eq. 2.74

 
d
dt
I I t t gTr .z x

2
1
2πω α β{ } ( ) ( ) ( )= ∆ −  ∆  (2.134)

Combining Eqs. 2.131 and 2.134 we find the time evolution of α

 
d
dt

t g t t1
2α πω α β( ) ( ) ( ) ( )= − ∆ −   (2.135)

and that of β by inserting this to Eq. 2.130

 β π ω β α( ) ( ) ( ) ( )= − ∆ ∆ − 
d
dt

t
D
g t t .1

2
2

2
 (2.136)

These are the well-known Provotorov equations. We see immediately that the time constant 
in Eq. 2.135 is given by the usual inverse transition probability, going up inversely propor-
tional to the absorption lineshape function as the RF frequency is shifted away from the 
resonance. The time constant for the inverse dipolar temperature of Eq. 2.136 goes up more 
slowly. The solution of the coupled differential equations is simple and yields the common 
rate or inverse time constant

 g
D

1 ,1
1
2

2

2τ πω ( )= ∆ +
∆









−  (2.137)

by which the two inverse temperatures exponentially converge towards the common equi-
librium value

 D

D

1

1
,eq L

0
2

2

2

β β

ω

=
+ ∆

+ ∆
 (2.138)

if the temperatures immediately after turning the RF field on were β (0)= βL and α(0) = 
βLω0/△. Figure 2.3 shows the steady-state inverse temperature and the rate or inverse time 
constant to reach this value.

The linear response approximation in Section 2.2.2 required that the susceptibility be 
measured in a time texp which is short in comparison with both time constants appearing in 
the above equations, i.e.

 t g t
D
g;  .exp 1

2 1

exp 1
2

2

2

1

πω πω( )( ) ( )<< ∆ <<
∆

∆






−
−

 (2.139)

These are more strict at or close to the resonance, and because 1/T2 ≈ D ≈ g(0)–1, we get the 
requirement for protons with texp ≈ 10 ms and T2 ≈ 30 µs
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T t

B1 10 s     or    4 T.1
2 exp

3 1
1ω

π
µ<< ≈ <<−  (2.140)

The field close to the wire of the NMR coil is sometimes of the same order as the above 
limit,3 and therefore the lineshape distortions resulting from a transverse field not satisfying 
Eq. 2.139 will be discussed below and in Chapter 5.

The conditions of validity of the Provotorov equations themselves can be obtained from 
the implicit assumption which was made above, namely that the dipolar and Zeeman sys-
tems are always in internal thermal equilibrium. The time constant for these is T2, which 
should be short in comparison with the time constants in the Provotorov equations. This 
results in the requirement |ω1| ≪ D which is equivalent to B1 ≪ 1 mT for protons in polar-
ized target materials at 2.5 T field. For electrons the transverse field limit is higher in pro-
portion with the ratio of the gyromagnetic factors and is beyond the values which can be 
applied in the laboratory in samples at low temperatures.

Although the Provotorov equations were derived using the high-temperature approxi-
mation, the conclusions which were made from them are semi-quantitatively valid at low 

Figure 2.3 Inverse steady-state spin temperature β and the inverse time constant for reaching 
equilibrium, as a function of frequency deviation from the center of an ESR line with Gaussian 
shape. We note that the extrema of β are reached close to ω – ω0 = ± D and that the cooling rates at 
these frequencies are high, while the rate falls close to zero beyond ± 3D
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3 For example, if the NMR coil wire carries a current of 0.3 mA, the transverse field strength at 1 mm radius is 0.06 µT.
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temperatures, which can be seen in the various steps of their derivation. One might attempt 
to modify them phenomenologically by introducing the specific heats of the Zeeman and 
dipolar reservoirs in Eq. 2.130, which states that energy is conserved, and by modifying 
Eq. 2.74 to correspond to low temperatures. The resulting equations would be non-linear in 
inverse temperature but might allow one to gain insight to the rate of approach of equilib-
rium in the limit of very high polarizations where the populations of the highest or lowest 
magnetic levels are close to 1 and the others have populations close to zero. This will be 
discussed qualitatively in Chapter 4.

The lattice interactions were included in the density matrix of the original work by 
Provotorov [9], who showed how the effect of spin-lattice relaxation in the rotating frame can 
be introduced in Eqs. 2.134 and 2.135. Under the assumption that the spin-lattice  relaxation 
rates are slow in comparison with all other rates, the equations are then modified to

 α π ω α β α α( ) ( ) ( ) ( ) ( )= − ∆ − − − 
d
dt

t g t t
T

t1

Z
1
2

1
0  (2.141)

and

 β π ω α β β β( ) ( ) ( ) ( ) ( )= ∆ ∆ − − − 
d
dt

t
D
g t t

T
t1 ,

D
L1

2
2

2
1

 (2.142)

which can be also obtained intuitively by considering the balance of energy. Here the 
inverse lattice temperature βL is small in comparison with β and is usually omitted in the 
second equation; it cannot be omitted in the first one when α is high and the Zeeman relax-
ation time T1Z is long in comparison with the other rates.

In his original paper [9] Provotorov calculated the NMR lineshape resulting from satu-
ration, which does no longer correspond to the linear response approximation. The absorp-
tion and dispersion parts of the transverse susceptibility become then

 nIP I
g

T T
D T

2
1 1Z

D

Z

0
2

1

2
1

2
1

χ π µ γ

ε
( ) ( ) ( )

( )
′′ ∆ =

∆

+ ∆ + ∆









�  (2.143)
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1 1

D

Z
D
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2 1

2

1

2
1

2
1

χ π µ γ
ε

ε

( ) ( ) ( ) ( )

( )
′ ∆ = −

′ ∆ − ∆ ∆

+ ∆ + ∆









�  (2.144)

where

 g1
2ε ω π( ) ( )∆ = ∆  (2.145)

and g ( )∆ , g ( )′ ∆  are the normalized lineshape functions of Eqs. 2.75 and 2.76, which also 
obey the Kramers–Krönig relations

 P ∫π( ) ( )
′ ∆ = −

′∆

′∆ − ∆
′∆

−∞

+∞

g
g

d1 .  (2.146)
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We note that the dispersion signal gets an admixture of absorption at strong saturation, 
and that both signals are weakened. The measurement of both signals allows one to deter-
mine the dipolar and Zeeman relaxation times T1D and T1Z which are difficult to predict 
theoretically. Unfortunately, such measurements have not yet been made in polarized target 
materials at low temperatures, and one has to resort to estimates yielding T1D/T1Z = 1/3, 
which will be discussed in the next section.

If the measurement of transverse susceptibility is not made fast in comparison with the 
spin-lattice relaxation time, undistorted lineshapes can only be expected if the saturation 
ε(Δ)T1Z is very small.

Eq. 2.138 is somewhat unphysical because the spin system was assumed totally isolated 
from the lattice. The solution of the original Provotorov Eqs. 2.141 and 2.142 will be dis-
cussed in Chapter 4, but we shall write already here the result for the inverse dipolar and 
Zeeman temperatures:

 β β ω ε

ε

β
( )

( )
=

∆

∆ ∆

+ ∆ + ∆









+
T
D

T
T
T D

1 1

.L

D

Z
D

Z

L

1

2

2

1
1

1

2

2

 (2.140′)

 α β ω ε
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+ ∆ ∆
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2

1
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2

2

 (2.141′)

Here it was assumed that the relaxation of the dipolar and Zeeman temperatures in the 
rotating frame take place so that they feel the same lattice temperature, i.e. αL = βL, and α0 
= βL·ω0/Δ. At high saturation the two inverse temperatures again approach a common value

 D
T
T D

1 ,L
Z

D

2

1

1

2

2

α β β

ω

= = +

∆

+ ∆



















 (2.141″)

which is only slightly different from Eq. 2.138 if the ratio T1Z /T1D does not deviate much 
from the theoretical value of 3.

The inclusion of the spin-lattice relaxation allows one to obtain the correct dependence 
of the spin temperature on the magnitude of the applied transverse field. With a spin system 
perfectly isolated from the lattice, any field strength produces the same end result, only the 
time required for reaching the equilibrium changes. This is clearly unphysical and calls for 
the inclusion of the spin-lattice effects.

The Provotorov equations have been used for determining the relaxation times from 
the continuous-wave NMR signals under small saturation. They are equally important 
in the evaluation of errors in polarization measurement based on integrated absorption 
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signals (Chapters 5 and 6). These equations are also the basis for the qualitative and semi-
quantitative understanding of dynamic nuclear polarization using the cooling of the dipolar 
interactions (Chapter 4).

2.3 Relaxation

In polarized target materials the electron spin-lattice relaxation is vitally important because 
it provides the mechanism for the electron Zeeman temperature to reach a steady-state 
equilibrium both in the absence and in the presence of a saturating rotating field, as was 
discussed above. The nuclear spin-lattice relaxation in polarized targets happens mainly 
through their contact with the electronic spins. We shall discuss the relaxation of the elec-
tronic and nuclear spins separately in Chapters 3 and 5 and limit ourselves in this section 
to the general aspects and mechanisms of spin relaxation phenomena.

2.3.1 Spin-Lattice Relaxation of the Zeeman Energy

We shall first discuss the spin transition rates in the absence of external transverse RF field, 
between the populations of the magnetic energy levels Em of a spin system at high tempera-
ture where the Curie law (1.69) is valid. Basing his model on transition rates [10], Gorter 
showed that the inverse spin temperature β obeys

 
β β β= −d
dt T

L

1

 (2.147)

with

 
∑

∑

( )
=

−

T

W E E

E

1

1
2

,mn
mn m n

n
n1

.

2

2
 (2.148)

which leads to an exponential approach towards the inverse lattice temperature with the 
time constant T1. Additional requirements for the above are that the transition rates Wmn are 
independent of the populations of the energy levels, and that at all times the spin system is 
in internal thermal equilibrium so that the level populations obey the Maxwell–Boltzmann 
statistics. Because the Curie law states that at high temperatures the polarization P is pro-
portional to the inverse temperature of the spins, it also approaches exponentially its equi-
librium value P0 with the same time constant.

The calculation of the transition rates in the Eq. 2.148 can be made in a formal way based 
on generalized Provotorov equations, as has been shown by Abragam and Goldman [6]. 
Using the Liouville formalism and memory functions, they derive dynamic equations for 
a system with Hamiltonian

 V0H H= +
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where H H H= +0 1 2  and V is a small perturbation not commuting with any of the parts of 
the Hamiltonian, but

{ } { } { } =   =Tr =Tr =Tr 0;  , 0.1 2 1 2 1 2H H HH H H

The time evolution of the inverse temperatures of the two parts of the Hamiltonian can then 
be written as

 

d
dt

W

d
dt

W

;1
1 2

2
2 1

β
β β

β
ε β β

( )

( )

= − −

= − −
 (2.149)

with
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 (2.150)

Here W can be identified as a transition rate which can be evaluated for different processes 
such as saturation, cross relaxation, spin-lattice relaxation and so on. It is evident that the 
internal thermal equilibrium within the two systems must be rapid in comparison with 
the other time constants in the above equations. Provotorov derived similar equations for 
the specific case of cross relaxation [11] using the relevant Hamiltonians and density matri-
ces directly.

In spin-lattice relaxation the lattice is assumed to be at a constant temperature, by virtue 
of its high heat capacity or, at low temperatures, by continuous cooling through solid- 
helium boundary to a bath of liquid helium, which itself is part of a continuous cooling 
cycle. In this case only the first of Eq. 2.148 is non-zero; it can be rewritten for a spin 
operator ℋ1 = Q as

 
d
dt
Q W Q t QL( )( )= − −  (2.151)

where QL  is the value of the operator in thermal equilibrium with the lattice. Writing the 
perturbation as a product V = FA where F is a lattice operator of the lattice Hamiltonian ℱ 
and A a spin operator, Abragam and Goldman [6] obtain the rate

 
�W

F

Q
m Q A n G t e dt

tr

Tr
,

m n

i E E t
2

2
0 ,

2
/m n∫ ∑

ρ{ }
{ }

( )
( )= −  

( )
∞

− −
F

 (2.152)
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where

 ( ) ( ) ( ){ }
{ }

= = − +� �G t
FF t
FF

F t e Fe
tr

tr
; i t i t/ /F F  (2.153)

is the lattice correlation function of the variable F and Fρ ( )  is the lattice density matrix, 
which cannot be simplified in the high temperature approximation like the spin density 
matrix. The lattice correlation decays from 1 at t = 0 to zero in a characteristic time τc

 
F

F∫τ
ρ

ρ
( ) ( ) ( ){ } { }=

∞

FF
FF t dt1

tr
tr .c

0
 (2.154)

Although the decay is not necessarily exponential, approximating it so yields

 W
F

Q
m Q A n

E E

tr

Tr
,

1 /m n
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m n c

2

2
,

2

2 2 2∑
ρ τ

τ

{ }
{ }

( )
( )

= −   + − �

F
 (2.155)

In the above expressions ‘tr’ means trace over the lattice variables, and ‘Tr’ trace over the 
spin variables; the high-temperature approximation was used for the spin density matrix. 
The density matrix for the lattice cannot be expanded into Taylor series and truncated, 
because the energy spectrum of the phonons extends practically to zero and the phonons 
obey the Bose–Einstein statistics.

Phonons are the dominant lattice excitations in dielectric crystalline solids at low 
 temperatures. The dominance is witnessed by the low-temperature specific heat which 
often obeys very well the prediction of the Debye model

 C T
1944

J
mol KD

3

=
Θ







 (2.156)

where DΘ  is the Debye temperature, listed in Table A4.1 for several solids. The model is 
based on the approximation that the spectrum of phonons is cut off at the phonon energy

 � k ,D DΩ = Θ  (2.157)

that there are three modes of oscillation, one longitudinal and two transverse, and their 
dispersion is linear with a velocity of propagation, which is the same for all modes and for 
all orientations of the wave vector with respect to the lattice directions. The reasons why 
the model holds well at low temperatures (defined by T ≪ ΘD/4) are that these conditions 
are rather well satisfied for low momentum phonons which dominate due to their Bose–
Einstein statistics, and that their velocity is the acoustic velocity va in this limit. However, 
it is well known that the velocities of the transverse and longitudinal phonons are not equal 
and depend also on orientation in most crystals. This is taken into account by defining va as 
an average acoustic velocity. This point has been well described, for instance, by Landau 
and Lifshitz [12], whose presentation we shall briefly outline below.

The spectral density of phonon states in a crystal of volume V is

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108567435.003
https://www.cambridge.org/core


 2.3 Relaxation 81

 
V
v

3
2 a

2

2

3σ ω
π

ω( ) =  (2.158)

and the Debye cut-off frequency is

 v
a a V

N
6 ; ,D

a23 3πΩ = =  (2.159)

where a is the average lattice spacing of the monoatomic (or monomolecular) solid. Using 
these the spectral density becomes

 
N9

D

2

3σ ω ω( ) =
Ω

 (2.160)

For diatomic or more complex ionic solids the low-temperature specific heat tells that the 
relevant spacing is obtained from the molar volume and Avogadro number

 =a V
N
.m
A

3  (2.161)

The phonons are propagating lattice vibrations which can be represented classically by 
acoustic plane waves displacing atoms from their equilibrium positions by

 u u e .j j
i ts k rs= ω( )−⋅  (2.162)

characterized by a wave vector k and angular frequency ω which is the frequency of oscil-
lation of the atoms in the unit cell labelled by the vector s. The atom and the direction of its 
displacement are labelled by j which takes three r values, where r is the number of atoms 
in the unit cell. The position vectors can be expressed as

 = + +s s sr a a as 1 1 2 2 3 3  (2.163)

where si are integers and ai are the basic vectors defining the unit cell. It follows from the 
form of Eq. 2.162 that one may add to the exponential any integer multiple of 2π without 
changing the displacement; this phase factor can be expressed as π ⋅b r2 s with

 p p pb b b b1 1 2 2 3 3= + +  (2.164)

where pi are any positive or negative integers or zero, and

 v v v vb a a b a a b a a a a a/ ;  / ;  / ;  1 2 3 2 3 1 3 1 2 1 2 3= × = × = × = ⋅ ×  (2.165)

define the basis vectors of what is called the reciprocal lattice.
The quantum treatment of the lattice involves the replacement of the definite displace-

ment of the lattice points by quantized sound waves or phonons propagating in the lattice 
with definite energy and direction. These are represented by displacement operators similar 
to Eq. 2.162 
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 u u e u e .j j j
i†is k rs k rs= +⋅ ⋅  (2.166)

where u u,  n n
†  are Hermitian conjugate operators with the only non-zero matrix elements

 �n u n u n
M

e n1 1
2

1,j j
i t†

1
2ω+ = + =







+ω∗ −  (2.167)

where n is the number of phonons in that state. The phonon Hamiltonian is obtained by 
summing Eq. 2.166 over the indices n and s.

The phonon energy is

 �Eph ω=  (2.168)

and the wave vector determines the quasi-momentum

 �p k=  (2.169)

which is defined only within an arbitrary additive constant vector � b2π ω . The velocity of 
a phonon is given by the group velocity

 
E

v
k

p

p
,phω ( )

= ∂
∂

=
∂

∂
 (2.170)

which is exactly analogous to the relation between the energy, momentum and velocity 
of a real particle and is independent of energy and momentum for the low-temperature 
phonons.

The freely propagating phonons interact with each other and with other possible exci-
tations of the lattice because the oscillators are not perfectly harmonic at larger displace-
ment. This enables the phonons to collide with each other elastically or inelastically, and 
the system to reach thermal equilibrium corresponding to Bose–Einstein statistics which 
follows from the possibility that any number of phonons may occupy a given state. The 
mean number of phonons in a quantum state defined by Eph and p is then

 n
e

1

1
.

E kT/p pph

=
−( )  (2.171)

The Hamiltonian describing the coupling of the spin and phonon systems can be 
expressed as

 � F A ,ph
q

q qH ∑=  (2.172)

where Fq and Aq are the lattice and spin operators, respectively. The lattice operators can be 
expanded in the terms of the stresses due to the phonons causing displacements of the unit 
cells of the lattice from their equilibrium positions

 F F FW FW FW0 1 2
2

3
3= + + + + …  (2.173)
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where the terms represent sums over the indices i, k of the product of tensors Fnik which are 
nth derivatives of the energy with respect to the stress tensor

 W
u
x

u
x

1
2

,ik
i

k

k

i

=
∂
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+
∂
∂









  (2.174)

and the powers of the stress tensor itself. The matrix element of W for the emission of a 
phonon of frequency ω is

 �∂
∂ π ω

ω+ = + ≅ + = +







n W n n

x
u n n u n n

M v
k1 1 1 ( 1)

2
,

a

1
2

 (2.175)

where we assumed low temperature so that

ω( )
= =

∂

∂
= =v

E E

p k
v

p

p
.a

ph ph

In the language of the second quantization, the terms FnW
n describe processes with n pho-

nons created or destroyed. For n = 1, one phonon is either absorbed or emitted. The next 
term describes the simultaneous absorption or emission of two phonons, or absorption 
of one and emission of another phonon which is called the Raman process. In each pro-
cess energy is conserved and the momentum conservation is within the additive constant 
� b2π ω ; in an inelastic collision with two phonons in the initial and final states, for exam-

ple, we must have

 �p p p p b2 .1 2 1 2 π+ = ′ + ′ +  (2.176)

The mean wavelength of the phonon at 1 K temperature is

 λ
ω π

= ≅ =
v hv

kT/ 2
240 nma a  (2.177)

for a typical acoustic velocity of 5000 m/s in a solid. This is about three orders of magnitude 
more than the size of the unit cell even for fairly large molecules. At these temperatures, 
therefore, all the atoms of the molecule move in the same direction, and the molecules 
are not subjected to a large time-varying stress. This stress induces time variation on the 
spin-orbit coupling and therefore spin-lattice relaxation.

Let us now calculate the transition probability between two magnetic levels m and m’ 
of a nucleus or electron with spin and magnetic moment coupled to the lattice described 
by the phonon Hamiltonian (Eq. 2.175). We shall calculate the order of magnitude of the 
matrix element Y coupling the two states m,n  and +m’,n 1  of the spin-lattice system 
described by the coupling Hamiltonian AF1 W :

 �
Y m A m n FW n n u n F F

n
M v

k1 1
1

2
,
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1 1 1

1
2

π ω
ω( )≈ ′ + ≅ + =
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where it was assumed that A ≈ 1. The transition probability resulting from this is

 P
T

Y E1 2
ph1

1

2π ρ ( )= ≈
�

 (2.179)

which can be evaluated using Eqs. 2.159 and 2.178 yielding the rate of the direct process
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The number of phonons in the final state is given by Eq. 2.171 which is not necessarily 
large in the case of electrons in a high field and very low temperature. We shall get finally
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where m = M/N is the total mass of the atoms in the unit cell.
For nuclear Larmor frequencies, the last term can be quite large at temperatures where 

DNP is performed, but the smallness of the other terms makes the direct relaxation for 
nuclear spins much slower than those taking place through the electron-spin interactions, 
at all but the lowest temperatures attainable in dilution refrigerators. This will be discussed 
in Chapter 5 together with several other spin-lattice relaxation mechanisms that are specific 
to nuclear spins only.

For electrons around 1 K, the direct process dominates often, and we shall calculate 
numerical values and compare with experimental results in Chapter 3.

In the Raman process a phonon with frequency ω is absorbed and another with fre-
quency ω' = ω – ω0 is emitted. The probability for this to happen is a sum over all pos-
sible frequencies of the product of probabilities of the transition and of the first photon 
to exist:

 ∫ σ ω ω( )=
ω

Ω

P P d2 2
(1)

D

0

 (2.182)

where

 
� �
π σ ω( )=

′
P Y2
2
(1)

2

2
 (2.183)

is the transition probability with emission of a phonon with frequency ω' = ω – ω0 after the 
first phonon was absorbed.

The matrix element for this transition is roughly
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which yields
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using the spectral densities of Eq. 2.160. Using the Bose–Einstein populations of Eq. 2.171, 
changing the variables so that the integration is from 0 to ΩD – ω0 gives
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The relevant factors can be taken out of the integral by changing again the variables to
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which give
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In the case of nuclear spins at low temperatures, x0 is very small and the integral converges 
towards a definite value

 I x e

e
dx

1
 732.4870

x

x6
0

6

2∫ ( )
≡

−
=

∞

 (2.189)

which leads to a rapidly vanishing relaxation rate as the temperature is lowered well below 
1 K. This case will be discussed in Chapter 5. The Zeeman relaxation time due to the 
Raman process becomes independent of magnetic field in the low-temperature limit.

In Figure 2.4 we see how the function under the integral (Eq. 2.189) peaks at about x = 6 
and then rapidly approaches zero. The inset shows how the integral converges rapidly to 
zero as a function of its lower limit, allowing to conclude that, for all practical purposes, the 
approximation of extending the integration to infinity is good for ΘD/T > 30 which covers 
all polarized target applications.

For electron spins at low temperatures, the simplification of ignoring x0 is doubtful 
because we may have x0 > 1 at low temperatures; at 0.5 K and 2.5 T, for example, x0 = 7. 
The functions under the integrals of Eqs. 2.188 and 2.189 are plotted in Figure 2.5 to show 
the large difference and the convergence for this value. The extension of the integration to 
infinity is accurate for ΘD/T > 40 and thus valid for all polarized target applications.

Performing the integration numerically for 0 ≤ x0 ≤ 10 and then fitting the results yields 
the following dependence on x0 for the integral (Eq. 2.188):
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Figure 2.5 Difference between the integrands for x0 = 7 in the case of electron spins at low 
temperatures. This shows that x0 in the integrand cannot be ignored in Eq. 2.188. The influence of x0, 
however, can be numerically evaluated (see below)
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concerns nuclear spin relaxation
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with an accuracy of about 1%. Here P6 is a polynomial of third degree

 P x x x x  1 0.4991 0.1016 8.8964 10 .6 0 0 0
2 3

0
3( ) = + + + ⋅ −  (2.191)

The integral and the fit are shown in Figure 2.6. This gives a field dependence and  additional 
temperature dependence for the electron spin-lattice relaxation.

The relative importance of the Raman process for electron spin relaxation will be 
 discussed in Chapter 3, together with processes which are specific to electronic spins only.

2.3.2 Relaxation of Transverse Magnetization and Dipolar Relaxation

The phenomenological Bloch equations are valid only in spin systems where the dipolar 
fields are averaged out, in particular by the rapid motion of the molecules in gases and liq-
uids with low viscosity. They are especially useful in the description of spin systems under 
pulsed NMR measurements, a topic which is not dealt with in this book. Although these 
equations are clearly not obeyed in solid polarized targets, it is instructive to start from 
them when discussing the transverse relaxation time. The Bloch equations are
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Figure 2.6 Numeric fit of the dependence of the definite integral of Eq. 2.190 on the parameter x0
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and they define the decay time constants T1 and T2 for the longitudinal and transverse 
components of the magnetization due to spins. Here T2 is the time constant of the free 
precession signal decay (FID), which is exponential when the above equations describe 
the system correctly. In such systems T2 depends on the relative velocities of the molecular 
constituents of the gaseous or liquid sample.

In solids, the assumptions behind the Bloch equations are not valid, and the time evo-
lutions of the components of the magnetization are determined by the Provotorov equa-
tions, which were discussed in Section 2.2.4. The decay of the free precession signal is not 
exponential; in Section 2.2.2 it was shown that the time evolutions of the transverse com-
ponents, in the domain of linear response, are the real and imaginary parts of the Fourier 
transform of the lineshape function. The time scale of the FID, however, is given by

 
�γ µ γ ( )

≅ =
+

T
B n I I

1 1

1loc
2

0
2

 (2.193)

using Bloc from Eq. 2.7. Here the subscript of T2 is used only to refer to the transverse mag-
netization decay, and it has nothing to do with the random process of dephasing, which is 
involved in the case of gases and liquids where molecules undergo random motion.

One may view the FID of transverse magnetization in solids by recalling that spins 
permanently feel the oscillating transverse magnetic field of the same array of neighboring 
spins, which has the effect of keeping the transverse components in phase. The spatial 
variation and fluctuation of the longitudinal dipolar field, however, has a dephasing effect, 
which ultimately causes the disappearance of the transverse magnetization. It is quite com-
mon that in a crystalline solid the transverse magnetization components in the rotating 
frame may change sign, even several times, during their FID towards zero.

The spin-lattice effects in the rotating frame were discussed in an instructive way by 
Slichter ([2] p. 242), along the lines of the original work by Redfield [13]. Three basic 
relaxation equations can be defined in the rotating frame, one for each of the longitudinal 
and transverse magnetizations, and one for the dipolar energy:
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 (2.194)

Here My is not considered, as it does not exchange energy with the lattice, and the partial 
derivatives indicate the explicit changes due to the lattice interactions only. The equilib-
rium value of the dipolar energy ′D l

H  is that when the spins are at the temperature of the 
lattice. Clearly, T1z can be identified to be equal to the usual T1, but T1x is not T2 or similar 
to it, because exchange of energy with the lattice is involved. T1x must therefore also be of 
similar order of magnitude as T1z, because it determines how quickly the magnetization in 
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the rotating frame will find its longitudinal equilibrium value along the effective field Beff. 
The dipolar relaxation time T1D must also depend on the value of T1, because there is no 
direct contact between the dipolar system and the lattice, but the relevant energy transfer 
must depend on the energy exchange between the Zeeman reservoir and the lattice.

The total energy in the rotating frame is

 = − − + ′E M b M B ,z x D0 1 H  (2.195)

and its derivative with respect to the lattice couplings is
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the assumption that the magnitude of the magnetization M always lies along the effective 
field then leads, using Eq. 2.192, to the equations for the magnetization and common spin 
temperature
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where, when neglecting ′D l
H , the common time constant is
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and the equilibrium values are
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 (2.199)

In the above reasoning it was assumed that the thermal equilibrium of the subsystems, 
and between them, is established much more rapidly than T1, which requires a transverse 
field strength much higher than that of the linear response domain. No upper limit, how-
ever, was possible to define in a natural way, because the density matrix formulation was 
not used for the problem.

The treatment here does not lead to theoretical methods for determining the various 
spin-lattice relaxation times, but rather to the understanding on how the various field 
strengths and the frequency offset may influence the time required for the evolution of the 
system towards dynamic equilibrium. Another important result is that of the equilibrium 
magnetization, which can be seen to follow the effective field so that its projection on the 
steady field will change sign when b0 changes sign.
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If the rotating field will be suddenly removed, the transverse magnetization will decay in 
the time scale of T2 defined roughly by Eq. 2.193, rather than T1x.

2.3.3 Cross-relaxation and Thermal Mixing

These two phenomena are important in the description of systems of spins with two or 
more species with different Larmor frequencies, and in the presence of a transverse RF 
field.

Cross-relaxation involves transitions between one or several pairs of spins undergoing a 
simultaneous flip so that angular momentum is conserved and the possible energy unbal-
ance is compensated by a change in the dipolar energy. The probability of such transitions 
can be large in a high-density spin system, because of the conservation of both energy and 
angular momentum.

We have already discussed the two-spin transitions within like-spin systems which lead 
to line broadening in a solid and into the establishment of a dipolar temperature, both in the 
absence of and during RF saturation. We shall now treat the case when there are two spin 
species with spins I and S having nearly equal gyromagnetic ratios γ1 and γ2; the resonance 
lines do not overlap. Their numbers in the sample are N1 and N2 and they have spin-lattice 
relaxation times T1

(1) and T1
(2). The spin Hamiltonian in high field is

 H H H H H= + ′ + +Z D RF L  (2.200)

which is composed of the Zeeman part

 I S ,Z z z1 2ω ω= +H � �  (2.201)

of the RF part

 � I e I e ,RF RF
i t i tH ω ( )= +ω ω+ − −  (2.202)

where ωRF = γ1B1 and B1 is the RF field strength, of the lattice interactions

 � �F A F A ,L
q

q q

q

q q,1 ,1 ,2 ,2H ∑ ∑= +  (2.203)

and of the secular part of the dipolar interaction Hamiltonian, which will be subdivided in 
the following way:

 H H H H H′ = ′ + ′ + ′ + ′ .D D D IS CR1 2  (2.204)

Here the first and second terms on the right are the secular dipolar Hamiltonians if only 
the species 1 or 2 had a magnetic moment, respectively. These terms commute with Iz and 
Sz simultaneously. The third term

 H ∑′ =
<

a I SIS
i k

ik iz kz  (2.205)
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also commutes with Iz and Sz simultaneously and contributes to the linewidth of both 
 species. The fourth term

 H H H∑ ( )′ = − + = +
<

+ − − + + −a I S I S1
4CR
i k

ik i k i k CR CR  (2.206)

leads to the cross-relaxation between the two species but does not contribute to linewidths.
Provotorov [11] wrote the density matrix for this system in the high-temperature approx-

imation, transformed it to the interaction representation where each component of the 
Hamiltonian becomes

 O OH H( ) = −� �t e ei t i t/ /  (2.207)

and calculated its time evolution using Eq. 1.76:
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where the operators O( )( )
ω

t  are defined by the transforms

 O OH H∫π( )( ) ( )=
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Provotorov then showed that the Hamiltonian can be diagonalized under the following 
conditions:
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As a consequence of this and the fact that some of the parts of the Hamiltonian commute, 
the density matrix can be put to the form

 t Ce t I t S t kT/z z D L
' '

0H Hρ ( ) = α β γ( ) ( ) ( )+ + +  (2.211)

where

 C I S e2 1 2  1 Tr .
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he now obtained the following set of differential equations for the time evolution of the 
inverse temperatures α, β and γ:

� � �
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and the spin-lattice relaxation times have definitions analogous to the previous section.
General solutions for these equations have not been given, but with the usual relaxation 

times one may see that there will be a short relaxation time for the dipolar temperature β to 
approach equilibrium with the Zeeman temperatures α and γ, and a longer relaxation time 
for the system to reach a steady-state dynamic equilibrium. Provotorov notices that in the 
absence of RF field the short relaxation time will be

 
T

1D
12

12
2 2τ

δ ε
=

+ + ∆ �
 (2.219)

when the small terms proportional to (Tjs)
–1 are omitted in the equations.

Rodak [14] has calculated, using the above equations, the steady-state temperature of the 
second spin system during RF irradiation as
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He notices that when both terms on the right side are positive, the saturation of line 
1 results in the heating of the spins 2. The nominator of the second term, however, may 
become negative when
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 ′′

( )
 (2.221)

This leads to the cooling of the second spin system. The example which was considered 
was two electron lines (hyperfine lines, for example); in this case, however, the cooling 
amounted to 10% at best.

Thermal Mixing
When the transverse field rotates at a speed close to the Larmor frequency so that Δ ≈ D, 
the temperatures of the Zeeman and dipolar systems converge rapidly towards a common 
value, as was shown by the Provotorov equations. This occurs because the frequency dif-
ferences in the cross-transitions of the like spins involve a spectrum which includes Δ. The 
same can be achieved by lowering the static field to a value in the vicinity of Bloc, rather 
than lowering the effective field to Beff by the application of the rotating transverse field. 
The only difference in the two approaches is that the dipolar Hamiltonian must be truncated 
at high static field, whereas it cannot be truncated at low static field.

If there are two spin species initially at high field and at different temperatures, low-
ering the static field has similar effects when the dipolar widths are such that the two 
resonance frequency spectra overlap. This has been studied in LiF and was reviewed by 
Abragam [1].

A similar phenomenon can be observed at a high static field when applying a rotating 
transverse field at a frequency which is equal to the sum or the difference of the two 
Larmor frequencies. The two Zeeman temperatures in their rotating frames will then 
approach a common value at a rate which depends on the magnitude of the transverse 
field, and on the lineshapes of the two spin species. The process is irreversible and takes 
place at constant Zeeman energy, and the final temperatures can be obtained using the 
heat capacities of the two spin systems [15]. If the line widths are so broad that also 
the dipolar temperatures will get equalized, this must be taken into account in analysing 
the outcome.
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2.3.4 Nuclear Spin-Lattice Relaxation in Solids

In Section 2.3.1 it was pointed out that there is no direct contact between the nuclear spins 
and the phonons of the lattice at low temperatures, even at the highest values of magnetic 
fields obtainable in the laboratory. The nuclear spin-lattice relaxation must therefore pro-
ceed via interactions with the electronic system, a fact which is most important for the DNP 
which is based on the off-resonance saturation of the same electronic system.

The other possible mechanisms of nuclear spin-lattice relaxation have adverse effects 
in DNP, because they produce a ‘leakage’ mechanism for the nuclear polarization. 
The leading causes for leakage relaxation are unwanted residual paramagnetic impu-
rities. Other causes, such as the direct contact with phonons, or via nuclear spin-orbit 
 coupling or nuclear quadrupole interaction coupled to lattice phonons, have been shown 
to  produce negligible relaxation rates in comparison with the residual paramagnetic 
impurities [1].

The spin-lattice relaxation has been formulated using the generalized Provotorov equa-
tions ([6] pp. 49–52), which provide an elegant method for arriving at the right expressions 
for the relaxation of each of the rates towards lattice.

The experimental nuclear spin-lattice relaxation will be discussed in Chapter 5.

2.4 Interacting Spins in a Strong Transverse Field

We shall discuss here spin systems at high static field and in the presence of such high 
transverse field that the Provotorov equations are not adequate. This topic is of particular 
interest for pulsed NMR, which is not used for nuclear spin polarization measurement 
for obvious reasons. Here the topic is of interest for the adiabatic reversal of nuclear spin 
polarization, which is relevant for polarized targets.

When the strength of the transverse field, rotating at a frequency close to the Larmor 
precession, is of the same order of magnitude as the local field, B1 ≈ B’loc, the thermal equi-
librium between the Zeeman and dipolar reservoirs is obtained in a time of the order of 1/D. 
The Hamiltonian of the system is

 H Hω ω ω ω( )= + ′ + +� �I I t I tcos sin .z D x y0 1  (2.222)

When this is transformed to the rotating frame, one obtains

 e e I I I .eff
i t i t

z z D x1ω ω= − = ∆ + ′ +ω ω−H H H� � �  (2.223)

This can now be used for calculating the energy and entropy in the rotating frame, in 
order to evaluate the resulting spin temperature after a sudden change in the Hamiltonian 
and during a slow adiabatic change of the Hamiltonian. In the former case the energy is 
conserved, while the second takes place at constant entropy.

The energy in the rotating frame is

 H H H HTr Tr Tr ,eff initial eff final eff eff
1 2�ρ ρ β{ } { } { }= = = − −  (2.224)
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which yields for the final spin temperature
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where the initial density matrix in the rotating frame features different initial temperatures 
for the Zeeman and dipolar reservoirs, and the final density matrix in the rotating frame is 
described by a common inverse spin temperature β :
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The trace in the denominator of Eq. 2.225 is

 �I DTr Treff z
2 2 2 2

1
2 2H ω{ } { } ( )= ∆ + +  (2.227)

where D = γB’L.

Adiabatic Demagnetization in the Rotating Frame 

It should be first noted that in metals the adiabatic demagnetization in the rotating frame 
(ADRF) is impractical because the high-frequency field does not penetrate the sample but 
rather heats up the electronic system. On the other hand, in dielectric samples the flipping 
or ramping of the static field, ramped first to a low value, is impractical because the sample 
must contain paramagnetic electronic spins which cause rapid nuclear spin relaxation at 
low magnetic fields; these paramagnetic spins are required for obtaining a high dynamic 
nuclear polarization (DNP).

The motion of an isolated spin in a high static field B0 superposed with a small transverse 
rotating field B1 could be understood as precession about an effective field Beff defined by 
Eq. 1.57. The isolated, i.e. non-interacting, spin can be manipulated reversibly by changing 
the effective field slowly in comparison with the effective Larmor precession frequency 
in the rotating frame. In the more practical case of interacting spins, the relaxation rates 
between the lattice, the Zeeman reservoir and the spin interaction reservoir must be taken 
into account in evaluating in the outcome of ADRF.

If the transverse field is small compared with the effective field, we have Beff =  
(Δω/ω0)B0 as the effective field; if this field is large in comparison with the linewidth, no 
thermal mixing occurs between the Zeeman and dipolar reservoirs, and the two reservoirs 
can be at different temperatures in the time scale t ≈ T1 which can be hours or even days.

When the effective field approaches the local field, the situation changes. If in addition 
the strength of the transverse field is larger than that required for the linear approximation, 
but still small in comparison with the local field, one must use the Provotorov equations 
in order to determine the time evolution and equilibrium values of the temperatures of the 
various energy reservoirs. We shall therefore leave the detailed discussion of ADRF to 
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96 Resonance and Relaxation of Interacting Spin Systems

Chapter 11, after the dynamic behavior of interacting spins is better understood. Here we 
shall focus on the static results and on the similarities between ADRF and adiabatic demag-
netization in the laboratory frame.

Let us now perform ADRF from such a large effective field that no thermal mixing 
occurs, down to the mixing field

 b B ,m
m m

0
0ω

γ
ω ω

γ
= + =

−
 (2.228)

where the relaxation between the Zeeman and dipolar interaction energy reservoirs is rea-
sonably fast in comparison with the spin-lattice relaxation. The relaxation takes place at 
constant total energy, and the final inverse temperature, in the high-temperature approxi-
mation, is analogous with that of Eq. 1.121:

 
B

b B B

b B

b B B
,f i

i

m loc

m

m loc
2

1
2 2

2
1
2

2
1
2 2

β β=
+ + ′

×
+

+ + ′
 (2.229)

where the second term on the right describes again the non-adiabaticity due to the mixing. 
The losses in entropy can again be of the order of 1% in favorable cases. If the effective 
field is further reduced so slowly that the dipolar and Zeeman temperatures are always in 
good equilibrium with each other, the common inverse temperature undergoes reversible 
changes with the effective field:

 
B

b B B

b

b B
,f i

i

loc

m

m loc
2

1
2 2 2 2

β β=
+ + ′

×
+ ′

 (2.230)

where it was taken into account that the rotating field B1 must be very small in comparison 
with both the local field and the mixing field.

The ADRF can be stopped at any effective field and the transverse field can be adiabat-
ically reduced to zero. If this is done at the frequency ω0, all available Zeeman order is 
transformed to dipolar order, and if the initial polarization is sufficiently high, magnetic 
ordering may take place in the nuclear spin system.

The above expressions are further slightly modified due to the finite relaxation rates 
between the various energy reservoirs, to be discussed in Chapter 11.

Polarization Reversal by Adiabatic Passage in Rotating Frame 

If the frequency or field sweep is continued through zero effective field, the Zeeman tem-
perature will be adiabatically reversed. This is called adiabatic passage in rotating frame 
(APRF). In this process there is no adiabatic loss equivalent to that of the field flip given 
by  Eq. (1.133), because in the rotating frame one can proceed adiabatically through zero 
effective longitudinal field without losses due to relaxation, provided that the spin-lattice 
relaxation times are much longer than the time spent in the passage.
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In practice the strength of the transverse field and the sweep rate of the steady field are 
optimized so that the losses due to relaxation are minimized. The polarization loss in the 
reversal by APRF is then reduced to that due to the loss of entropy when performing the 
thermal mixing, and to the loss due to other spins whose temperature remains untouched 
during the passage. At very high polarization the above results based on the high-temperature 
approximation are qualitatively valid, but nuclear magnetic phase transition phenomena may 
reduce the efficiency of the polarization reversal, as will be also noted below.

The reversal can be performed starting from positive or negative polarization and spin 
temperature, and the sweep of the frequency or field can be started from above or below, 
with the same results. To reduce losses due to thermal mixing, however, it is best to per-
form thermal mixing at positive Zeeman temperature when the initial polarization is posi-
tive, and at negative Zeeman temperature when the initial polarization is negative.

Polarization reversal by adiabatic passage in the rotating frame will be discussed further 
in Chapter 11.
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3
Electron Paramagnetic Resonance and Relaxation

3.1 Electron Spin and Magnetic Moment

The atomic electron is presently regarded as a pointlike particle. Direct tests of quantum 
electrodynamics (QED) in electron-positron collisions confirm the absence of structure 
down to the distance scale of 2 × 10–18 m. The electron g-factor is therefore close to the 
Dirac value of 2; the best experimental value [1] is obtained using a single-electron Penning 
trap with a cavity cooled to 100 mK temperature:

 
g
2

1.00115965218085(76).e =  (3.1)

This limits the substructure to the scale of 1 × 10–18 m, and it is presently the most accu-
rately known fundamental constant.

The relative deviation of ge from 2 is called a, the anomalous magnetic moment. For the 
free electron it is, from the above result,

 a
g

2
1 1.15965218085(76) 10 ,e 3≡ − = ⋅ −

which deviates by less than 4 × 10–9 from the theoretical value [2, 3] involving eighth- 
order QED and small weak and hadronic corrections. This agreement gives still more 
strict bounds to any substructure [4, 5] given that there is no presently known reason for 
a large cancellation which could cause the substructure to give a g-factor of a pointlike 
particle.

The electrons in closed shells of atoms, and usually the electrons which participate in 
valence-bonding between atoms, form pairs with antiparallel spins. These pairs have no 
total magnetic moment. The closed-shell electrons have no orbital magnetic moment either. 
Unpaired electrons tend to be rare because pairing is energetically favored, and therefore 
paramagnetism of materials and compounds is rather an exception than a rule.

Transition metal ions have incomplete inner shells which may exhibit a magnetic 
moment. These ions may substitute similar non-magnetic ions in diamagnetic salts, thus 
forming a diluted paramagnetic substance. The transition metals include the iron group 
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 3.1 Electron Spin and Magnetic Moment 99

(Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn), the palladium group, the rare earth group (Ce, Pr, Nd, 
Pm, Sm, Eu, …, Yb), the platinum group and the actinides.

As an example, the Ce3+ ion has one 4f electron outside the closed shells which have 
the electronic structure of a Xe atom. In a free ion the spin-orbit coupling lifts partially the  
(2S + 1)(2L +1) = 2 × 7 = 14-fold degeneracy of this 4f electron into multiplets with J = L + S = 7/2  
and J = L – S = 5/2. An ion bound in a crystal experiences the crystal field which has a 
certain symmetry; this field lifts partially the degeneracy of these multiplets depending on 
the symmetry. In the double nitrate of cerium and magnesium (CMN), for example, the 
crystal field has trigonal symmetry at the site of Ce3+; this splits the ground-state multiplet 
with J = 5/2 into three doublets. Such doublets occur in ions with odd number of electrons 
and they have the special property that the remaining two-fold degeneracy cannot be lifted 
by an electric field but only by a magnetic field. These are called Kramers doublets and 
the two states into which the field splits the doublet are called Kramers conjugate states. In 
CMN the spacing between the three doublets is more than 30 K so that at 1 K temperature 
only the lowest doublet is populated.

The static paramagnetism under these conditions can be described as that of a fictitious 
‘effective spin’ S = ½ (see also Section 1.1.1), but the magnetic moment deviates from that 
of a free electron. The g-factor is strongly anisotropic in CMN with a maximum value g⊥ =  
1.83 when the field is perpendicular to the crystal axis, and a minimum value g|| = 0.0236 
when the field is parallel to it.

CMN is well known to low-temperature physicists, because it has a fairly low density 
of electron spins which entails a magnetic phase transition temperature only below 2 mK 
temperature. It can therefore be used for cooling by adiabatic demagnetization to the mil-
likelvin range of temperatures [6, 7]. It has also been used for thermometry based on the 
Curie law, down to the same temperature range.

The effective paramagnetic electron spins of transition metal ions have usually values of 
S between 1/2 and 5/2. The effective spin is the result of the interaction of the electron spin 
with the orbital moment, which may take values between 0 and 3. In polarized targets the 
interesting materials are only those which have S = 1/2, because the higher spin materials 
have complicated magnetic level structures which lead to broad resonance lines, with a rich 
structure. It is also important that the ion can be diluted by embedding it in a non-magnetic 
crystal, because otherwise the interactions between the spins are too strong for dynamic 
nuclear polarization (DNP) and can even lead to a magnetic phase transition at the low 
temperatures required.

Other materials with paramagnetic spins of interest for polarized targets include the 
following categories:

(1) stable free radicals such as triphenylmethyl, TEMPO, porphyrexide and DPPH, solu-
ble in a glass-forming matrix (Section 3.6.1);

(2) radiolytic free radicals created in situ by radiation damage, such as ·NH2 (Section 
3.6.3);
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(3) metallo-organic compounds such as propanediol-Cr(V) and other pentavalent Cr com-
plexes; Ti and V also form similar compounds of potential use in polarized targets 
(Section 3.6.2);

(4) paramagnetic transition metal ions substituting non-magnetic ions in ionic crystals, 
such as Nd3+ ion impurity in lanthanum magnesium double nitrate (LMN);

(5) vacancies such as a negative ion vacancy filled by an electron (F-centers), a positive 
ion vacancy with an electron missing from an adjacent ion (V1-centers) or more com-
plicated defect states such as divacancies;

(6) interstitial or substitutional point defects in diamagnetic crystals such as N atoms in 
diamond, Al in SiO2, H in CaF2 or Ag in KCl;

(7) localized donor and acceptor states in semiconductors, for example, P in Si;
(8) optically induced triplet states in molecules which are diamagnetic in their ground 

state;
(9) conduction electrons in metals (although these are not paramagnetic in the strict sense 

of the term).

In analogy with the transition metal ions, the interactions of the effective spin of the above 
paramagnetic electrons with the lattice1 lead to the following phenomenological changes 
of its paramagnetic resonance, comparing with free electrons:

(i) frequency shift (g-shift due to spin-orbit interaction);
(ii) splitting into several lines due to interaction with nuclear spins (hyperfine splitting);
(iii) broadening due to dipolar interactions.

The g-shifts observed in solids, gases and liquids are often much larger than the anomalous 
magnetic moment but smaller than those of the free transition metal ions. As was discussed 
above and in Section 2.1.3, this shift is caused by atomic, molecular and crystal field inter-
actions, and its theoretical understanding requires second-order perturbation theory for 
evaluating the interference term of the orbital momentum interaction with the external 
field and with the electron spin. The g-shift as well as the hyperfine splitting often exhibit 
substantial anisotropy and, in solids other than single crystals, these lead to the inhomo-
geneous line broadening, which may exceed the dipolar (homogeneous) broadening by a 
large factor.

In the following discussion of electron paramagnetic resonance (EPR), we shall not go 
in such a mathematical detail as in Chapter 2. The molecular structure and lattice interac-
tions complicate the EPR often so much that the rigorous analysis is very difficult, if not 
impossible (in closed form). However, because EPR is the key to DNP, we shall try to 
enlighten the phenomenology with some simplified theoretical models and examples. For 
those who wish to gain a deep insight into the EPR of transition ions, we recommend read-
ing the book of Abragam and Bleaney [8]. The EPR of radiolytic free radicals is treated by 
Pshetzhetskii et al. [9] and by Roginskii and Tupikov [10], and the basic EPR techniques 
are treated by Wertz and Bolton [11] and by Eaton et al. [12].

1 The matrix of the material is called here lattice, even for glassy, liquid or gaseous disordered states.
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3.2 EPR Absorption Spectrum

3.2.1 The g-Shift

The origin of the g-shift of the resonance frequency of an unpaired electron bound in 
an atom, a molecule or a crystal is the coupling of its magnetic moment to the motional 
magnetic field in the electric field of the atom, molecule or crystal. This gives rise to the 
spin-orbit coupling that was discussed in Section 2.1.3:

 e
mc

S E p
2

,2H
� ( )= ⋅ ×  (3.2)

which in the radial electric field of a free atom becomes ℋ = λ L·S. In a free hydrogen-like 
atom, this interaction leads to the Landé g-factor

 
( ) ( ) ( )

( )= +
+ − + + +

+
g

J J L L S S

J J
1

1 1 1

2 1
,

which varies from 2 to 1 with increasing L.
In atoms and ions bound to molecules or crystals, the spherical symmetry of the electric 

field experienced by the unpaired electron is destroyed. As a consequence of this, the state 
of the electron cannot be described by a wave function with a definite value of L, i.e. L 
is not a ‘good’ quantum number. Consequently, the orbital moment is quenched2 and the 
g-factor does not deviate markedly from ge. In free radicals and complexes used in polar-
ized targets this deviation rarely exceeds 0.5%; in molecular and ionic crystals consisting 
of small molecules, however, much larger deviations can be found, as was discussed in 
Section 3.1.

For some free paramagnetic atoms the g-factor can be as large as 6; this results from 
the interaction of an unpaired inner-shell electron with the rest of the electronic system, 
which becomes polarized. In crystalline materials, transition metal ion substitutional impu-
rities such as Ce3+, discussed above, usually have g-factors very far from 2, with a large 
anisotropy. A case well studied in the field of polarized targets is the LMN in which dilute 
Nd impurities have a large anisotropic g-factor; this will be discussed in more detail in 
Section 3.6.

Because the g-factor of the electron reflects the magnetic coupling with the lattice, it is 
important for the spin-lattice relaxation and for the DNP.

Due to the anisotropy of the molecular or crystal field, the g-factor is anisotropic and 
therefore dependent on the orientation of the magnetic field vector. As was discussed in 
Section 2.1.3, the motion of the electron in the superposition of the centrally symmetric 
Coulomb field and the anisotropic crystal field causes a motional magnetic field, the inter-
action of which with the magnetic moment of the electron can be expressed with the spin 
Hamiltonian

2 For a detailed discussion on the quenching of the orbital moment, see, for example, Refs. ([9] pp. 20–22 and [13] pp. 89–92).

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108567435.004
https://www.cambridge.org/core


102 Electron Paramagnetic Resonance and Relaxation

 B g S B g S B g S ,B x xx x y yy y z zz zH µ ( )= + +  (3.3)

where the g-tensor is diagonalized, and �e m/ 2B eµ =  is the Bohr magneton. The dyadic 
notation

 g g gg i i j j k kxx yy zz= + +�  (3.4)

is practical for writing the spin Hamiltonian in the form

 B g S.Bµ= ⋅ ⋅H �  (3.5)

In an oriented single crystal, the resonance frequency

 
�

g B, Bw
ω

θ µ( )=  (3.6)

is now dependent on the Euler angles θ,φ in the following way:

 g g g g, sin sin sin cos cos .xx yy zz
2 2 2 2 2 2 2 2w w wθ θ θ θ( ) = + +  (3.7)

The g-tensor is often axially symmetric, due to the axial symmetry of the molecule or 
crystal. We may then write

 gxx = gyy = g⊥ ;

 gzz = g||

where g|| and g⊥ are the values of the g-factor for a magnetic field oriented parallel and 
perpendicular to the symmetry axis of the molecule or crystal. We then have

 g g g g cos .2 2
||
2 2θ θ( )( ) = − −⊥ ⊥  (3.7′)

If the orientation of the molecular axis is isotropic and random such as in glassy, polycrys-
talline or powder materials, the number of spins with axis in the direction of the solid angle 
element dΩ is constant. The lineshape function then obeys

 f d d d
4

1
2

cos .ω ω
π

θ( ) =
Ω

=  (3.8)

Solving cos θ from Eq. 3.7 and inserting g(θ) from Eq. 3.7′ yield for axially symmetric 
g-tensor

 ω
ω

θ
ω

ω
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( ) = =

−
−
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 (3.9)

The lineshape function after normalization becomes

 
ω ω

ω ω ω ω
ω ω ω

ω

( )( )
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( )

=
− −

=
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⊥f

f

 for  between  and ;

0                                     elsewhere.

2
||
2 2 2

||  (3.10)
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Here �g B/Bω µ=⊥ ⊥  and �g B /B|| ||ω µ= , and the lineshape, valid for electronic spin S = 1/2 
in isotropic polycrystalline or glassy materials, is shown in Figure 3.1.

Figure 3.1 (a) EPR lineshapes in a glassy solid due to broadening by axially symmetric g-tensor, Eq. 
3.10, with different contributions from dipolar broadening. The hyperfine interactions with nuclei in 
the paramagnetic molecule are assumed very small. The anisotropy of the g-tensor is 0.5%, typical 
for Cr(V) complexes with diols. The Gaussian broadening corresponds roughly to the normal and 
deuterated forms of the complex and the solvent matrix. (b) Unbroadened EPR lineshape in a glassy 
solid when the g-tensor is not axially symmetric (see Eq. 3.17)
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104 Electron Paramagnetic Resonance and Relaxation

The EPR spectra are experimentally determined usually by scanning the field at fixed 
microwave frequency. The lineshape function under the same assumptions then becomes

 ( )( )
( )

( )

=
− −

=

⊥

⊥ ⊥

⊥f B
B B

B B B B B
B B B

f B

 for  between  and ;

0                                         elsewhere.

||
2

2
||
2 2 2 2

||
 (3.11)

For narrow lines the shapes 3.10 and 3.11 are almost identical (but inversed about the 
centroid, of course).

In Eq. 3.10 it was assumed that the resonance at each orientation or ‘spin packet’ is 
infinitely sharp; for real lines these spin packets are better represented by symmetric shape 
functions h(ω – ω′) representing dipolar and other possible spin-spin interactions. The 
resulting lineshape is then obtained by the convolution

 ∫ω ω ω ω ω( ) ( ) ( )= ′ − ′ ′
∞

f f h d ;
0

 (3.12)

such a shape is superimposed in Figure 3.1. The convoluted shape functions cannot be 
calculated in closed form in general, and numerical methods must be used if such shapes 
are needed for the purpose of fitting experimental signal shapes, for example. An approxi-
mate analytical function, however, can be obtained for small g-anisotropy and Lorentzian 
broadening, by writing

 ω ω

ω ω ω ω

ω

ω ω ω ω ω( )( ) ( ) ( )
( ) =

− −
≅

− −⊥ ⊥ ⊥ ⊥

f
2

,
2
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2 2
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2 2

||
2

where � 2ω ω ω( )= +⊥  is an average frequency between the poles of the lineshape. Direct 
integration with

 h T
T

1
1

2
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2
2

ω ω
π ω ω
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− ′ =

+ − ′

then gives the convolution

 ∫ω
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If the paramagnetic molecule has no axial symmetry and we denote gxx = g1, gyy = g2, gzz = g3,  
with g1 < g2 < g3, finding the lineshape is more complicated. The result for the normalized 
shape is
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where

 k
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B B B B
2 1

2
2
2 2

3
2

1
2 2

2
2

3
2

( ) ( )
( ) ( )=

− −
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 (3.14)

and K is the elliptic integral

 K k d

k1 sin
.

0

/2

2 2∫
α

α
( ) =

−

π

 (3.15)

The function in Eq. 3.13 has a sharp peak at B2, where k = 1 and K(1) = 1, which give

 f B B B

B B B B B

2 .2
1 3

2 2
2

3
2

1
2

2
2π ( )( )

( ) =
− −

 (3.16)

If B1 = B2 we have k = 0 and K(0) = π/2, which yields the same result as Eq. 3.11.
The corresponding normalized lineshape as a function of frequency is
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with

 k 2 2
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( ) ( )

=
− −
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 (3.18)

and K is the same elliptic integral as in Eq. 3.15. The lineshape resulting from Eq. 3.17 is 
shown in Figure 3.1b; this is characterized by a sharp peak at ω2 and sharp edges at ω1 and 
ω3. The EPR line of TEMPO radical in a glassy matrix is the superposition of 3 such lines, 
each corresponding to one of the 3 magnetic states m = –1, 0, +1 of the nuclear spin of 14N 
that has hyperfine interaction with the paramagnetic electron located at the N—O bond.
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The lineshapes described above can be seen in solid samples at such low temperatures that 
the rotational motion of the paramagnetic molecules is slowed down well below the Larmor 
precession frequency. At high temperatures, and in particular in the liquid state, the EPR absorp-
tion signal becomes progressively narrower and more symmetric, as long as the dipole-dipole 
relaxation time T2 remains small in comparison with the correlation time τc, defined as the time 
required for the rotational autocorrelation function to drop by 1/e. If the g-anisotropy is not 
large, the centroid of the EPR absorption line approaches the average value gav

 g g g g g g1
3

1
3

2 .av xx yy zz ||( ) ( )= + + = +⊥  (3.19)

When the ratio τc/T2 becomes small (compared with unity) at high temperature, the line-
width corresponds to the dipolar one with motional narrowing, and one may be able to 
resolve the hyperfine structure of the magnetic resonance if the concentration is low 
enough, usually well below 1017 spins/cm3.

The free radicals and other paramagnetic molecules usually contain many electrons and 
atoms; the unpaired electron usually belongs to one of these atoms or ions, such as the 
Cr(V) ion in PD-Cr(V) complex or in Cr(V)-EHBA (see Chapter 7). In order to estimate 
the principal values of the g-tensor in such a real case, we must make simplifying assump-
tions in the treatment of the spin-orbit coupling. We have to ignore possible polarization of 
the electron pairs forming the molecular orbitals and assume that the total spin-orbit cou-
pling operator is obtained by summing the terms similar to Eq. 3.2 written for each atom 
in the molecule. The calculation of the spin-orbit coupling constants requires additional 
assumptions on the representation of the molecular orbitals as a linear combination of the 
atomic orbitals, and on the interaction of the unpaired electron with the atomic orbitals 
which determine the electric field strength E near the nucleus. The detailed calculations 
are beyond the scope of this book, and numerical values are given for a large number of 
paramagnetic molecules in the literature.

If one electron is lacking in an otherwise filled shell of the atom, it can be regarded as a 
moving hole or positive charge in a filled shell. This changes the sign of Eq. 3.2 and there-
fore the sign of the spin-orbit coupling constant λ, which may be used to distinguish the 
radiolytic hole paramagnetic centers (V-centers) from the electron paramagnetic centers 
(F-centers). A way to understand this is to parametrize the g-shift as

 
D

g g
a

E
.ii e

iiλ=  (3.20)

Here aii describes the symmetry of the crystal field and its strength, and ΔE is the energy dif-
ference between the pair of electrons (with which the unpaired electron is associated) and 
the unpaired electron itself. This difference can be positive or negative, and consequently 
the principal values of the g-tensor can be shifted up or down from the free- electron value. 
It is, however, common that the shift is negative in stable free radicals, which can be under-
stood by the requirement that the free electron be somewhat shielded from the outside of 
the molecule or ion to ensure chemical stability.
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3.2.2  Hyperfine Splitting

The hyperfine interaction arises from the scalar magnetic coupling γeγnS·I between the 
magnetic moments of an unpaired electron and a nearby nucleus, as was described in 
Section 2.1.4. It results from the overlap of the wave functions and can be represented in 
the general form

 dv r
r r

I S r
I r S r I S8

3
3

,h f e n

2 2
5 3∫ ψ γ γ π δ( ) ( ) ( )( )= ⋅ +

⋅ ⋅
− ⋅











H �  (3.21)

where the first term of the integrand can be derived from the Dirac equation and is non-
zero for s-electrons (or when the electron wave function has s-component). The second and 
third terms, which arise from the dipolar coupling at distance r, is non-zero for electrons 
which are not in a pure s-state. The integration is over the electron coordinates. The expres-
sion is linear in Ix, Iy and Iz, and Sx, Sy and Sz. It can be diagonalized (by the appropriate 
choice of the principal axes) and represented in dyadic form by

 A I S A I S A I SS A Ih f x x x y y y z z z= ⋅ ⋅ ≡ + +H �  (3.22)

where

 A A AA i i j j k k.x y z= + +�  (3.23)

For pure s-electrons the hyperfine tensor is isotropic. In complicated molecules the orbital 
of an unpaired electron may be represented by a linear combination of atomic orbitals in 
s- and p-states; the resulting hyperfine tensor in high field is

 �
a
a
a

b

b

b

A  
0 0

0 0
0 0

0 0

0 0

0 0

,
1

2

3

=
















+



















 (3.24)

where b1+ b2 + b3 = 0 and a is the isotropic hyperfine constant.
If the isotropic hyperfine energy dominates the anisotropic one, the spin Hamiltonian of 

the unpaired electron can be approximated by3

 aB g S I S ,B
i

i i∑µ= ⋅ ⋅ + ⋅H �  (3.25)

where the sum is over the hyperfine nuclei in the molecule.
Although there is no general reason for the principal axes of the anisotropic g- and 

hyperfine tensors to coincide, they often do so in relatively simple molecules. We shall 
assume this, and for simplicity let us also take an isotropic g-tensor (or alternatively con-
sider an oriented single crystal) in the solid sample. The energy levels are then,

3 We suppose that the orbital angular momentum is strongly quenched.
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 E g B a m m ,B
i

i i S∑µ= +






 (3.26)

because (to a good approximation in high field) ℋ commutes with Sz and the eigenfunc-
tions can be taken as those of Sz with aiSz Iz only having diagonal matrix elements (in first 
order). The resulting energy level splitting can be best represented graphically; an example 
is shown in Figure 3.2. We note that for the case of N equivalent nuclei all ai are equal and 
yield the split of the ESR spectrum into 2NI + 1 lines. The intensity ratios for such allowed 
electron spin transitions ΔmS = ±1, Δmi = 0 are given by the binomial coefficients (obtained 
from Pascal’s triangle, for example). These ratios are valid for high temperatures, and fol-
low from the number of possible combinations of the states mi to get the same sum of all mi :

 
M M

k
MIntensity ratios : 1 : : ... : ... : :1,








where M = 2NI is the row of Pascal’s triangle and k its column; these intensity ratios are 
also called binomial coefficients.

When DNP changes significantly the polarization of the hyperfine nuclei, noticeable 
changes result in the intensity ratios of the hyperfine components in the ESR spectrum, if 
they are discernible in it. This will be discussed again in Chapters 4 and 5.

The number of equally split lines and their intensity ratios may allow to determine the 
nuclear spin I and the number of equivalent nuclei. This is often the case with protons, 
which produce large resolved hyperfine splittings owing to their large nuclear moment. 

Figure 3.2 Hyperfine splitting due to N equivalent spins I = ½ in the paramagnetic molecule with 
S = ½, illustrated here for N = 4. The population ratios of the hyperfine levels are equal at the 
high temperature where the g-factor anisotropy is averaged out by motion in the liquid sample. The 
hyperfine splitting can be seen in the EPR spectra at 0.3 T when the sample is sufficiently diluted, 
typically ≤ 1017 spins/cm3
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This facilitates the identification of the radicals produced by radiation damage in the target, 
if the experimental EPR spectrum can be determined at a temperature where the broad-
ening due to the anisotropy of the g- and hyperfine tensors is absent because of motional 
narrowing, but the radicals survive long enough for the measurement.

The identification of the radical may be further facilitated if the nuclear spin transitions 
Δmi = ±1, ΔmS = 0, can be observed by NMR. For S = ½ (which is nearly always the case in 
polarized targets) and one nucleus with I = ½, as illustrated in Figure 3.3A, the NMR line 
will be split in two equally intense components

 
�

B
am

n
s

0ω γ= +  (3.27)

separated by a/�  from each other, if �γn B0 ≫ a. For a ≫ �γn B0 the NMR is observed at 
frequencies

 
�
a B ;n 0ω γ= ±  (3.28)

however, this may be observed directly only at low field in some cases, but if the hyperfine 
coupling is anisotropic, the resulting large broadening requires the use of electron-nuclear 
double resonance (ENDOR) technique, which consists of observing the nuclear spin reso-
nance by its effect on the electron spin resonance (see, for example, Ref. [13] pp. 266–268). 
This is a powerful technique that allows to measure hyperfine couplings with a high accuracy.

The second term in Eq. 3.21 gives rise to the anisotropic hyperfine tensor

 �H

b

b

b

S b I S I
0 0

0 0

0 0

,
1

2

3

= ⋅ ⋅ = ⋅



















⋅  (3.29)

where averaging over the electron spatial wave function is performed. In complex mol-
ecules summing must again be performed over all nearby nuclei. If the isotropic hyper-
fine coupling is zero (purely non-s unpaired electron, which is rare), the complete spin 
Hamiltonian, neglecting g-anisotropy and taking B along z, becomes

 g B S B IB z n0 effµ γ= + ⋅H �  (3.30)

Figure 3.3 NMR line splitting for I = ½ due to hyperfine interaction with nearby electron spin S = ½. 
(a) �γnB0 ≫ a; (b) a ≫ �γnB0
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where

 � S b b bB i j k .n zeff 1 2 3γ ( )= + +  (3.31)

We may interpret this as an interaction of the nuclear magnetic moment with an internal 
field Beff, the magnitude of which depends on the projection Sz of the electron spin on the 
z-axis. The electron spin remains quantized along the main field, but the nuclear spin is 
quantized along the effective internal field Beff, the direction of which changes when the 
electron spin flips. The magnetic energy levels of the electron based on this hyperfine 
interaction are

 E m m g B b b b m m,  .S I B I S0 1 2 3µ( )( ) = + + +  (3.32)

The effect of Eq. 3.31 is to split the resonance of an electron with spin 1/2, to 2I + 1 com-
ponents for each nearby nucleus. This splitting depends on the orientation of the principal 
axis of the g-tensor with respect to the main field. A thorough discussion on the resulting 
complex behavior of the lineshape, including effects of the isotropic hyperfine tensor, can 
be found in Ref. [9], pp. 30–39.

In the case of axial symmetry often encountered (at least approximatively) in the case of 
more heavy nuclei such as 13C and 14N, the lineshape function for S = 1/2 coupled to one 
nucleus with spin I = 1/2 resembles Eq. 3.10, which resulted from g-factor anisotropy [9]:

 f
m ab b m a b

1

2 6 3
,

I

e

e I

2 2 2 2
ω

ω ω

ω ω
( )

( ) ( )
=

+
⋅

−

− − −
 (3.33)

when m a b a b( ) ( ) ( 2 )I e
2 2 2 2ω ω− ≤ − ≤ +  and f(ω) = 0 elsewhere. Here a is the isotropic 

hyperfine constant and b = b3 = –2b1 = –2b2, and ωe = ge  μB B0 /ℏ.
Again, if the nuclear polarization deviates significantly from zero, the electron lineshape 

function becomes asymmetric due to different populations of the levels mI.
The complete spin Hamiltonian in a high field can be now written as

 g B g S B I I A S ,B
j

j j j j∑µ γ( )= ⋅ ⋅ + ⋅ + ⋅ ⋅H � � �  (3.34)

neglecting the dipolar interactions among the electron spins themselves and with distant 
nuclear magnetic moments, and assuming no anisotropic hyperfine interaction. The sum-
mation is over the nuclei j, whose spins are Ij, gyromagnetic ratios γj and hyperfine tensors 
Aj. The NMR lines of randomly oriented diluted paramagnetic molecules, as calculated 
from Eq. 3.34, spread over many MHz for protons. The resulting NMR spectra will be 
discussed in Chapter 5.

Because the axes of quantization for Ij and S are not same, the axis of Ij changes when 
the electron spin flips. The state |mS,mI� before flip becomes |mS ± 1,mI′� after flip; with 
mI ≠ mI′. Such a transition represents the simultaneous flip of an electron and a nucleus. 
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However, these transitions do not in general polarize the hyperfine nuclei, because the new 
state represents an admixture of states mI′, referring to the new axis of quantization. This 
may be a handicap for DNP, since the resulting lower polarization for the hyperfine nuclei 
may cause a leakage of polarization for the matrix nuclei whose resonance is within the 
NMR line of the hyperfine nuclei.

For unpaired non-s electrons one might expect zero isotropic hyperfine interaction. 
This is, however, rarely entirely true because the unpaired electron may polarize the inner 
s-electrons in the molecule, causing isotropic splitting of the ESR line.

The anisotropic hyperfine interaction also often extends to the nuclei of the surrounding 
diamagnetic molecules. This is seen as a broadening of the hyperfine lines, which depends 
on the isotopic composition of the matrix molecules. If the matrix is a hydrocarbon glass, 
deuteration may lead to resolved hyperfine lines in the solid material.

The anisotropic hyperfine interaction as well as the g-tensor anisotropy average out in 
liquid samples of low viscosity, leaving a set of resolved lines due to the isotropic hyperfine 
interaction, shifted by the average of the g-factor of Eq. 3.19 and representing transitions 
between the energy levels

 E g B m a m m .av B S
j

j I S0 j∑µ= +  (3.35)

These resolved lines can also be seen in solid samples at such elevated temperatures that 
the radical molecule rotates much faster than the hyperfine frequency a/ℏ. This happens, 
for example, with ·NH2 in solid NH3 at 78 K temperature. Below 4 K the rotation becomes 
so slow that the resolution is lost. The only radicals which are known to display resolved 
hyperfine structure below 1 K are ·H and ·D. The doublet of ·H and triplet of ·D may be 
split, shifted or smeared further by interactions with the matrix or lattice, in particular due 
to the polarization of the inner shell electrons in the matrix molecules.

3.2.3 Dipolar Broadening of the EPR Line

DNP in solid target materials requires electron spin concentrations in the range of 1019–
1020 spins/cm3. The dipolar interaction of the magnetic dipole moments of the unpaired 
 electrons causes significant broadening of the ESR in solids at these concentrations. The 
dipolar interaction with nuclear spins also broadens the ESR line. The dipolar broadening 
is said to be homogeneous, because it results from fluctuating dipolar fields which average 
to zero over sufficiently long periods of time. We may thus imagine that the Larmor preces-
sion frequency of each electron spin fluctuates about a central value given by the average 
magnetic induction in the material.

The dipolar broadening sets the scale for two important parameters in polarized targets: 
the homogeneity of the static magnetic field over the target volume, and the range of micro-
wave frequencies within which the maximum DNP can be expected.

Ignoring first the nuclear spins, the electron spin Hamiltonian is the sum of the Zeeman 
and dipolar spin-spin Hamiltonians. These spins are separated from each other by distance 
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rjk, the vector rjk making an angle of θ with the steady external field B0, and the Hamiltonian 
is obtained by rewriting Eq. 2.14 with γj = gj μB/ℏ from Eq. 1.8:

 g B S
g g
r

S S S S
8

1 3cos 3 .
j

j B jz
B

j k

j k

jk
jk jz kz j ktot 0

0
2

3
2∑ ∑µ

µ µ
π

θ( )( )= + − − ⋅
≠

H  (3.36)

Here the scalar product of the spin vectors causes the simultaneous exchange of all the 
components of the two spins with identical g-factors (or when the g-factors are sufficiently 
near compared with the dipolar broadening of the resonance line). This exchange process 
conserves the energy and angular momentum in low-order perturbation theory and can be 
often neglected despite the fast cross-relaxation transitions and spin diffusion resulting 
from the term. In the case of a relatively large inhomogeneous broadening (also due to 
hyperfine interactions), the effect of the cross-relaxation in the linewidth is strongly sup-
pressed. The remaining terms give the spin pair energy spectra

 E E g B m m
g

r
mm

8
1 3cos ,B

B
1 2 0 1 2

0
2 2

12
3

2
1 2µ

µ µ

π
θ( )( )+ = + + −  (3.37)

where m1 and m2 are the magnetic quantum numbers, i.e. eigenvalues of the spin operators 
S1z and S2z. We note that this simple system has four energy levels, among which there are 
two first-order dipole transitions in high field. These transitions are split by the effect of the 
equal but opposite local dipole field projections along the z-axis, Bloc:

 DB E
g

g
r

2 3
2

3cos 1 .
B

B
loc

12
3

2

µ
µ θ( )= = −  (3.38)

Depending on the orientation θ of the dipole pair and on their distance r, the total dipolar 
energy of a spin in a large assembly of other spins varies, causing smooth broadening of the 
resonance. This broadening depends in magnitude on the spin concentrations, and in shape 
on the spin distribution. The calculation of the dipolar width involves numerical summing 
over the orientations and distances of a relatively large number of neighboring spins, which 
yields the shape function of the envelope curve describing the sum of the resonance lines 
of Eq. 3.21. The symmetric bell-shaped curve has a definite full width at half maximum 
(FWHM) in the case of unpolarized spins; this width cannot be calculated analytically, but 
it may be estimated from the root-mean-square (RMS) width which is given by the second 
moment of the resonance line:

 D D DB B
g

2 2 ,SS
B

FWHM RMS 2

µ
≅ = �  (3.39)

where the second moment of Eq. 2.110 for like spins S can be written in the form

 D
g

S S
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To approximate our amorphous polarized target materials with dissolved paramagnetic free 
radicals or complexes, we may use the result of Van Vleck for a powder of cubic crystals

 
g

S S
d4

1
5.1

,
SS

B2 0

2 4 4

2 6�

µ

π

µ
( )∆ =









 +  (3.41)

where the distance between the lattice points d can be approximated from d–3 = nS (the 
number density of the electronic spins). The often-used parameter ‘dipolar frequency’ is 
the square root of this and is for spin 1/2 and g = 2

 D
n

63.8 10
10 cm

rad/s.SS SS

S2 6
20 3= ∆ = ⋅  (3.41′)

The dipolar width can be written in the practical form

 B g S S n
4

1 4.5 .SS
B SFWHM

0µ
π

µ ( )∆ = + ⋅  (3.42)

The above result is valid for a spin system of like spins with low polarization and uniform 
distribution. If the polarization is nearly complete, the resonance line will be shifted to a 
higher frequency due to the magnetization of the polarized spins, by an amount comparable 
with the average magnetic induction

 B M g n .M B S0 0µ µ µ∆ = =  (3.43)

Comparing with Eq. 3.42 we note that the dipolar FWHM width at low polarization 
amounts to about 31% of the static dipolar induction at complete polarization. The width 
arises mostly from contributions of the randomly oriented nearest neighbor spins which 
do not sum to zero because there are only a few neighbors. At full polarization the sums 
of the dipolar fields are equal at all sites of a simple cubic lattice, and therefore the dipolar 
broadening theoretically should vanish. Electronic spins in polarized targets, however, are 
always diluted and therefore a substantial fraction of the width of Eq. 3.42 remains at high 
polarization.

The above expressions for the width of the resonance line are valid only when there is no 
inhomogeneous broadening of the EPR, a condition which is met in LMN single crystals 
doped with Nd3+ ions, for example. In glassy solids the anisotropies of the g-factor and of 
the hyperfine tensor cause broadening, which dominates the dipolar one, and therefore the 
above equations have to be modified so that they will represent broadening of the spins S 
by unlike spins S′, with the same density and magnetic moment. This is accomplished by 
multiplying the results simply by 2/3, as was described in Chapter 2. The result for the 
dipolar broadening of the resonance line is then

 B
n

4.8 10  
cm

 T uniform isotropic distribution .SS
SFWHM 24

3 ( )∆ = ⋅′
−

−  (3.44)
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For a random distribution of diluted spins the second moment becomes very large, because 
there may be spin pairs separated by a distance substantially smaller than the average 
distance. Using a Lorentzian lineshape model with cut-offs due to the closest possible 
approach of the diluted spins, Abragam [14] obtained the truncated Lorentzian FWHM

 2 3
.

2 2

4

1
2

2δ π
=

∆

∆













∆  (3.45)

which yields for diluted unlike spins S = 1/2 in a cubic lattice the width

 B g n
4

5.9 .SS B S
FWHM 0µ

π
µ∆ = ⋅′  (3.46)

If the distribution of the spins is completely random, a statistical theory gives the fully 
Lorentzian shape with
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�
 (3.47)

for like spins, and width (for unlike spins)

 B g n
4

5.1 .SS B S
FWHM 0µ

π
µ∆ = ⋅′  (3.48)

The agreement of Eqs. 3.46 and 3.48 is fairly good and yields, based on the latter, the 
FWHM

 B
n

9.4 10  
cm

 T random isotropic distribution .SS
SFWHM 24

3 ( )∆ = ⋅ −
−

 (3.49)

We note that the FWHM is nearly twice larger for the random isotropic distribution com-
pared with the uniform isotropic distribution.

For very large dilutions, with spin densities well below 1019 cm–3, the distribution is often 
random isotropic, and Eq. 3.49 describes well the dipolar broadening. At spin densities 
well above 1019 cm–3, the uniform distribution may be a much better description, in partic-
ular if the paramagnetic molecules are large, which prevents random close pairs. However, 
if the electron spin polarization is very high, the lineshape in this case again tends towards 
Lorentzian in the central part, because of the random distribution of the very dilute spins 
with opposite polarization.

The electron spin densities in polarized target materials are up to nS ≈ 1020 cm–3. The dipo-
lar widths of EPR in polarized targets therefore range up to 0.5 mT (= 5 G); the broadening 
due to anisotropic g-factor and hyperfine splitting always dominate this dipolar broad-
ening. The dipolar broadening is then seen as a rounding of the edges of the distribution 
function describing the effects of anisotropy, which will be discussed later in this chapter.
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The dipolar interaction of the electrons with nuclear spins also leads to the broadening 
of the electron resonance line. Because of their low precession frequency, the cross-relax-
ation transitions among the nuclear spins are so slow that the nuclear dipolar field can be 
regarded as static compared with the Larmor precession frequency of the electrons.

In the case where the method of moments is justified, the RMS dipolar width is calcu-
lated from the square root of the second moment of the resonance line. Approximating the 
nuclei as those of a powder of simple cubic crystals, the second moment is obtained from 
Eq. 3.41 by multiplying with 4/9 and changing the magnetic moment of the second spin 
species to that of the nucleus:

 g I I
d

4
9 4

1
5.1

.
IS I B

2 0
2

2 2 2
6

µ
π

γ µ ( )∆ =








 +  (3.50)

The FWHM linewidth becomes

 B
g

I I n2
4

 1 3.01IS
B

I I
FWHM 2 0

µ
µ
π

γ ( )∆ = 〈∆ 〉 = + ⋅
�

�  (3.51)

in the case of nuclear spins I with low polarization, in contact with electron spins S which 
can be thought to be so dilute that their own dipolar width is negligible; the electrons may 
be fully polarized, however. The approximation of a powder of simple cubic crystals is 
rather good for glassy materials where the distribution of the nuclear spins is rather uni-
form around the paramagnetic electrons and the orientations of their position vectors are 
random.

Choosing the canonical density of protons in frozen butanol target material, np = 
0.79 × 1023 cm–3, we obtain their contribution to the dipolar width and dipolar frequency of 
the electrons:

 B 0.58 mTI S
FWHM

p
∆ =  (3.52)

 D 51.0 10  rad/s,I S
6

p
= ⋅  (3.53)

which is seen to dominate the width due to the dipolar coupling among the electrons them-
selves if their concentration is below 1020 cm–3 and they are uniformly distributed. At lower 
concentration the broadening due to protons dominates, and when the protons get polarized 
during DNP, the electron line will get narrowed.

In the case of completely deuterated butanol, the contribution of the deuteron spins to 
the electron linewidth is

 B 0.178 mT,I S
FWHM

d
∆ =  (3.54)

 D 15.7 10  rad/s.I S
6

d
= ⋅  (3.55)

Other nuclei such as 13C and 17O contribute negligibly because of their low magnetic 
moment and concentration.
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The polarization of the electrons due to the low temperature and high field, and that of 
the nuclei due to high DNP, may reduce the above widths by as much as a factor of 1/2. The 
narrowing at high polarization, however, results in a lineshape which is closer to Lorentzian 
than Gaussian near the center of the line. Absorption at deviation larger than one FWHM 
from the center (for a narrow line) or from the edge (for a line inhomogeneously broadened 
by the anisotropy of the g-factor, for example) may thus be less sensitive to the polarization 
of the various spin species in the material.

Appendix A.6 describes a normalized lineshape function, which can be changed from 
Lorentzian to a shape close to Gaussian by the variation of one parameter. Such a function 
might be useful for the phenomenological description of simple narrow EPR lineshapes at 
high polarization.

The total RMS width due to the dipolar interactions with various spin species is obtained 
quite accurately by summing the second moments and taking the square root of the sum. 
The FWHM is close to one obtained from the second moments if all major contributions 
produce a shape close to a Gaussian lineshape, with a fourth moment about three times the 
square of the second moment. This condition is not very well satisfied for highly polarized 
spins, diluted spins and random arrays of spins, but the error in the procedure of using the 
root of the sum of squares of the individual contributions is not very significant in view 
of the need for the knowledge of this parameter. The total dipolar width is mainly needed 
for getting an idea of the scale in which the magnetic field homogeneity and microwave 
frequency must be optimized in order to obtain maximum DNP. It is also important for the 
cross-relaxation transitions, which play a vital role in DNP and nuclear spin relaxation.

In order to see how the criteria for the field homogeneity and microwave frequency 
range should be set, let us consider the shape of the absorption line for electrons with 
both homogeneous and inhomogeneous broadening. The inhomogeneous broadening, 
for simplicity, is assumed to be due to the anisotropy of the axially symmetric g-tensor 
described by Eq. 3.10, and the homogeneous broadening is due to dipolar interactions. The 
absorption line is the convolution of the two lineshapes, which yields the shape shown in 
Figure 3.4 featuring edges rounded by the dipolar broadening. On the low-frequency side, 
the rounding follows rather close the complementary error function (erfc), whereas on the 
high-frequency side it comes closer to the Gaussian shape. We need to know these rounding 
functions roughly because it is important to understand how the microwave power absorp-
tion varies as a function of frequency in the range where the target material is transparent 
to the microwave radiation. At the electron spin densities of interest for polarized targets, 
the material is almost perfectly black to the microwaves at the center of the absorption line, 
so that only a thin layer on the surface of the target then absorbs power. The penetration 
improves at the edges of the line until the material is sufficiently transparent and yields a 
fairly uniform transverse field distribution throughout the volume of the target.

The region of interest for DNP begins where the absorption function has dropped by 
about one order of magnitude from maximum. In this region the absorption drops steeply 
when going further away from the center of the line; one dipolar FWHM deviation further 
drops the absorption by about two orders of magnitude. It is clear then that field uniformity 
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Figure 3.4 Gaussian broadening of the ESR line due to axially symmetric g-tensor, shown in 
logarithmic scale to emphasize the fall of the absorption signal just outside the endpoints of the 
unbroadened spectrum
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must be much better than the dipolar FWHM, which is around 0.7 mT for polarized proton 
targets with paramagnetic center density of 1020 cm–3, and about 0.3 mT for a deuterated 
material with 0.5 × 1020 cm–3 spin density. In the latter case, the field uniformity should 
clearly be better than 0.03 mT if highly uniform polarization is required. For a field of 
2.5 T a relative uniformity of about 10–5 is therefore necessary if a high and homogeneous 
deuteron polarization is required. For proton targets the requirement is less critical, because 
the FWHM is twice larger, and because a variation of the spin temperature in the volume 
entails a much smaller variation on the proton polarization when it is already close to ±1.

The optimization of the microwave frequency and power, to be discussed in more detail 
in Chapters 4 and 10, is related both with the field uniformity and with the dipolar width 
of the spin system. If the magnetic induction over a small sample is perfectly homoge-
neous, absorption of the microwave power by the spin system varies by about two orders of 
magnitude within one FWHM. Changing the frequency by the equivalent of one FWHM, 
however, does not result in such a large power variation, because the transverse field is 
increased when the magnetic absorption decreases. Therefore, the speed of polarization is 
not very sensitive to the variation of the microwave frequency, as long as it does not exceed 
10–4, which might bring it beyond the cut-off frequency.
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118 Electron Paramagnetic Resonance and Relaxation

Because at high field the dipolar broadening does not depend on the steady field value, 
the requirements for the relative homogeneity of the field and the time stability of the field 
and the frequency are stricter at higher fields, as will be shown also in Chapters 4 and 11.

3.2.4 Exchange Narrowing

At high concentration, when the distance between molecules with unpaired electron is 
about 0.5 nm (concentration approaching 1022 spins/cm3), the electrons may exchange their 
positions due to the uncertainty principle. This leads to a narrowing effect somewhat sim-
ilar to the motional narrowing; however, the second moment of the line remains constant 
because the narrowing of the center of the line is associated with slight extension of the 
wings. The width at half maximum is reduced and the shape approaches to a Lorentzian 
rather than the Gaussian-like shape resulting from pure dipolar interactions.

The exchange Hamiltonian (in analogy to the dyadic notation used in Eqs. 3.5 and 3.23)

 �H S J Si ij jexch = ⋅ ⋅  (3.56)

can be thought to consist of isotropic and anisotropic parts. For like spins the resulting local 
field fluctuation has the rate | J |/h, which gives the reduction of the dipolar broadening. For 
unlike spins (different g-factor or hyperfine splitting, even because of their anisotropy), 
complicated effects may arise, varying from the broadening of the hyperfine lines to the 
fusion and sometimes to the narrowing of the hyperfine lines or g-anisotropy broadened line.

Electron spin concentrations above 1021 cm–3 tend to give poor results for DNP; the high-
est recorded optimum concentration is 1.6 × 1020 cm–3 in PD-Cr(V). The cause of this could 
be exchange effects in clusters of two or more paramagnetic molecules, which are also the 
supposed cause of increased nuclear spin-lattice relaxation [15], to be discussed in Section 
3.4. A magnetic transition (ferro- or antiferromagnetic) in larger clusters might be another 
cause of these. The optimization of the electron spin concentration will be discussed further 
in Chapter 7.

Radiolytic radicals are often formed in pairs with short distance. Such pairs have a large 
dipolar interaction in addition to the exchange term. No narrowing of resonance line is 
expected, because there is no fluctuating field from many dipoles [9].

3.3 Saturation of Electronic Spin System

The power absorbed from a transverse linearly polarized field 2B1 per unit volume of target 
material was calculated in Section 2.2.1; we shall rewrite Eq. 2.58 here:

 
�Q
V

B1
2

,0
1

1
2ωµ χ ω( )= ′′−  (3.57)

recalling that the linearly polarized field was composed of counter-rotating components 
with magnitude B1. Only the field that rotates in the same sense as the spins causes spin 
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transitions, while the other component is ‘sterile’. By expressing the absorption part of the 
complex susceptibility in the terms of the normalized lineshape function of Eq. 2.63, and 
by using relation 1.66 between the static susceptibility and the spin polarization, the power 
can be put in the form

 
Q
V

n S P f
4

,S e 0 1
2π ω ω ω( )=

�
�  (3.58)

where P0 is the electron polarization in equilibrium with the lattice. This can be further 
developed by using the transition probability of Eq. 1.58 for spin Se = 1/2, and by defining 
the dimensionless saturation function

 s W T f T
2

,Z Z1 1
2

1ω ω π ω ω( ) ( ) ( )= = ⋅  (3.59)

where T1Z is the Zeeman spin-lattice relaxation time (relaxation time of the angular momen-
tum or longitudinal magnetization). By inserting this, the power per unit volume reads, in 
the linear response approximation

 Q
V

n

T
P s

4
.S

Z1
0

ω
ω( )=

� �
 (3.60)

We see here that the power absorbed is linearly proportional to the spin density and polar-
ization, magnetic field strength, inverse relaxation time and the saturation function, which 
itself is proportional to the lineshape function.

When the strength of the transverse oscillating field is increased beyond the linear 
response region, the linear response theorem is no longer valid. The power absorbed by the 
spin system is then obtained by using the Provotorov equations, which yield for the spin 
susceptibility of Eq. 3.57 a different value given by Eq. 2.142. Using this and the saturation 
function defined above leads to

 
Q
V

n
T

P
s

s a D4 1 1 /
,S

Z1
0 2 2

ω ω

ω ( )
( )

( )
=

+ + ∆

� �
 (3.61)

where the usual definitions are taken for the angular frequency offset Δ and the dipolar 
frequency D, and a = T1D /T1Z = 1/3 as was stated in Section 2.2.4. We see here that addi-
tional requirements are needed in the case of long irradiation times for the linear response 
theorem to be valid: we must have �s 1ω( ) , and �s a / D 12 2ω( ) ∆  in order that the exper-
imental susceptibility would follow the lineshape function obtained in the linear response 
approximation.

The Provotorov saturation equations deviate from the phenomenological model of 
Bloembergen, Purcell and Pound [16] by the term s a D/2 2ω( ) ∆  in the denominator; this 
term follows from the inclusion of the dipolar interactions and dipolar temperature in the 
quantum statistical treatment of the problem.
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120 Electron Paramagnetic Resonance and Relaxation

The above power absorption 3.61 is valid in the limit of the high-temperature approx-
imation for a dipolar lineshape; these were the assumptions made by Provotorov when 
deriving the equations. There is no similar quantum statistical treatment for the case of 
high-electron polarization which applies for the polarized target operating conditions. 
Phenomenologically at least the following modifications can be suggested for the exten-
sion of Eq. 3.61 towards polarizations which do not satisfy the conditions of the high- 
temperature approximation:

(1) The dipolar frequency becomes smaller and depends both on polarization and on 
saturation.

(2) The dipolar relaxation time becomes longer because of smaller cross-relaxation rate; 
this rate scales with 1 – P0

2.
(3) The lineshape function changes from a broader near-Gaussian shape towards a nar-

rower truncated Lorentzian shape.
(4) At high spin density and polarization the effective field, the polarization and the mag-

netization have a large transverse component which adds on the external RF field; this 
amplifies the effective field and makes the response of the spin system increasingly 
non-linear, compared with the usual Provotorov equations.

The item 1 can be demonstrated in the central part of the NMR signal of protons which 
are highly polarized, by turning the microwave saturation of the electron spins on and off. 
The proton absorption signal gets narrower and higher when the electron spins are satu-
rated; this is a sudden change if b0 and/or B1 is large, in accordance with Eq. 2.198. When 
the microwave power is reduced, the proton resonance signal gets broader and lower in 
a slower time scale, measuring the parameter T1D of Eq. 2.198 alone. The demonstration 
can be made without signal averaging, if the electron spin density is high, and therefore its 
dipolar interaction with the proton spin system is large.

It would be tempting to add the above phenomenological features 1–4 by hand in Eq. 
3.61 in order to gain at least qualitative understanding of the low-temperature saturation 
problem. The usefulness of this approach, however, is questionable because the lineshape 
of the diluted paramagnetic system is not amenable to precise numeric calculations even 
in the high-temperature approximation. We therefore proceed to make some numeric esti-
mates directly with Eq. 3.61.

Let us assume electron spins 1/2 with g = 2 and density ne = 5 × 1019 cm–3 which give 
D = 60.2 Mrad/s taking into account broadening by electrons themselves, Eq. 3.41′, and 
by protons, Eq. 3.53. At 2.5 T field we have ω = 2π·70 GHz and take a = 3 and P0 ≈ 1. The 
spin-lattice relaxation time is T1Z = 38 ms for PD-Cr(V) at low temperatures and 2.5 T field. 
The magnetic power dissipation is then

 Q
V

q
s

s a D
0

1 1 /
,

2 2

�
�

( )
( ) ( )

( )
=

∆

+ ∆ + ∆
 (3.62)
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where

 q
n
T

P0
4

96 
mW
cm

.s

Z1
0 3

ω( ) = =�
�

 (3.63)

For the sake of a qualitative discussion, we assume that the lineshape is Gaussian defined 
by the dipolar width so that the saturation function is

 s
T

D
D s D

2 2
exp / 2 0 exp / 2 ,Z1

2
1 2 2 2 2

πω

π
( ) ( )( ) ( )∆ = −∆ = −∆  (3.64)

where
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T

D
0

2 2 5.0 10 s
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2
1 1

4 1

2π ω

π

ω( ) = =
⋅









−  (3.65)

In the high-temperature approximation, the power absorption as a function of fre-
quency deviation can then be plotted for different transverse field strengths which corre-
spond to different values of s(0); such plots are shown in Figure 3.5. We assume that the 
microwave power fed into the cavity is absorbed predominantly by non-resonant losses 
and that the spin system absorbs 96 mW/cm3 at exact resonance for s(0) = ∞, as in the 

Figure 3.5 Magnetic power absorption due to saturation of an ESR line with Gaussian broadening, 
with a = 3, P0 ≈ 1 and T1Z = 38 ms. For comparison we show the model of Bloembergen, Purcell and 
Pound labelled BPP [16]
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122 Electron Paramagnetic Resonance and Relaxation

above example for PD-Cr(V) at 2.5 T field. We see that the saturation function s(Δ) var-
ies by a factor 500 when the frequency offset varies from 4D to 2D. This means that the 
microwave power absorption varies by almost the same factor in this frequency range, 
if s(0) ≤ 10.

The above can be used for evaluating the uniformity of the microwave power absorption 
in a real magnetic field, which is slightly non-uniform. If the magnetic field varies within 
the volume of the material by an amount equivalent to D and the average frequency offset 
is 3D, the power absorption in the material varies by a factor of about 30 when the trans-
verse field strength corresponds to s(0) ≤ 10. It is evident from this that the relative field 
uniformity must be much better than D/ω0 because uniform power absorption is required 
for a uniform polarization.

It is clear that at low temperature and high polarization there must be some quantitative 
changes in the above parameters, although the qualitative conclusions may be valid as such. 
The dipolar widths become smaller and the lineshape becomes narrower in the central part; 
these suggest that the variation of the saturation becomes a steeper function of frequency. 
The dipolar relaxation time becomes longer and therefore the power absorption becomes 
smaller, particularly for large values of s(Δ). It is therefore evident that at high polarization 
the magnetic field must be even more uniform, and that the optimum frequency at which 
DNP is made becomes restricted to a narrower range. The above considerations will be 
used for estimating the requirements of the magnetic field uniformity for polarized targets 
in Chapter 9.

The saturation of an inhomogeneously broadened EPR line must include a treatment of 
the cross-relaxation between spin packages with different Larmor frequencies. In Chapter 
2 we discussed the cross-relaxation between two distinct lines under saturation of one 
of them. This treatment, however, cannot be extended to a continuous spectrum of lines 
without complications. Although these complications could be numerically handled, it 
would be difficult to judge the quality of the outcome. Therefore, we prefer to resort to a 
phenomenological approach guided by Provotorov’s result only for the line with dipolar 
broadening.

3.4 Relaxation of Electron Spins

3.4.1 Electron Spin-Lattice Relaxation

The success of DNP using paramagnetic impurity spins depends critically on their spin- 
lattice and spin-spin relaxation, in addition to the width and shape of the resonance line. 
The Zeeman and dipolar spin-lattice relaxation times T1Z and T1D, together with the spin 
density nS, determine the power absorbed by the material under saturating microwave irra-
diation, as was discussed in Section 3.3. The cross-relaxation of the electron spins deter-
mines the cooling rate of the nuclear spins. The same electron spins also cause the nuclear 
spin-lattice relaxation, unless some unwanted impurities cause faster relaxations. In good 
target materials the unwanted impurities must be reduced to a minimum.
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In high field the spin-lattice relaxation establishes the thermal equilibrium between the 
Zeeman energy reservoir �ℋZ� = ℏγeB0 �Iz� and the lattice, by interchange of energy. In 
steady state the interchange of energy results in equal flow of energy to and from each 
magnetic level. Considering spin 1/2 and denoting the upper and lower levels by subscripts 
+ and –, respectively, this detailed balance is written N+W+– = N–W– +, or

 N
N

W
W

.=−

+

+−

−+

 (3.66)

The medium where the electron spins are bound can be represented by a continuum of 
energy levels related with the excitations of the medium. The excitations which couple 
with the electron spins are phonons, discussed in Section 2.4.5, which obey Bose–Einstein 
statistics so that their number density is from Eqs. 2.157 and 2.171
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which is the product of the phonon density of states Σ (ω) in the frequency interval Δω, and 
their population number pph. We recall that
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The transition probabilities among the magnetic levels are those of stimulated emission 
and absorption of phonons given by
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where w is a constant which depends on the coupling between the lattice and the effective 
spin of the electron, to be discussed below. These give immediately
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 (3.70)

The levels are therefore populated according to the Boltzmann statistics, which is the con-
sequence of the Bose–Einstein statistics of the phonon system. This can be easily gen-
eralized to any number of magnetic levels as long as the number is finite and their total 
spectrum is narrow in comparison with the spectrum of phonons.

At high temperatures the approach of the population ratio towards thermal equilibrium 
with lattice can be described often by a single time constant T1, whereas at low tempera-
tures it is the inverse spin temperature which approaches its equilibrium value exponen-
tially, as was discussed in Section 2.4.5. The population ratio or polarization therefore 
is not expected to change exponentially during relaxation at low temperatures, but the 
deviation is quite small and can be only seen as a lengthening of the time constant close to 
thermal equilibrium with lattice. The deviation is therefore difficult to observe.
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124 Electron Paramagnetic Resonance and Relaxation

The spin-lattice interaction generally takes place via the spin-orbit coupling, the strength 
of which is modulated by the lattice phonons causing changes in the electric field con-
figuration of the electron orbital. The paramagnetic spins used in polarized targets have 
small deviations only from the g = 2.0023 free-electron value; the g-factor can therefore be 
modulated only slightly, resulting in a relatively small relaxation rate. The relaxation rates 
due to the single-phonon (direct) process and the two-phonon Raman process were derived 
in Chapter 2. An additional two-phonon process is also possible where the paramagnetic 
ion or molecule is excited to a low-lying orbital level by the absorption of the first phonon, 
followed by the emission of the second phonon which brings the ion or molecule to the 
ground-state orbital level with different magnetic state.

In order to obtain order-of-magnitude estimates for the matrix elements Fn of the lattice 
operators, Orbach [17, 18] expanded the lattice electric potential in the terms of the powers 
of the stress ε induced by the phonons, by

 V V V V0 1 2 2ε ε= + + +( ) ( ) ( ) �  (3.71)

where the first term is the static potential giving rise to the static crystal field, and the fol-
lowing terms represent the additional potential generated by the strain, in increasing order 
of the perturbing stress
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phε
ρ ω

ρ
=  (3.72)

Here the matrices V(n) are of the same order of magnitude, and rapid convergence is obtained 
at low temperatures because of the smallness of ε.

Direct Process
In the case of electron spin S = 1/2, symmetry under time reversal demands that the matrix 
elements of an electric potential V (1) vanish in zero magnetic field [19]. However, the pres-
ence of an external magnetic field produces admixtures of excited states of order � /Dω  
where Δ is a splitting of the crystal field. This yields the rough estimate
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 (3.73)

where �/∆  is of the order 3 × 1011 s for rare-earth ions [8]. Substituting this in Eq. 2.181 
yields
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In this expression the term
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 (3.75)

must be understood as a very roughly estimated constant. Its definition is particularly 
unclear in glassy materials where the meaning of the crystal field is vague, because the 
wave function of the unpaired electron may be overlapping with a large fraction of the 
paramagnetic molecule. The constant is therefore best determined from experimental data, 
provided that the data shows the characteristic features of the direct process which are the 
frequency (and field) dependence ω5, and absence of temperature dependence in the region 
where the coth-term approaches unity.

It should be noted that for spin higher than 1/2 (non-Kramers doublet) the magnetic 
states are not symmetric under time reversal, because the ground states generated by the 
static crystal potential may have different orbital states between which the matrix elements 
of V(1) are non-zero and independent of frequency [8]. In this case, which is uncommon in 
polarized targets, the relaxation rate varies as ω3.

It is notable that in the relaxation due to the direct process the temperature dependence 
vanishes at very low temperatures, where relaxation becomes dominated by the sponta-
neous emission of phonons. All other known processes due to phonons, to be discussed 
below, have a fairly steep temperature dependence which makes their rate drop below that 
of the direct process at high field.

Another point to be noted is that the term of Eq. 3.75, the static part of the electric 
potential in the lattice, can be strongly influenced by the static stress in the lattice created 
by radiation damage, which then can control the electron spin lattice relaxation time due 
to the direct process. This may explain why the radiation damage first improves DNP in 
deuterated ammonia targets after annealing [20].

Raman Processes
Two types of Raman processes can be distinguished [8]; these are called first- and 
 second-order processes depending on whether the phonons are real (of frequency within 
the phonon spectrum) or virtual (of frequency above the phonon spectrum).

The matrix elements of V (2) also vanish between the magnetic states of spin S = 1/2 
because of symmetry under time reversal but, as above, the symmetry is removed by the 
application of a magnetic field. The matrix element of the lattice operator F2 is analogously 
estimated roughly as
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 (3.76)

where ′∆  is the energy of the excited intermediate state which is not necessarily the same 
as Δ. The relaxation rate for the first-order Raman process, using Eqs. 2.188 and 2.190, can 
now be written as
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which exhibits strong temperature dependence roughly proportional to T 7 and moderate 
field dependence roughly proportional to B 2.

In the second type process, the phonons are virtual and may therefore have frequen-
cies beyond the Debye cut-off. The matrix element of the lattice operator F2 is due to an 
interference term between the absorbed and emitted waves and involves in first order the 
phonon frequency; it is estimated roughly as
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The integration over the phonon spectrum analogously to Eq. 2.188 yields
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with XD and x0 defined in Eq. 2.187. At low temperatures the integral can be extended to 
infinity and it converges to
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where the integral has the numeric value
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and the function P8 ( x0 ) is described by the polynomial

 P x x x x1 0.3743 5.3881 10 3.0124 108 0 0
2
0
2 3

0
3( ) ≅ + + ⋅ + ⋅− −  (3.82)

to an accuracy better than 1% for x0 ≤ 10, as shown in Figure 3.6.
Similar to the direct process, in the Raman processes the static lattice stress may strongly 

influence the relaxation rates via terms 3.76 and 3.78.
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Orbach Process
The Orbach relaxation process [17, 18] involves two virtual phonons which are within the 
available spectrum but not necessarily thermally populated. The first phonon is absorbed 
exciting the ion or molecule to the energy Δ above the magnetic levels whose splitting is 
much smaller. The system subsequently decays, by emitting a second phonon, back to the 
ground state with roughly equal probability of ending to any of the two magnetic levels 
(supposing spin 1/2). The resulting electron spin-lattice relaxation rate is [8]
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This rate has no field dependence and a steep temperature dependence at such low tem-
peratures that Δ /kT ≫ 1. In polarized targets this rate is therefore visible only if Δ /k < 5 K.

A variant called Orbac–Aminov process is also independent of magnetic field; this has 
an additional term that is temperature independent when �ωe /kT ≫ 1 [21]. All Orbach 
processes are also susceptible to be influenced by the static stress of the lattice due to its 
effect on V(1).

Figure 3.6 Polynomial fit to the temperature and field dependence of the integral of Eq. 3.79 
approximated by Eq. 3.80
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Other Spin-Lattice Relaxation Mechanisms
Blume and Orbach [22] describe a low-temperature mechanism which may also dominate 
the direct process at low fields. In their case the ground state consists of multiplets with 
splittings of the same order as the magnetic level spacing. In two-phonon processes the 
splitting can then be neglected with respect to the phonon energies, allowing to approxi-
mate the relaxation rate by
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This rate could also dominate the rate due to the direct process at low field and moderately 
low temperatures.

Waugh and Slichter [23] have suggested that a slight change in the electron spin quanti-
zation axis, due to the flip of a hyperfine nucleus, could give the required degree of freedom 
for the relaxation of the nuclear spins by paramagnetic molecules at very low temperatures, 
where the probability of electron spin flips becomes extremely small. At low field or at low 
effective field, this could also entail electron spin relaxation.

Experimental Spin-Lattice Relaxation Times
Very few direct electron spin-lattice relaxation time measurements of polarized target 
materials have been made. The only systematic study is that of Ruby, Benoit and Jeffries 
[24] who measured at 0.25 T field and 0.3 K to 4.3 K temperatures the spin-lattice relax-
ation time of Nd3+ in LMN in several samples with concentrations from 1% to 5%. No con-
centration dependence was observed, in agreement with the theoretical models discussed 
above. The relaxation rate was observed to obey
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in good agreement with the rates due to the direct and Orbach processes. de Boer [25] 
measured, using direct pulse-recovery method, the relaxation times of PD-Cr(V) and por-
phyrexide in PD and butanol-water, respectively, at 2.5 T field and 0.5 K temperature with 
the results

 T Cr(V) 38 2 ms;e1 ( ) = ±  (3.86)

 T (PX) 3.3 ms.e1 =  (3.87)

These values correspond to the direct process which can be expected to dominate in these 
conditions. This has been verified by measuring the temperature and field dependences of 
the nuclear spin lattice relaxation, to be discussed in Chapter 5.
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Indirect evidence from proton spin-lattice relaxation measurements in PD-Cr(V) sug-
gests that at low fields and temperatures the direct process may be dominated by a relax-
ation rate which is field independent and has the temperature dependence
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1
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/≈ −∆  (3.88)

where Δ /k = 0.5 K and d is a constant. A similar term was found by Harris and Yngvesson 
[26] in the electron spin relaxation in iridium salts; they could interpret it by a two-phonon 
process causing transitions between the magnetic levels of exchange-coupled clusters. This 
clearly requires a rather high spin concentration, unless there is a mechanism of obtaining 
clustering due to a non-uniform distribution of the paramagnetic molecules. Such clus-
tering could take place if the material is not a good glass-former, for example. This point 
will be discussed in Chapters 5 and 7. Other measurements of proton spin relaxation as a 
function of Cr(V) concentration also suggest the occurrence of clusters [27] with exchange 
coupling at high concentration.

The irradiation of materials sometimes tends to yield pairs of paramagnetic centers, 
whose exchange coupling produces effects in the lineshape and relaxation; this was dis-
cussed in the Second Polarized target Workshop at Rutherford Laboratory [28, 29].

Electron spin-lattice relaxation of two trityl radicals, d24-OX063 and Finland trityl, 
were studied under conditions relevant to their use in dissolution DNP [30]. The depen-
dence of relaxation kinetics on temperature up to 100 K and on concentration up to 60 mM 
was obtained at X- and W-bands (0.35 T and 3.5 T fields, respectively). The relaxation is 
quite similar at both bands and for both trityl radicals. At concentrations typical for DNP, 
relaxation is mediated by excitation transfer and spin-diffusion to fast-relaxing centers 
identified as clusters of 3 trityl radical molecules that spontaneously form in the frozen 
samples. These centers relax by an Orbach–Aminov mechanism and determine the relax-
ation, saturation and electron spin dynamics during DNP.

The measurement of the electron spin-lattice relaxation time in situ in a polarized target 
cannot be made by the usual saturation technique, because of the poor signal-to-noise ratio 
with the large untuned cavity and large target. Furthermore, it is difficult to saturate the 
resonance significantly because of the large amount of power required, and because of the 
large electron concentration, the saturation in the material tends to be inhomogeneous in 
the center of the resonance. The best in situ technique, although rarely used so far, is the 
nucleus electron double resonance (NEDOR) method (see Ref. [31] p. 402), which will be 
discussed in Section 3.5.2.

Indirect determinations of electron spin-lattice relaxation times are based on the experi-
mental temperature and field dependences of nuclear spin lattice relaxation, which always 
proceeds predominantly via the electron spin system at low temperatures. This will be 
discussed in Chapter 5.
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3.4.2 Phonon Bottleneck

In some crystalline materials the phonon system may not be able to transmit the Zeeman 
heat due to spin relaxation at the speed of the relaxation rate from the spins to the phonons. 
In this case the phonon system is not in internal thermal equilibrium, and the relaxation 
rate will become dependent on the heat transmission capability of the phonon system. This 
is characterized by a strongly non-exponential relaxation, demonstrated by the phonon 
avalanche effect [32]. Here the electron spin population is first inverted by adiabatic fast 
passage. Immediately after the passage phonons are emitted spontaneously if hv > kTL. 
These heat up the phonon ‘bath’ by increasing the phonon density at frequency v above 
their initial thermal density. This, in turn, increases the rate of the phonon emission by the 
process of induced emission. These cumulate and result in a ‘phonon avalanche’ which can 
be detected even directly, in addition to the observation of the anomalous relaxation of the 
electron spins.

Phonon bottleneck effects are also seen in the grain-size dependence of relaxation [33], 
because the phonon relaxation time depends on the crystal size. The bottleneck can best 
be observed in fairly faultless single crystals or large crystallites where there exist ballistic 
phonons. These are long-wavelength phonons which are predominantly scattered by the 
walls of the crystal, so that their decay time becomes

 
d
v

,ph
a

τ ≅  (3.89)

where d is the characteristic size of the crystal and va is the acoustic speed. This follows 
from the fact that the phonon frequency may only be converted by inelastic wall collisions. 
For the ballistic phonons the elastic wall collisions are more frequent than the inelastic 
ones, so that Eq. 3.57 must be then regarded as a lower limit for the phonon decay time 
constant. The ballistic phonons, furthermore, have a large acoustic mismatch with the 
helium coolant, resulting in their large probability of reflection and therefore in the Kapitza 
thermal boundary resistance, which will be discussed in Chapter 8.

Ballistic phonon effects are usually seen only below 20 K temperature, because pho-
nons with energy higher that kB·(20 K) undergo inelastic collisions with other phonons. 
Furthermore, above 20 K the dominant phonon wavelength is so short that the wall effects 
play a minor part in the phonon decay and thermalization, and also the Kapitza resistance is 
dominated by other effects which limit the heat transfer through the solid-helium boundary.

Let us consider a system of N electron spins S = 1/2 in a high field so that the magnetic 
levels are populated in thermal equilibrium with the lattice at temperature TL by numbers 
Na and Nb . These numbers are determined by the equilibrium phonon distribution function 
3.67 denoted here by p0 so that
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If this equilibrium is perturbed so that the level populations become na and nb, with 
na + nb = Na + Nb = N, the microscopic differential equations which determine the approach 
back to equilibrium are [8]

 n n B n p n p 1 ,a b a ph b phω ( )( )− = + = ′Σ − +



� �  (3.91)

 �p p p B n p n p1
1 ,ph

ph
ph a ph b ph0τ

ω( ) ( )( )= − ′Σ − +



  (3.92)

where pph is the instantaneous phonon distribution function which yields the correct ratio of 
the probability of phonon emission of a photon to that of the absorption of a phonon by the 
spin system as (  pph + 1)/pph . The rate constant B′ [8] is related to the electron spin lattice 
relaxation time without phonon bottleneck by

 B p2 1 1
ph

e1

ω
τ( )( )′Σ + =  (3.93)

and
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is the number of phonon modes per unit volume, within the frequency spectrum of the elec-
tron spin resonance. The rate equations can be simplified by defining the variables
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which yields the non-linear equations

 x x xy1 1 ,
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is the ratio of the heat capacity of the spin system to that of the part of the phonons which 
are resonant with the spin system.

Equations 3.96 and 3.97 have been discussed by Faughnan and Strandberg [34]. The 
recovery of the electron spin polarization after a microwave pulse, for example, is initially 
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rapid until the phonons are heated up to the electron spin temperature. The approach to this 
happens according to the rate equation

 P P P
P P

1
1 /

,e
e

e

1

0

0τ σ
= − −

+
�  (3.99)
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and τb is defined as the time constant by which the spin and phonon systems then evolve 
together at a slower speed, approaching

 b1 .b e ph1τ τ τ( )= + +  (3.101)

At low temperatures where b becomes large the term bτph may dominate the relaxation time 
due to the direct process. The effective relaxation rate is then approximately
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The phonon bottleneck does not influence the Raman process directly because the phonons 
generated in the relaxation process cover a wide spectrum. However, if the direct process 
happens in parallel and if there is inelastic phonon scattering which converts the nar-
row-band phonons into the wide spectrum, the Raman relaxation may also be influenced 
by the non-thermal phonons even if the direct process does not dominate the relaxation 
rate.

The phonon bottleneck has consequences in DNP and nuclear spin lattice relaxation; 
these will be discussed in Chapters 4 and 5. The strength of the phonon bottleneck increases 
with decreasing phonon heat capacity and increasing heat capacity of the spins. It is there-
fore stronger in the conditions which are favorable for obtaining high nuclear polarization 
by DNP, that is high field and low temperature. The strength σ also increases with the 
Debye temperature ΘD, which is typically high for good and hard crystals, whereas soft 
materials such as organic glasses have a low ΘD. Furthermore, a high electron spin concen-
tration increases the strength of the phonon bottleneck.

The stationary saturation of EPR in dilute paramagnets at helium temperatures has been 
described by the spin temperature model by Kochelaev [35], while taking into account the 
phonon bottleneck. This explains the results obtained experimentally in crystalline materi-
als; the model has not been applied to glassy materials, where ballistic phonons may have 
a short mean free path.

Microwave frequency modulation during DNP might alleviate the adverse effects of the 
phonon bottleneck, because a wider range of the phonon frequencies will be available for 
the direct process; this will be also discussed in Chapter 4.
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3.4.3 Cross-Relaxation

With cross-relaxation we mean transitions where two nearby spins with opposite orien-
tations undergo a simultaneous transition so that angular momentum is conserved. In the 
case of spin 1/2 this exchanges the orientations of the spins, and for higher spin the cross- 
relaxation transitions take place so that Δ(m1 + m2) = 0. With identical spins these transi-
tions conserve both energy and angular momentum and they are therefore quite fast. The 
origin of these is the term B in Eq. 2.11b of the two-spin dipolar Hamiltonian; this term 
is therefore called the ‘flip-flop’ term. These flip-flops enable the relaxation of the dipolar 
energy and the establishment of the dipolar temperature, which in equilibrium is equal to 
the Zeeman temperature. Under saturation these temperatures are given by the Provotorov 
equations in the rotating frame, where they are close to each other if the spin-lattice relax-
ation is not too fast. The cross-relaxation is therefore very important for nuclear polariza-
tion, which uses the cooling of the electron dipolar temperature as a principal mechanism.

In Chapter 2 we reviewed the formal quantum statistical theory of the cross-relaxation 
between two spin species whose Larmor frequencies are close to each other but whose 
absorption spectra have no significant overlap. In the rather complicated dynamic equa-
tions there appears a long time constant which determines the rate of approach of the 
Zeeman temperatures of the two species to a common equilibrium temperature. This time 
constant is close to
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where the terms appearing under the trace are the dipolar terms B of Eq. 2.11b
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transformed to the rotating frame. These are the flip-flop terms causing cross-relaxation. 
The dipolar temperature of the spin system approaches equilibrium, even in the absence of 
an RF field, at a faster rate
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where ε is roughly the inverse of the square of the total dipolar energy, and δ = 1 when both 
spins are 1/2.

These equations are valid under strong saturation, but they are derived under the assump-
tion of a high temperature. The time constants have not been evaluated in a more explicit 
form, and therefore we shall also discuss a more phenomenological approach for estimating  
the cross-relaxation rate in spin systems, due to Abragam [14].
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We are interested first in the rate Wff of the flip-flop transitions per spin in an electronic 
system with only one spin species so that all electrons have the same Larmor frequency; 
their linewidth is given by a normalized lineshape function f(ω), which has the second 
moment of Eq. 3.41′ and roughly Gaussian shape so that
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 (3.107)

The oscillating component of the dipolar field arising from the term B has the mean 
square value
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which may be assumed to be the effective RF field which causes the flip-flop transitions 
at the rate
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if the frequency and amplitude of the field would not fluctuate.
Equation 3.109 ignores the fact the frequency ω1 fluctuates about the Larmor frequency 

with the same spread as the dipolar lineshape function. This requires that the normalized 
lineshape be convoluted by itself in evaluating the flip-flop rate, and leads to a rate which 
is about 10 times lower for a powder of cubic crystals [14]:
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which is based on the approximation of the lineshape function by a Gaussian. Using the 
linewidth of Eq. 3.49 with spin density of 1019 cm–3 we find the flip-flop rate of about 
15 kHz for the electrons with g-factor 2.

For unlike spins S1 and S2 the overlap of the frequency spectra of the dipolar field of 
species 1 and the absorption of species 2 reduces the above rate by
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for Gaussian shapes [14]. This lowers the mutual flip-flop rate considerably if the Larmor 
frequencies are separated by more than the sum of the linewidths of the two species. There 
are, however, flip-flop processes where an even number of spins undergo a simultaneous 
transition so that the change in the total Zeeman energy is approximately conserved, and 
the small difference is compensated by a change in the dipolar energy. This may increase 
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the flip-flop rate by several orders of magnitude, and it has been observed with nuclear 
spins.

An inhomogeneously broadened electron spin resonance line is described by Abragam 
and Borghini [36] as an assembly of ‘spin packets’ with distinct Larmor frequencies and 
dipolar widths estimated by the unlike spin approximation. This makes a continuum of 
frequencies among which the flip-flop processes produce spectral diffusion, when only one 
part of the spectrum is perturbed by RF saturation. Because the dipolar width of the spin 
packets depends linearly on the spin density, the cross-relaxation rate can be also expected 
to increase with the spin density, probably even faster than linearly. The number density of 
the spins therefore controls the dynamic behavior of the spin system under RF saturation, 
changing from inhomogeneous to homogeneous behavior when the density varies from a 
certain lower limit to an upper limit. Evidence from polarized target materials where a large 
variation of density is possible, such as PD-Cr(V), suggests that in this material at 2.5 T 
field the lower limit is around 1018 spins/cm3, and the higher limit is about 1020 spins/cm3. 
The spread of Larmor frequencies in this case is about 350 MHz and the dipolar frequen-
cies due to the electrons themselves are
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which gives 2π·0.1 MHz and 2π·10 MHz, for the lower and upper limits, respectively. The 
contribution of the nuclear spins is 8.1 MHz for protons in normal butanol, and 2.5 MHz for 
fully deuterated butanol; these dominate the dipolar width in the lower range of concentra-
tions. The nuclear spins are therefore expected to play an important role in the cross-relax-
ation of electrons at high field.

As the rate at which the dipolar temperature is established in the spin system depends on 
the cross-relaxation rate, the spin density can control the relative importance of the mech-
anisms which contribute in the DNP. This will be discussed in more detail in Chapter 4.

3.5 EPR Spectroscopy

3.5.1 EPR Spectroscopy in Liquid and Solid State

X-Band EPR Spectrometer
The X-band4 EPR spectrometer consists of a TE102 single-mode cavity, iris coupled to an 
X-band waveguide in a uniform field of an electromagnet with an H-yoke. The frequency 
of operation is usually 9 GHz to 10 GHz and the field can be swept around the value at or 
above 0.3 T. The microwaves are produced by a klystron or Gunn diode source feeding the 
microwave bridge followed by a Schottky diode detector. Derivative absorption spectra 
detected by the signal of the diode are recorded by modulating the magnetic field using a 
modulation coil set while scanning the main power supply of the magnet. The modulation 

4 See Appendix A.8 for standard microwave frequency band definitions.
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frequency and amplitude, and the field scan rate can be adjusted for the type of material; 
these parameters control the resolution of amplitude and linewidth under the various situ-
ations resulting from the sample properties [12]. The derivative signals can be integrated 
once or twice to obtain the lineshape and/or its integral. The details of the technique of EPR 
spectroscopy are beyond the scope of this book, and we therefore describe here only the 
applications relevant to polarized targets.

EPR Spectrum
In liquid or gaseous state the linear and rotational motion of the molecules causes averag-
ing of the anisotropies in the g-shift and hyperfine splittings, and dipolar fields may also 
average out. This allows high-resolution studies of the isotropic part of the hyperfine struc-
ture, provided that the radical life is long enough at the temperature required. The hyperfine 
splitting constants have been measured usually in this way.

Light radical molecules may also rotate in the solid matrix even below 4 K tempera-
ture; this accounts for the possibility of resolving the hyperfine structure of radicals such 
as ·NH2 in polycrystalline NH3 at liquid nitrogen temperature, when the radical concentra-
tion is low enough.

In polarized targets the desired electron spin concentration is usually above 1019 cm−3 
at which dipolar broadening makes the resolution of the hyperfine lines impossible; EPR 
studies and radical identification then require dilution of the liquid substance. The response 
of the EPR spectrometer also becomes non-linear in this range of concentrations, so that 
the signal size is not a good measure of the concentration. EPR spectra of diluted ethane-
diol (ED)-Cr(V) are shown in Figure 3.7; the first shows 2NI + 1 = 9 hyperfine lines due 

Figure 3.7 EPR derivative spectra of diluted ED-Cr(V) complexes; (a) normal ED, (b) partially 
deuterated ED (with the OH radicals undeuterated)
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to eight equivalent protons, with intensity ratios 1:8:28:56:70:56:28:8:1 (note that the first 
and last lines are not resolved in the vertical scale of the figure). These lines are separated 
by 0.03 mT. The second spectrum is that of partially deuterated ED-Cr(V), where hyperfine 
structure is not resolved because of the much smaller splitting by the 17 lines due to the 
hyperfine coupled deuterons. When the spectra are taken with a wider field scan, four weak 
lines separated by 1.7 mT are seen; these are due to the hyperfine interaction of the electron 
with 53Cr nuclei whose spin is 3/2 and natural abundance 9.55%. It is therefore clear that 
the unpaired electron wave function is concentrated on the Cr nucleus and it spills only 
slightly onto the surrounding protons of the molecule.

The undiluted Cr(V) complexes in PD and ED, for example, exhibit one broad line at 
room temperature at concentrations above 1019 cm–3. The width of the line depends on the 
concentration; this feature can be used for its determination in such materials. Glättli [37] 
obtained for ED-Cr(V) results, which can be approximately expressed as
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where ΔH is the separation of the peaks of the derivative spectrum at 3 kOe (Oe = 10–4 A/m).  
de Boer [15] similarly obtained for PD-Cr(V)
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These are plotted in Figure 3.8. The scale in both cases was determined by diluting both 
samples sufficiently and comparing the signal size with that of a known solution of DPPH.

The frequency in an EPR spectrometer is accurately measured, but the field cannot be 
known so precisely. The mean g-factor gav is therefore measured by comparing with a 
standard sample such as DPPH (g = 2.0036), diphenyl nitrogen oxide (g = 2.0065), Mn2+ 
ions in magnesium oxide (g = 2.0023) or Cr2O3·4H2O (g = 1.95). The standard sample thus 
calibrates the field at one point. For a higher accuracy two standards are used, because the 
field of an iron-core magnet is not accurately proportional to the current in the coil.

Relaxation Time Measurement
The spin lattice relaxation time of the paramagnetic electrons is important for the DNP and 
experimental values are needed at 1 K and in the magnetic field of operation, usually 2.5 or 
5 T; this will be discussed in detail in Chapter 4. The relaxation times obtained by the EPR 
spectrometer operating at RT or 78 K cannot be extrapolated to low temperatures.

In solid samples at low temperatures, the relaxation times can be determined from the 
measured saturation curves, which were discussed in Section 3.3. For broad lines the 
spin-lattice relaxation time T1 can be determined from the dependence of the signal height 
on the saturation constant. A transmission-type saturation recovery measurement in situ 
was described by de Boer [38]; this requires a fast ferrite modulator and yields direct 
measurement of the recovery of the absorption part of the susceptibility. For lines with 
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dominant dipolar broadening, the dipolar relaxation time T1D can also be determined from 
the dependence of the lineshape on the saturation constant, as was also discussed above. 
Furthermore, the lineshape in a solid sample allows to estimate the anisotropies of the 
g-tensor and of the hyperfine tensor.

Indirect experimental values can be obtained from the temperature and field depen-
dences of the nuclear spin lattice relaxation times. This will be discussed in Chapter 5.

High-Field EPR Spectrometers
The range of commercial EPR spectrometers extends up the Q-band with 1.22 T electro-
magnet and 34 GHz source. With superconducting magnets equipment is available for 
W-band spectroscopy at 3.35 T and 94 GHz, while microwave bridges extend to over 
200 GHz frequency.5 However, samples of polarized target materials cannot be easily 
mounted inside a single mode cavity because of its small dimensions at these mm-wave 

Figure 3.8 The Cr(V) concentration as a function of the unresolved EPR linewidth in 0.3 T field at 
RT, for high spin concentrations that are of interest to polarized targets. Based on data from Ref. [15], 
figure reproduced with permission from Elsevier
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frequencies. Therefore, open resonators are used, in particular various types of Fabry–
Perot interferometers.

A particularly elegant and efficient V-band6 EPR spectrometer using an open cavity has 
been developed by the Polarized Target Group of Ruhr University at Bochum. The spec-
trometer operates down to 1 K at 2.5 T field; this is the first time to be able to measure EPR 
spectra under the conditions in which polarized targets operate [39]. The adjustable semi-
confocal Fabry–Perot interferometer is mounted vertically in a vertical cryostat that can 
operate at 1 K, 78 K and RT. The waveguide is coupled through the upper mirror which is 
flat, and the sample droplet is placed on the lower spherical mirror having a radius of about 
1 m. This geometry does not require extremely precise control of the mirror alignment, in 
contrast with the interferometers with flat mirrors. Also, the sample does not have to be 
optically flat. The irradiated samples which can be only handled under LN2 were attached 
to the lower mirror with a film of PTFE.

The team of Ruhr University at Bochum made a series of EPR measurements on sev-
eral successful polarized deuterated target materials and the spectra were analyzed with 
commercial software to extract the hyperfine structure and the width due to the anisotropy 
of the g-factor [40]. The derivative spectra were measured at 1 K in 2.5 T field, and these 
derivative signals were integrated in order to detect the edges of the shapes due to g- 
anisotropy. These results will be summarized in Table 3.1. The linewidth ΔB is the FWHM 
width of the integrated signal, used for a theoretical DNP model to compare with a series 
of DNP results [40] (not shown here).

6 See microwave band definitions in Appendix A.8.

Table 3.1 g-factor anisotropies, FWHM linewidths ΔB and main HFS anisotropies of several 
paramagnetic centers measured using a V-band Fabry–Perot interferometer at 1 K temperature in 
2.5 T magnetic field, from Ref. [40]. The parameter ΔB corresponds to the spectral width as given 
by the commercial software package. The irradiated d-butanol sample contains mainly the alcoxy 
radicals (see Section 3.6.4).

Matrix material Paramagnetic center

Δg/g ΔB Axx Ayy Azz

10–3 (mT) (mT) (mT) (mT)

d-Butanol EDBA 5.89 12.3
d-Butanol TEMPO 3.61 5.25 0.67 0.69 3.65
d-Butanol PX 4.01 5.20 0 0 2.4
d-Butanol Irrad. 1.25 3.10
d-Butanol Finland-d36 0.50 1.28
d-PD OX 063 0.28 0.86
ND3 ·ND2 2.3 4.80
6LiD F-center 0.0 1.80
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3.5.2 EPR Spectroscopy in situ in a Polarized Target

Bolometric Detection
The cavity of a polarized target cannot be tuned accurately to the frequency of operation 
around 70 GHz, because it is usually very large in comparison with the 4 mm wavelength. 
The targets themselves are substantially larger in all dimensions compared with the wave-
length. The cavity is always filled with addenda such as wires, thermometers, NMR coils, 
helium coolant and a cell confining the target beads. Often a separate chamber confines the 
liquid helium, because it has also been found that it is advantageous to separate the cavity 
from the chamber so that the cavity losses can be absorbed at a temperature higher than 
that of the target. Furthermore, the coupling between the waveguide and the cavity is very 
good; often the guide is gradually tapered to the size of the cavity in order to maximize 
the transmission of power into the target. The guide itself is quite lossy because it includes 
thermally isolating sections made of poorly conducting metals such as cupronickel or stain-
less steel. It is clear that accurate spectroscopy is impossible under these circumstances.

It has been, however, noticed that the resistance thermometers, inside the mixing cham-
ber of a dilution refrigerator which cools the target, are very sensitive to the microwave 
field in the cavity. The thermometers then operate as a bolometer. This gives the possibility 
of observing the electron spin resonance because of the strong absorption, which low-
ers the microwave field strength and causes a substantial cooling of the bolometer. The 
response of such a bolometer is not linear, but its power dependence can be estimated from 
the thermal contact to the helium bath which obeys the Kapitza conductance law:

 �Q T T ;Bol Bol
4

He
4ασ ( )= ⋅ −  (3.115)

this will be discussed also in Chapter 8. Here α is a constant and σ is the surface area of the 
bolometer in contact with the liquid coolant. The power dissipated in the bolometer is pro-
portional to the square of the electromagnetic field strength at its location. Measurement of 
the temperature of the bolometer therefore allows to determine the field strength at a given 
location in the cavity. The calibration of the bolometer can be made at a known power 
off-resonance, if the Q-factor of the cavity is known or can be estimated. The power itself 
can be estimated off-resonance by using the refrigerator as a calorimeter; this requires the 
prior measurement of its cooling power as a function of temperature. A small bolometer is 
also sensitive to the mode structure in the cavity, if there are standing waves causing nodes 
to appear; the bolometer calibration then depends on the frequency and on the dispersion 
of the target material which changes the electrical dimensions of the cavity when the mag-
netic field is changed close to the resonance.

Figure 3.9 shows EPR signals of deuterated PD-Cr(V) at 70 GHz in a dilution refriger-
ator at about 0.1 K temperature [41]. The frequency is constant and the bolometer reading 
is plotted during the sweep of the magnetic field. The upper signal (A) is obtained at the 
optimum microwave frequency for positive polarization, and the lower signal (B) at the 
optimum microwave frequency for negative polarization. The horizontal axis is labelled 
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in the terms of microwave frequency normalized to 2.5 T field in order to facilitate com-
parison with the lower curves, which show the microwave frequency scan of inverse spin 
temperature by DNP for the same material in a 3He refrigerator (C), and the rough shape 
of the EPR absorption measured with a very small sample in the 3He refrigerator (D) for 
normal PD-Cr(V) with 1.6 × 1020 spins/cm3 [42].

The small-sample EPR signal exhibits the shape expected for axially symmetric g-tensor 
with Δg/g ≈ 4 × 10–3, whereas the curves obtained with the bolometer show only a strong 
absorption feature within the range of Larmor frequencies. This absence of the absorption 
lineshape is interpreted to be due to the fact that the target material absorbs at resonance 
practically all incident waves with a transverse field component, so that the material is not 
transparent to such radiation.

Figure 3.9 Bolometric EPR spectra of deuterated PD-Cr(V) in situ in CERN frozen spin-polarized 
target [41], compared with the inverse spin temperature and the EPR line obtained by microwave 
transmission techniques. See the text for the explanation of the different curves
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The cavity used in Figure 3.9 has the diameter of 4 cm and length of 20 cm; the target 
is 1.8 cm in diameter and 12 cm in length. The coupling between the waveguide and the 
cavity is made by cutting a tapered slot to the guide all along the target. Such a cavity has 
a large number of overlapping modes so that the intensity recorded by the bolometer can 
be expected to depend strongly on the applied frequency and on the cavity tune, which 
is influenced by all materials in it. As a consequence of this, the bolometric signal is sur-
rounded by additional peaks which are understood to be due to the tuning of the cavity by 
the dispersion of the target material at frequencies off-resonance. It can be seen that these 
features do not reproduce at different frequencies; this confirms that they are due to the 
cavity rather than the target material, which does not have such anomalies in the paramag-
netic susceptibility.

The asymmetry of the bolometric signals, reversed for the two frequencies, is due to the 
inhomogeneity of the magnetic field when it is offset from the value of 2.5 T. At this high 
field the cobalt-iron pole pieces and part of the iron yoke are magnetized to saturation, so 
that the shimming can only be performed at one field value. The inhomogeneity of the field 
therefore ‘smears’ the absorption signal in proportion to the deviation from the value of 
2.5 T.

In smaller samples mounted in small cavities, the bolometric signal features related with 
the dispersion are much less pronounced, as shown in Figure 3.10. The irradiated ammonia 
sample of about 1 cm3 is mounted in a cavity about 2 cm long and 2 cm in diameter, and the 
spectrum is recorded at 140 GHz frequency in a 5 T superconducting magnet. Due to the 
low spin density of about 1019 cm–3, some details of the spectrum can now be resolved so 
that the three main hyperfine lines are distinguishable; these are due to the two equivalent 

Figure 3.10 Bolometric EPR spectrum of the ·NH2 radical in irradiated solid NH3 in 5 T field below 
500 mK temperature. The concentration is ≈ 1019 spins/cm3
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protons of the ·NH2 radical. The main causes of the line broadening are hyperfine and dipo-
lar interactions, because the width of the spectrum is identical at 2.5 T.

3.5.3 Effect of Frequency Modulation in the EPR Spectrum

When the microwave frequency is modulated, the EPR spectrum recorded by a bolometer 
in a large cavity changes substantially in the regions outside the absorption band. Spectra 
recorded with and without modulation are shown in Figure 3.11 for a 60 cm long target 
5 cm in diameter mounted in a cavity 21 cm in diameter and 100 cm in length [43]. The 
target material is deuterated butanol with 6.4 × 1019 cm–3 electron spins of the deuterated 
complex EDBA-Cr(V). Modulation of the microwave frequency causes the flattening of 
the peaks outside the absorption band, and the increase of the absorption near the main 
band. This has been studied from the first principles [43] and it has been concluded that 
there are two leading mechanisms which cause these phenomena. These are due to the 
optical properties of the cavity which are varied by the effect of the magnetic field on the 
complex propagation constant in the target material, and to the slow cross-relaxation of 
the electronic spins whose frequency is shifted outside the main band due to the hyperfine 
interaction with the 53Cr nuclear spins and with the nearby deuteron spins. Slow dipolar 
relaxation may also contribute to the latter, as will be discussed below.

The complex propagation constant k of microwave radiation is [44]

Figure 3.11 Influence of frequency modulation upon the bolometric EPR spectrum of EDBA-Cr(V) 
in deuterated butanol glass with 5% deuterated water. The bottom trace is the difference of the 
modulated and unmodulated curves; modulation increases the power absorption significantly at the 
edges of the EPR absorption line
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tion part of the dielectric constant has no strong resonances and is much smaller than the 
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where α is the propagation constant and β is the attenuation constant. This approximate for-
mula shows that the dispersion in the target material can change the speed of propagation 
by about 4%, which is enough for shifting several tens of nodes of standing waves to the 
microwave bolometer located in the central part of the cavity.

If the microwave frequency is changed by a few MHz, the bolometric pattern of the 
features outside the main spectrum changes considerably. It can be expected that if the 
microwave frequency is continuously modulated during the field scan with an amplitude 
of, say, 10 MHz at a frequency which is higher than the inverse of the response time of the 
bolometer (100 ms), averaging of the features would result. This is what is observed, as 
shown by Figure 3.11, apart from the region adjacent to the strong absorption line where 
a substantial additional absorption is evident, as shown by the subtracted spectrum. This 
additional absorption is visible already with a modulation amplitude of a few MHz and is 
close to saturation above 6 MHz which is less than the dipolar frequency estimated at about 
10 MHz. The band of the additional absorption is about 60 MHz wide, twice larger than the 
peak-to-peak modulation amplitude Ω = 30 MHz for this plot. The width of the additional 
absorption band is quite insensitive to the modulation amplitude, but it is less strong for 
amplitudes below 6 MHz.

The EIO tube microwave source has an emission bandwidth of about 100 kHz, mea-
sured with a spectrum analyzer equipped with a harmonic mixer downconverter. This 
is much less than the dipolar width, and in the absence of cross-relaxation a hole would 
be ‘burned’ in the inhomogeneously broadened spectrum; the width of the hole would 
be close to the dipolar frequency 10 MHz. The appearance of the spectral hole can be 
explained by considering the hyperfine interaction of the Cr(V) paramagnetic spin with 
the 53Cr nucleus and with nearby deuterons, which causes additional broadening in the 
range of 5 MHz to 10 MHz, visible also in the NMR spectrum of the hyperfine nuclei (see 
Chapter 5). Saturation with a narrow emission band depopulates the hyperfine lines in 
the band and increases the population of the hyperfine lines outside the band; absorption 
therefore becomes very small, i.e. a hole is burned in the line. A change in the frequency 
repopulates the lines, and a continuous modulation at a frequency higher than the induced 
transition rate will yield a larger absorption of microwaves. This has also a remarkable 
effect on the speed of DNP, as will be discussed in Chapter 4.
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3.5.4 NEDOR Spectroscopy

The NEDOR method [31, 45] is based on the use of the NMR signal for detecting the EPR. 
This is not to be confused with the ENDOR technique where the electron spin resonance is 
used for observing the NMR of hyperfine nuclei, for example. In NEDOR the NMR lock-in 
signal, or preferably the dispersion signal, is observed at its central region while saturating 
the EPR line or while recovering from a saturating microwave pulse. As the saturation 
changes the electron magnetization, the internal field shifts roughly by the amount of the 
static magnetization of Eq. 1.64

 B M g n S P S P S
n

1.165
10 cm

mT,B S
S

0 0 20 3µ µ µ ( ) ( )∆ = ∆ = ∆ = ∆ −  (3.118)

which can be almost as much as the NMR linewidth for protons in the case of a high elec-
tron spin density. The shift is accompanied by a change of the shape of the NMR line which 
is visible to naked eye in the case of a spin density of 1020 cm–3 in a PD-Cr(V) sample, even 
when saturating at the frequency of DNP. This can be tested by observing the NMR line 
center jump up a few percent when turning the microwave power on, and to note the height 
decay back in about a tenth of a second (at the rate of the electron spin-lattice relaxation) 
after turning the microwaves off.

At low spin density this simple observation is more difficult to make because the contri-
bution of the electrons to the NMR lineshape is much smaller than the dipolar width due to 
the nuclei alone. Therefore, the shift of the NMR line center is a more sensitive, and also a 
more quantitative measure of the NEDOR signal.

In quantitative measurements we must take into account the microscopic distributions of 
the nuclear and electron spins, and the shape of the sample. As was discussed in Chapter 
2, the first requires the summing and averaging of the dipolar fields from nearby electrons 
on protons at various lattice sites, and the second is given by an integral over the distant 
electrons up to the sample boundary. In glassy materials and in dilute crystalline paramag-
nets a model must be made to estimate the nearby dipolar field, whereas the remote dipolar 
field is given by integral which has position-independent values for elliptic sample shapes. 
For a sphere and cubic symmetry of the electrons surrounding the nuclei, the change in the 
internal field becomes exactly zero. For elongated (cigar) shape with long axis parallel to 
the field the first moment the field changes by

 B g n S P S2
3

,B S0

π µ µ ( )∆ = ∆  (3.119)

whereas if the long axis is perpendicular to the field, the field shift seen by the nuclei is

 B g n S P S
3

.B S0

π µ µ ( )∆ = − ∆  (3.120)

The highest sensitivity is therefore reached with a cylindrical sample parallel to the main 
field.
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Polarized targets are usually made of spherical beads which have a very small field shift. 
The net shift therefore arises from neighboring beads and from the overall shape of the tar-
get container. The filling factor of the beads, usually around 0.6, must be taken into account 
in the electron spin density nS.

In large targets the NEDOR technique enables to measure the electron spin-lattice relax-
ation time in situ by using the equipment readily available. The only small modification is 
to change the phase angle of the NMR circuit by 90° so as to observe the dispersion signal 
rather than the absorption, and to set the frequency of the RF source to the center of the 
NMR line. The microwave power is then pulsed by the appropriate control of the source, 
while recording the NMR signal transient. Averaging is useful for small signals which result 
from the use of small microwave power necessary at low temperatures. The record of the 
exponential recovery of the longitudinal magnetization gives directly the relaxation time T1Z.

The NMR signal height is sensitive to the dipolar interactions between the electrons 
and the nuclear spins. The record of the recovery of the height is therefore likely to have a 
major contribution from the dipolar relaxation time T1D of the electrons.

The in situ tests are best made at the frequencies of DNP which allows to work with 
large and steady NMR signal. The penetration of the microwave power inside a large target 
is then ensured, and one can work with buried NMR coils. Furthermore, if the microwave 
pulse is allowed to change the nuclear polarization, the control of the systematics of the 
NEDOR technique is difficult, because the nuclear polarization contributes substantially to 
the internal field shift.

When working with small samples, the NEDOR technique can be used for the measure-
ment of the EPR line. It is essential that the coil is outside the sample because the micro-
wave power does not penetrate the sample entirely in the central part of the absorption line 
at high spin density. The microwave power must be very small in order that the change in 
the nuclear polarization remains small while scanning the microwave frequency. The scan 
is best performed up and down in frequency, in order to average out systematics due to the 
changes in the nuclear polarization.

Because the measurement of the shift of the NMR line is quantitative and accurate, it 
can be used for determining the electron spin density in irradiated samples where there is 
no other direct measure available for this parameter. This requires, however, the complete 
saturation of the EPR line, and therefore it is mainly limited to small samples. The NMR 
signal shift is obtained accurately by calibrating the dispersion signal with a controlled 
change in the RF source frequency, or by a change in the applied field measured by another 
NMR signal.

It is advantageous to use a cylindrical sample with axis parallel to the static field, in order 
to maximize the NEDOR signal size. For spherical samples the NEDOR signal is small. 
This is due to the external term in the first moment which vanishes for a spherical sample, 
leaving alone the internal sum which is small.

The NEDOR techniques can be used for testing the various hypotheses underlying the 
frequency modulation effects in EPR and DNP, notably the effects of dispersion and of the 
repopulation of the hyperfine lines.
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3.6 Paramagnetic Compounds and Radiolytic Centers Used in Polarized Targets

There is a vast number of know paramagnetic compounds containing one or more unpaired 
electrons, such as

• Free radicals
• Metallo-organic compounds
• Transition metal ions in crystalline lattice
• Radiolytic radicals and F-centers

In these categories there are good examples of stable substances that can be used for DNP, 
and we shall briefly discuss them below. A longer listing of potentially useful paramagnetic 
substances is given in Appendix 2.

3.6.1 Free Radicals

The structure of free radicals is studied by EPR spectroscopy because their molecular form 
can be inferred from the hyperfine spectrum obtained in liquid state and from the g-tensor 
seen in the spectrum in solid state.

A radical is an atom, a molecule or an ion that has an unpaired valence electron; this 
makes radicals highly chemically reactive. While most organic radicals have short life-
times, there are notable exceptions such as the hydroxyl radical (HO·), a molecule that 
has one unpaired electron on the oxygen atom. Two other examples are triplet oxygen and 
triplet carbene (:CH2), which have two unpaired electrons.

The prime example of a stable radical is molecular dioxygen (O2). Triplet oxygen, 3O2, 
refers to the S = 1 electronic ground state of molecular oxygen; this is the most stable and 
common allotrope of oxygen. Molecules of triplet oxygen contain two unpaired electrons, 
making triplet oxygen an unusual example of a stable and commonly encountered biradi-
cal. Atmospheric oxygen naturally exists as a biradical in its ground state as triplet oxygen. 
The low reactivity of atmospheric oxygen is due to its biradical state. The biradical state 
also results in the paramagnetic state of liquid oxygen, which is demonstrated by its attrac-
tion to an external magnet that is well known in cryogenics. Paramagnetic oxygen dis-
solved in a glassy matrix has a broad EPR line and short spin-lattice relaxation time; such 
a line cannot be used for DNP. Furthermore, it causes fast ‘leakage’ relaxation of nuclear 
spins, and therefore the polarized target materials are fabricated in such a way that contact 
with atmospheric oxygen is completely eliminated.

Biradicals are molecules containing two radical centers; they can also occur in met-
al-oxo complexes, lending themselves for studies of spin forbidden reactions in transition 
metal chemistry. Very large biradicals have been developed for DNP enhanced magic angle 
spinning NMR studies of chemical and biochemical structures; an example is 1-(TEMPO-
4-oxy)-3-(TEMPO-4-amino)propan-2-ol (TOTAPOL) [46].

Another common example is nitric oxide (NO·). There are also many thiazyl radicals, 
which show low reactivity and remarkable thermodynamic stability.
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Persistent radical compounds are those whose longevity is due to a molecular cage 
around the radical center, which makes it physically difficult for the radical to react with 
another molecule. Examples of these include

• Gomberg’s triphenylmethyl radical, abbreviated as trityl, and its derivatives;
• Fremy’s salt (potassium nitrosodisulfonate (KSO3)2NO·);
• aminoxyls (general formula R2NO·, known as nitroxyl radicals and nitroxides) such as 

TEMPO, TEMPOL;
• nitronyl nitroxides;
• azephenylenyls and radicals derived from PTM (perchlorophenylmethyl radical);
• tris(2,4,6-trichlorophenyl)methyl radical TTM.

Many such free radicals can be precipitated from solutions by crystallization and there-
fore they can be dosed accurately when preparing them into a glassy matrix for DNP.

In 2004 Bunyatova [47] reviewed the list of free radicals that have been successfully 
used for the DNP of polarized target materials, in particular glassy hydrogen-rich diols 
and alcohols, but also some polymers that include scintillating (detector) materials. The 
list includes

• diphenyl picryl hydrazyl (DPPH);
• bisdiphenylallyl (BDPA);
• pycril-N-aminocarbazyl (PAC);
• porphyrexide (PX);
• porphyrindene (PB);
• α, γ-bisdiphenylene-b-phenylallyl (BDPA);
• aminoxyl radicals (TEMPO, OH-TEMPO, TEMPOL or 4-hydroxy-TEMPO, oxo-

TEMPO etc.).

To this list we may add the trityl radicals such as triphenylmethyl and its numerous 
derivatives, which were found to yield the highest deuteron polarizations as of today [48]. 
Triphenylmethyl is the first free radical discovered by M. Gomberg of the University of 
Michigan in 1900. The radical was used for the development of ESR spectroscopy; its 
spectrum of 196 lines arises from a 1:3:3:1 quartet splitting of 2.86 G from the 3 para- 
protons, a 1:6:15:20:15:6:1 septet of 2.61 G from the 6 ortho-protons and a further 1.14 G 
septet from the six meta-protons. When enriched by 13C in the radical center, the splitting 
by the 13C in the methyl position is 26 G and the g-factor is 2.0026.

The trityl radicals OX063 and Finland-D36 have very large molecular cages around the 
central carbon atom and therefore small g-shifts and g-asymmetries. These radicals were 
developed by Amersham Health7 in their project of MRI signal enhancement by the DNP 
of injectable contrast agents.

Section A.2 reproduces a list of free radicals with the total width of their hyperfine struc-
ture, compiled by Borghini in 1966 [49].

7 Formerly Nycomed, now GE Healthcare.
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3.6.2 Metallo-Organic Compounds

The most successful transition metal ion for DNP is pentavalent chromium Cr(V) that 
contains one unpaired electron in the inner 3d shell. Such compounds can be obtained 
directly by reacting hexavalent potassium or sodium dichromate with a diol such as ED or 
PD; in these cases the reaction proceeds close to RT. The procedure, first time described 
by Garif’yanov et al. [50], is explained in Chapter 7. These compounds, however, cannot 
be extracted and purified from the diol solution. The fabrication of PT materials based on 
ED-Cr(V) and PD-Cr(V) will be discussed in Chapter 7.

By reacting potassium bichromate with various hydroxy acids, a series of pure Cr(V) 
compounds have been produced by Krumpolc and Rocek [51–55]. Most DNP results have 
been obtained with EHBA-Cr(V) and BHHA-Cr(V), to be discussed in better detail in 
Chapter 4. The synthesis of these compounds will be briefly described in Chapter 7.

Other metal ions that have shown potential as a paramagnetic complex active for DNP are 
Ti(III), Gd(III) and Mn(II). Titanium(III) complexes with oxalate Ti(III)-ox and with urea 
Ti(III)-urea were prepared and studied by Nakasuka [56]; these are stable and soluble and 
show EPR lines just above 10 mT width (at 77 K and 0.34 T field) that may be suitable for DNP.

Gd3+ and Mn2+ bound in complexes of the chelators DOTA and DTPA were first intro-
duced as high-spin metal ions for MAS DNP by Corzilius et al. in 2011 [57]. A very narrow 
EPR central transition linewidth of 29 MHz at 5 T was observed for Gd-DOTA complex, 
which allowed induction of solid effect with an initially reported proton enhancement fac-
tor of about 12 in a urea model sample.

3.6.3 Ions in Crystalline Materials

Beyond the well-known lanthanum magnesium double nitrate LMN, Nd3+ has been used 
as a paramagnetic ion for the DNP of in LaAlO3 [58], where 139La reached polarizations of 
±20%. The same ion was also tried in LaF3.

Tm2+ ions in CaF2 were used for DNP of 19F by Urbina and Jacquinot [59] to reach 90% 
polarization in the course of their studies of nuclear magnetism.

3.6.4 Radiolytic Radicals and F-Centers

Glassy Organic Materials
Solid materials irradiated at low temperature accumulate radiolytic impurities, many of 
which are paramagnetic. The primary result of ionizing collision is often a free electron 
ejected from a molecule AB:

 AB AB e .( )→ ⋅ +
+ −  (3.121)

The chemistry of the solid phase may ensue in several ways that were comprehensively 
treated by M. Symons in the Second Workshop of Polarized Target Materials [28]. Here we 
shall follow his presentation in an abbreviated way, to describe the three possible scenarios:
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(1) the free electron may be trapped in a cavity; in glassy materials there may be several 
types of trapping cavities;

(2) the electron may be trapped by binding to another molecule AB: AB e AB ;( )+ → ⋅− −

(3) the electron may be trapped by another solute molecule X: e X X .+ → ⋅− −

The consequent chemical reactions depend on the material, on the temperature and also on 
the amount of accumulated damage. We are here interested both in irradiation taking place 
at liquid N2 or Ar temperature around 78  or 90 K, and in irradiation in situ during a scat-
tering experiment at T < 1 K. The former corresponds to pre-irradiation of a target material 
and to annealing after radiation damage during an experiment.

In pure alkane hydrocarbons RH the electron is not trapped and the molecule therefore 
returns to an electrically excited neutral state which can either decay back to the initial 
ground state, or it can split in two radicals:

 RH R H.( ) → ⋅ + ⋅
∗

 (3.122)

Depending on the temperature, atomic hydrogen ·H may migrate away or stay close to ·R, 
which is called pair trapping. In such a case, electron spin exchange may happen that is 
visible in the EPR spectrum and that may lead to poor DNP. Upon annealing, molecular 
hydrogen will be formed.

In aryl hydrocarbons benzene (C6 H6 ) and toluene (C6 H5 CH 3 ), the radical yields are 
reduced because the free electrons are easily transferred back. Benzene does not form a 
glass, whereas toluene does form a good glass and has a greater radical yield than benzene.

In alcohols R2CHOH the glassy matrix can trap electrons in a cavity but also the alcohol 
molecule can react with an electron:

 

eR CHOH (R CHOH)

(R CHOH) R CHOH R CHO (R CHOH )
2 2

2 2 2 2 2

→ +

+ → +

+ −

+ +

�

� � �
 (3.123)

where R2CHȮ is the alcoxy radical, and the free electron will be either trapped or it may 
react by generating another radical and a negative OH– ion:

 e− + R 2CHOH → R 2ĊH + (OH)−. (3.124)

The alcoxy radicals are orbitally degenerate but hydrogen bonding lifts this so that we get 
g|| ≈ 2.08 and g┴ ≈ 2.002; these electrons relax relatively quickly because of the anisotropy 
of the g-factor in the right order of magnitude. The electrons are trapped in shallow centers 
below 4 K and therefore absorb light in the infrared band. Annealing at 78 K allows the 
molecules to reorient which turns the traps deep, so that the irradiated material absorbs 
light in the visible spectrum; this permits the bleaching of the glass with visible light, 
which has been observed in butanol glass, for example. The bleaching mainly yields the 
two radicals of the reactions 3.123 and 3.124. The remaining deeply trapped electrons relax 
very slowly in the absence of cross-relaxation.

The RȮ radicals may also be formed but they are very reactive and yield the alcoxy 
radicals R2CHȮ:
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 � �+ → +RO R CHOH ROH R CHO,2 2
 (3.125)

which have g ≈ 2.003 with proton hyperfine couplings with the hydrogens in the R groups. 
These are the main free radicals after bleaching with visible light at 78 K.

Irradiated solid NH3 and ND3 will be discussed in detail in Chapter 7, where the EPR 
spectra, DNP and relaxation will also be treated. Irradiation near 78 K yields ·NH2 radicals 
that can rotate in solid NH3 at that temperature, so that the isotropic hyperfine constants  
aH = (20 to 24.5) mT, aN = (14.5 to 15) mT, gav = (2.003 to 2.00481) can be seen in a noble 
gas matrix, for example.

Inorganic Crystalline Materials
Here we are interested in simple cubic ionic crystalline materials and follow the paper of 
Henderson [29] in the Second Workshop of Polarized Target Materials. Such materials include 
notably alkali hydrides (LiH, etc.), LiF, CaF2 and Ca(OH)2. In these cases irradiation by ion-
izing radiation below 20 K produces only F-centers and X2

– -centers (called also H-centers). 
The F-center is a vacancy left by displaced anion (Li+ ion) where a single electron is trapped. 
The H-center is an interstitial molecular ion such as F2

–occupying a single anion site in the 
case of LiF. These are produced as F-center/H-center pairs at relatively modest recoil ener-
gies. The F-center wave function extends over several neighboring atoms and is visible as 
rich hyperfine structure of the EPR spectrum. The X2

–-ion is covalently bonded to two other 
X– ions. Both centers are paramagnetic with effective spin S = ½ at low temperatures.

The F-center EPR spectra are rather complex, although the g-factors are isotropic and 
close to the free-electron value. This follows from the extension of the wave functions that 
spread over many neighboring nuclei. As was discussed in Section 3.2.2, when the overlap 
of the electron wave function covers N equivalent spin I = 1 nuclei in a shell, for example, 6 
7Li+ ions with in the first shell in 7LiF or in 7LiH, there will be 2NI + 1 = 19 lines with inten-
sity distributions determined from Pascal’s triangle. The second shell contains N′ = 12 F or 
H nuclei with spin ½ and gives rise to 2N′I + 1 = 13 lines. The net result is an inhomoge-
neously broadened EPR line, with T1 in the range (10 to 100) ms at helium temperatures.

The X2
– centers have relatively simpler EPR spectra which show g-tensor anisotropy and 

hyperfine structure. There are discrete hyperfine splitting lines due to the dominant interac-
tion with the two nuclei of the X2

– radical. Each of these lines is inhomogeneously broad-
ened by weaker interactions with the neighboring ions. The spin-lattice relaxation time in 
the range of (0.1 to 1) ms is shorter than that of the F-centers because of the anisotropy of 
the g-tensor that improves the coupling with the lattice phonons.

The radiolysis producing the F-center/H-center pairs is efficient: only about 5 eV to  
10 eV energy deposit is required for one pair. This implies that both UV and X-ray irradi-
ation are efficient. Electrons and protons will also produce defects by the ionization mech-
anisms. However, protons and neutrons also damage by direct displacement of ions in 
the anion and cation sublattices, and the ensuing defects are more complicated due to the 
cascade of recoils. Such irradiation is less efficient for the production of isolated F-centers 
and F-center/H-center pairs.
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4
Dynamic Nuclear Polarization

There are two main categories of methods of dynamic nuclear polarization (DNP) in solid 
materials:

• methods based on the saturation of weak two-spin transitions which are calculable in the 
second-order perturbation theory;

• methods based on the off-resonance saturation of one-spin transitions calculable in the 
first-order perturbation theory.

In both cases, quantum statistics is needed in order to understand theoretically the 
behavior of nuclear polarization under the various experimental situations: external field, 
lattice temperature and microwave frequency and power. The first category, however, is 
simpler to model because rate equations can be written directly for the magnetic level 
populations regardless of the lattice temperature. In the second case a theoretically correct 
model involves the use of the density matrix, which can be simplified to an analytically 
calculable form only in the high-temperature approximation, a regime that is not of main 
interest in polarized targets.

The density matrix was introduced in Section 1.2.2 and its application for resonance 
saturation was discussed in Section 2.2.4, for the case of low polarization of the electron 
spins (i.e. high-temperature approximation).

At high polarization the density matrix must be kept in its exponential form and there-
fore theoretical estimates are limited to cases where other simplifications can be made. 
The object of the calculations is the spin temperature, which is a constant of motion, and 
therefore the second category methods are said to be based on dynamic cooling of the spin-
spin interactions.

Historically, the first category was experimentally and theoretically understood well 
before the second, and therefore most discussions of DNP usually begin with introducing 
the so-called solid effect. In polarized targets, however, the dynamic cooling has gained 
a much wider use than the solid effect, and therefore we shall begin here with it, after a 
phenomenological introduction.

A third category of DNP methods is based on the Overhauser effect, which works in 
metals and liquids. This was the earliest one to be discovered, but it is of limited inter-
est in polarized targets, because only low nuclear polarizations can be obtained. On the 
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other hand, DNP at higher temperatures met in magic angle spinning NMR spectroscopy 
is reported to be effective also in solids at high magnetic fields up to 18 T [1]. We shall 
therefore treat the Overhauser methods only briefly at the end of this chapter.

Since the first book by Jeffries in 1963 [2], DNP has been reviewed by Abragam and 
Goldman in 1978 [3], Jeffries in 1991 [4], Atsarkin in 2011 [5], Slichter in 2014 [6] and 
Wenckebach in 2016 [7]. A review of DNP and polarized targets in general was presented 
by Crabb and Meyer in 1997 [8].

4.1 Phenomenology of Dynamic Cooling of Nuclear Spins

Here we shall discuss the cooling of nuclear spins to temperatures well below that of the 
lattice. We shall do it before discussing the relaxation of the nuclear spins, which will 
be done only in Chapter 5, and rely on the fact that the nuclear spins have a contact with 
the lattice predominantly via the electronic spin system. In other words, if the part of the 
electronic system which makes the contact with nuclei is cooled or heated, the nuclear spin 
temperature follows this with almost no direct contact with the lattice.

The elements of quantum statistics were discussed in Section 1.2; this underlies the 
thermodynamics of spin systems for which equilibrium can be reached under favorable 
conditions. The transport of magnetic energy (=heat) by relaxation and RF saturation was 
discussed in Chapters 2 and 3.

The spin system of polarized target materials is usually presented in the thermodynamic 
terms using heat reservoirs as shown in Figure 4.1. The various nuclear spin species have dis-
tinct Zeeman energy reservoirs which couple with the energy reservoir of the electron dipolar 
spin-spin interactions; this, in turn, is coupled with the electron Zeeman interaction reservoir 
that is dynamically cooled in the rotating frame by applying a strong microwave field. Although 
the existence of these reservoirs cannot be directly proven, there is good experimental evidence 
in favor of such a phenomenological model, which appears to be well obeyed under certain 
conditions. This evidence and the conditions will be discussed in this first part of the chapter.

Let us assume a paramagnetic electron spin system with a Hamiltonian

 ,Z 1= +H H H  (4.1)

which is split here in the Zeeman and non-Zeeman parts. We assume furthermore such a 
high field B0 that the Zeeman part dominates the non-Zeeman part:

 E E g B .m m L B1 0 1ω µ− = = >>+ H� �  (4.2)

We shall not specify the exact character of ℋ1 but assume that it causes a broadening of 
the magnetic energy levels roughly symmetrically about the unperturbed ones as shown in 
Figure 4.2, with total widths of about DE .1> H   This is in particular due to the inhomo-
geneous character of the broadening arising from the anisotropies of the g-factor and the 
hyperfine tensor, which cause energy level shifts exceeding the homogeneous broadening 
due to the dipolar interactions. These interactions were discussed in Chapters 2 and 3. We 
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also assume that thermal distribution among the ‘magnetic sublevels’ will be reached with 
a characteristic time constant Tcross, which is rather fast because the required transitions 
conserve energy and angular momentum; this relaxation time is not very much longer 
than the dipolar relaxation time T1D but these are related as was discussed in Section 3.4.3.

Relaxation towards the lattice temperature TL due to the spin-lattice interactions will 
establish a Maxwell–Boltzmann distribution of the magnetic level populations, as was dis-
cussed in Section 2.2.5; such a population distribution is shown by the shaded areas and the 
curve in Figure 4.2a. The relaxation is characterized by a roughly exponential decay with a 
time constant T1Z, and after several relaxation times the average electron spin polarization 
will be, according to Eq. 1.67

 P tanh
1
2

,0 0α ω=
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Figure 4.1 Thermal block diagram model of DNP by cooling of the electron spin-spin interactions 
with off-resonance microwave irradiation. The success of the model requires that the spin-lattice 
relaxation of the electrons establishes rapidly thermal equilibrium in their Zeeman energy reservoir, 
and that the temperature of their dipolar energy reservoir follows the Zeeman temperature closely; 
this requires a sufficient spin density. Moreover, a good thermal contact is needed between the 
nuclear spins and the electron dipolar reservoir which is assured by cross-relaxation transitions. The 
nuclear spin Zeeman energy baths are in good contact only with the electron spin dipolar bath, and in 
negligible contact directly with the lattice
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where ω  is roughly defined as a mean frequency difference between the distributions of 
the two levels. It is clear that at very low spin temperatures the population of the ‘magnetic 
sublevels’ is not constant within each level, as can be seen in Figure 4.2a. This point is 
very important for the correct calculation of the spin temperature during DNP, as will be 
discussed later in this chapter. The curve in Figure 4.2a illustrates the Maxwell–Boltzmann 
distribution function for electrons with g g g2 and / 0.1= ∆ =  in 2.5 T field at the tem-
perature of 2 K. The widths of the magnetic levels are thus exaggerated in order to be able 
to visualize the variation of the populations within the magnetic sublevels.
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Figure 4.2 ‘Toy model’ simulation of DNP with broad inhomogeneous ‘box distribution’ of g-factors 
in 2.5 T field. (a) Population distribution of the magnetic energy levels in thermal equilibrium with 
the lattice at 2 K temperature; (b) population distribution in the static frame when the spin system 
is saturated by microwaves yielding +0.2 K spin temperature in the rotating frame; (c) population 
distribution at a microwave frequency that yields –0.2 K spin temperature in the rotating frame
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Let us now apply a transverse oscillating field, which is strongly saturating so that the 
spins which satisfy the resonance condition will be quantized along the rotating effective 
field aligned perpendicular to the main field. Their z-components average to zero in the lab-
oratory frame, which means that both magnetic levels are equally populated for those spins 
that are in resonance. The saturation conditions were discussed in Section 2.4.4 where the 
Provotorov equations were introduced. The Zeeman and dipolar temperatures are in equi-
librium for all times exceeding

 t D
g

,exp

2

1
2 2 Dπω ( )

>>
∆

 (4.4)

and the spin-lattice relaxation does not significantly reduce the inverse Zeeman tempera-
ture in dynamic equilibrium when

 T
g
1 .Z1

1
2 Dπ ω ( )

>>  (4.5)

Two cases of particular interest are graphically illustrated in Figures 4.2b,c: saturation 
off-resonance at frequencies just below and just above the absorption line, as shown by the 
horizontal arrows. The fact that cross-relaxation transitions cause a spectral redistribution 
faster than the spin-lattice relaxation entails now a new distribution function within the 
magnetic sublevels, characterized by a Maxwell–Boltzmann distribution with a different 
temperature. This temperature can be much lower than that of the lattice, if the condition 
of Eq. 4.5 is satisfied. In Figure 4.2b the frequency is close to the lower absorption edge, 
which yields a positive spin temperature of 0.2 K, whereas in Figure 4.2c the RF frequency 
is close to the upper absorption edge; this forces the distribution so that it can be character-
ized only by a negative temperature of –0.2 K.

Figure 4.2 shows that in the two conditions illustrated, the temperature of the heat reser-
voir that can be associated with 1H  will be lowered roughly by

 T E T ,S S Lω
≅

∆
�

 (4.6)

if the system is such that it can be characterized by a thermalized statistical distribution. 
There are no solid theoretical arguments either in favor or against such an assumption, and 
the experimental evidence that this happens at least sometimes is indirect. We shall return 
to this question later in this chapter. We just note here that if the spectral width of the elec-
tron resonance line is of the order of a few ‰ of the mean resonance frequency, the spin 
interaction temperature may be lowered by a factor of several hundreds. If the lattice tem-
perature is a few hundred millikelvin, the spin interactions may be cooled to about 1 mK. 
In terms of nuclear polarizations in a field of 2.5 T, this corresponds to a nearly complete 
proton polarization and even the deuterons may attain a polarization of ±0.8.

Equation 4.6 expresses the dynamic cooling of heat reservoirs in a model that was illus-
trated in Figure 4.2. The RF quanta are absorbed by the Zeeman interaction reservoir that 
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160 Dynamic Nuclear Polarization

is in contact with the spin-spin interaction reservoir. The strength of the saturation also 
determines the strength of the contact between the two reservoirs; this influences the speed 
at which the dynamic equilibrium will be reached. The speed can be calculated in many 
cases using the Provotorov equations, which were introduced in Section 2.4.4 and which 
will be further discussed later in this chapter. Figures 4.2b and c show how nuclear spins 
are then cooled by contact with the electron spin interaction reservoir. The strength of this 
coupling also depends on the saturation, which is more difficult to estimate, but in many 
cases is not the main bottleneck in the cooling speed.

The most convincing experimental evidence for the cooling mechanism of DNP comes 
from the fact that all different nuclear spin species reach the same spin temperature in 
steady state, and that their spin temperatures also evolve along a common curve during 
polarization growth and decay. This was first time proposed by Borghini in 1968 [9] and 
was shown in glassy butanol doped with porphyrexide in 1971 [10]. Moreover, using a 
partially deuterated ethanediol-Cr(V) sample, it was established that if a nuclear spin spe-
cies was heated up by RF irradiation after freezing the polarizations obtained by DNP, the 
subsequent relaxation of all nuclear species happened towards a common spin temperature, 
and that the new equilibrium spin temperature was reached at a rate that depends linearly 
on the applied microwave power [11]. Figure 4.3 illustrates the transient towards common 
spin temperature when about 300 µW microwave power was applied to the 1 g sample in 
which proton spin polarization was zeroed by RF saturation. The transient was three times 
faster when three times more power was applied [11].

EG-d4-Cr(V)
7·1019 spins/cm3

Microwave power 0.3 mW/g
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Figure 4.3 Transient recovery of equal spin temperatures for protons and deuterons with 300 µW/g 
microwave power at optimum frequency, after high DNP of protons was selectively zeroed by RF 
saturation. Reprinted, by permission from Springer Nature Customer Service Center GmbH, from 
Ref. [11]
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The spin-spin interaction temperature resulting from dynamic cooling is calculable in 
many cases under certain assumptions and approximations. We are interested in the con-
ditions where high polarizations are obtainable, which include high electron spin density, 
high field and low lattice temperature. In this case numerical solutions have been obtained 
for EPR lines where the main cause of broadening is inhomogeneous, i.e. caused by a 
spectral distribution of Larmor frequencies due to the anisotropy of the g-tensor or the 
hyperfine tensor. In the high-temperature approximation more cases are calculable and 
even analytical results have been obtained.

4.2 Dynamic Cooling of Electron Dipolar Interactions: High Temperatures

Let us first consider an electronic spin system with no other than dipolar broadening of the 
resonance line. Ignoring also the nuclear spins first, the Hamiltonian in the rotating frame is

 S S ,z x ss1
*ω= ∆ + + ′∗H H� �  (4.7)

where Δ = ωS – ω, ω1 = gµBB1/ℏ is the strength of the rotating field expressed in angular 
frequency units, and H′ ,ss

*  is the electron dipolar Hamiltonian, truncated after the terms A 
and B as in Eq. 2.14, and transformed into the rotating frame.

The density matrix before the application of the transverse oscillating field is

 e

e kTTr
1

kT

kT
L

0

/

/

L

L

ρ
{ }

= ≅ −
−

−

HH

H
 (4.8)

assuming the high-temperature approximation.
The Provotorov equations 2.141 and 2.142 describe the time evolution of the Zeeman 

and dipolar temperature reservoirs of the electrons during saturation. We rewrite them here 
using the saturation function s(Δ) of Eq. 3.59 from Section 3.3

 � t
T
s t t

T
t1 1 ;

Z Z
L

1 1

0D
D

α α β α
ω

α( ) ( ) ( ) ( ) ( )= − − − −








  (4.9)

 D
Dt

T
s

D
t t

T
t1 1

.
Z D

L
1

2

2
1

�β α β β β( ) ( ) ( ) ( ) ( )= −  − −   (4.10)

In steady state the two time derivatives are zero and we may solve the inverse tempera-
tures; their difference is obtained immediately

 
s T

T D

1

1 1

,L

D

Z

1

1

2

2

D
D

D
α β β ω

( )
− =

+ +










 (4.11)

which is seen to become small when s increases. Here it was assumed that the relaxation of 
the dipolar and Zeeman temperatures in the rotating frame take place so that they feel the 
same lattice temperature, i.e. αL = βL. The inverse dipolar temperature is then
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+  (4.12)

and the inverse Zeeman temperature is
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D
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D
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1
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α β ω β

( )

( )
=

+
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+  (4.13)

These equations relate the spin temperature to the microwave power and EPR lineshape. 
The nuclear spins that are in contact with the electron spin-spin interaction reservoir 
cool rapidly to the same temperature. The contact is promoted greatly by the micro-
wave transitions off-resonance, which substantially increase the probability of thermal 
mixing.

We note immediately that if the saturation is very weak, the dipolar temperature of  
Eq. 4.12 does not differ significantly from the lattice temperature, but the Zeeman tempera-
ture can be much colder. This is easily understood from the fact that the cooling ‘power’ 
available between the two reservoirs depends on the microwave power, and when this is 
very small, the dipolar relaxation ensures that the dipolar temperature stays closer to that 
of the lattice than that of the Zeeman reservoir in the rotating frame. The situation then 
corresponds to the conditions of validity of the linear response theory.

In the limit of very high microwave power we have s(Δ) ≫ 1, and the two temperatures 
tend to the same asymptotic value

 
T
T
D

,L
Z

D

2 1

1

2

α β β ω
= =

∆

∆ +

 (4.14)

which has a minimum and a maximum of

 
T
T

D
2

L

Z

D

1

1

β
β ω

= ±  (4.15)

at the frequencies

 
T
T
D.Z

D

1

1

∆ = ∓  (4.16)

As the ratio ω/D may be several thousand in a high field, the dipolar temperature and 
the Zeeman temperature in the rotating field can be three orders of magnitude lower than 
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the lattice temperature. If the nuclei relax efficiently towards the electron temperature, very 
high nuclear polarizations can theoretically be obtained at the spin temperatures below 
1 mK when the lattice is at a temperature below 1 K.

In practice, the rate at which the nuclear spins cool to the temperature of the electron 
dipolar interactions can be high only when the nuclear Larmor frequency is of the same 
magnitude or smaller than the dipolar width of the EPR line. For a large nuclear moment, 
a high concentration of paramagnetic spins is therefore required, or else the effect can be 
seen only at a relatively low magnetic field. For a low electron spin concentration, the 
cooling of the nuclear spins by the homogeneously broadened EPR line requires a very low 
magnetic field or a low nuclear dipole moment.

Examples of cases where the nuclear spins can be cooled by an electron spin system 
with predominantly dipolar broadening are deuterons in LMN doped with Nd3+ [12], and 
deuterons in glassy m-xylene-D6 doped with the free radical BDPA [13].

The rate at which the inverse dipolar and Zeeman temperatures approach each other is 
approximately

 
D Ds
T D

2 1 ,
Z

1

1

2

2τ
( )

≅ +






−  (4.17)

whereas the rate at which the Zeeman temperature approaches a steady value is

 D
T

s1
1 .z

Z

1

1

τ ( )( )≅ +−  (4.18)

These rates are equal when

 Ds
D

1
1 2 /

;2 2( ) =
+ ∆

 (4.19)

at a lower saturation the Zeeman temperature approaches faster an equilibrium value, 
whereas at higher saturation the equilibrium between the dipolar and Zeeman temperatures 
is reached faster than the final equilibrium spin temperature. It is the latter situation that is 
desirable for DNP. These considerations neglect, however, the thermal load coming from 
the cooling of the Zeeman energy reservoir of the nuclear spins, which can be phenomeno-
logically visualized in Figure 4.1.

In Section 4.2 the high-temperature approximation of the spin Hamiltonian was assumed; 
in the following sections this is not made unless stated explicitly.

4.3 Dynamic Cooling with Inhomogeneously Broadened Resonance Line

The DNP by dynamic cooling of electron spin-spin interactions is also called DNP by ther-
mal mixing; both names refer to the same mechanism in which the nuclear spins couple 
strongly with the electron spin-spin interaction reservoir which is cooled in the rotating 
frame due to saturating off-resonance microwave transitions.
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164 Dynamic Nuclear Polarization

4.3.1 Spin Hamiltonian under Strong Saturation

Let us consider the description of the saturation of a spin system in a strong magnetic field 
aligned along the z-axis B0 = B0ez . The most general spin Hamiltonian is

 D ,Z HF D SL RFtot = + + ′ + + +H H H H H H  (4.20)

where the Zeeman (Z ), hyperfine (HF ) dipolar (D), spin-lattice (SL) and near-resonance 
oscillating field (RF ) components are expressed using the following notation. The Zeeman 
component is the interaction energy with the static field of the Ne electrons with spin Si and 
g-tensor gi, and the Nn nuclei with spin Ij and Larmor frequency ωj:

 H � � IB g S ,Z
i

N

B i i
j

N

j jz
1

0
1

e n

∑ ∑µ ω= − ⋅ ⋅ −
= =

 (4.21)

where μB is the Bohr magneton and the sum over the electrons involves terms written in 
the dyadic notation of Eq. 3.5. We shall assume that the g-tensor is axially symmetric, with 
an anisotropy of the order of 0.5%. When we shall study the steady-state saturation of the 
electron spin system (dynamic equilibrium), we may drop the nuclear Zeeman term in the 
treatment, justified by the facts that the RF frequency is far from the nuclear resonance and 
that in steady state the nuclear polarization is constant and therefore contributes nothing in 
the energy balance. The Zeeman term due to the nuclei having hyperfine interaction with 
the electrons is included in the nuclear part of Eq. 4.21.

The hyperfine interaction of the electrons, each having contact with Nhf nearby hyperfine 
nuclei Ik, can be described in high field by

 S A I ,HF
i

N

k

N

i ik k
1 1

e h f

∑∑= ⋅ ⋅
= =

H �  (4.22)

where Aik is the hyperfine tensor of the i-th electron, written out in Eq. 3.24. On the other 
hand, the hyperfine term results in the inhomogeneous broadening of the electron reso-
nance line, and it can be treated together with the g-tensor broadening as was done in the 
original paper of Borghini [9].

DH ′  describes the secular parts of the dipolar spin-spin interactions among the spins S, 
among the nuclear spins I, and between S and I:

 .D SS II SI′ = ′ + ′ + ′H H H H  (4.23)

The form of these terms is given in Eq. 2.14. The first and last terms on the right side of  
Eq. 4.23 are very important for the success of the DNP, because they provide the necessary 
relaxation mechanisms for the rapid thermalization in the electronic system, and for the good 
heat transport between the nuclear Zeeman system and the electron dipolar spin-spin interac-
tion system. However, in order to be able to obtain estimates for dynamic cooling, these terms 
must be omitted when the inhomogeneous broadening dominates the homogeneous one.

Neglecting the electron-electron dipolar term in the calculation of the steady-state spin 
temperature is likely to produce a small error, which we shall discuss also in the end of this 
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section in the light of the rate equations derived under the high-temperature approximation. 
The part of the dipolar Hamiltonian which describes the interaction between the nuclear 
and electron spins is important for the rate of DNP ‘cooling speed’ of the nuclei, but has 
less important effect on the steady-state ultimate spin temperature in the case of negligible 
‘leakage’ relaxation of the nuclear spins that might be caused by electron spins whose res-
onance absorption line has no overlap with the line which is being saturated.

The interaction between the electronic spin system and the ‘lattice’ is due to SLH  and it 
arises mainly from the modulation of the g-factor by the thermal lattice excitations, result-
ing in energy exchange and therefore spin relaxation; this was described in Chapter 3. This 
term sets the scale for the speed of the DNP in most cases of interest for the polarized tar-
gets, and its introduction will be discussed after the treatment of the problem with reduced 
contact to the lattice (phonon bottleneck).

There could, in principle, also exist direct ‘leakage’ relaxation of the nuclear spins 
towards the lattice temperature, caused by non-resonant electronic impurities or impurities 
with very broad line, such as paramagnetic O2, or by relaxation resulting from contact 
with hyperfine nuclei having faster spin lattice relaxation. No such effects are seen in good 
materials, and we shall present some quantitative evidence for the small size of such terms 
at the end of this section.

The last term RFH  in Eq. 4.20 describes the interaction of the electronic spins with an 
oscillating microwave field 2B1cosωt applied perpendicular to the main field at a frequency 
ω, close to the average Larmor frequency ω  of the electron paramagnetic resonance:

 H eB g S ,RF B
i

N

i i
i t

1
1

e

∑µ= − ⋅ ⋅ ω

=

 (4.24)

The Hamiltonian, which adequately describes our spin system in high field under saturat-
ing RF irradiation, is now

 � �H H H eB g S S A I B g S .
i

N

B i i
i

N

k

N

i ik k D SL B
i

N

i i
i t

tot
1

0
1 1 1

1

e e hf e

∑ ∑∑ ∑µ µ= − ⋅ ⋅ + ⋅ ⋅ + ′ + − ⋅ ⋅ ω

= = = =

 (4.25)

Various solutions to the steady-state DNP have been worked out using the above 
Hamiltonian, under different approximations. Most of these can be solved only in the case 
of the high-temperature approximation, under which the spin temperature and polarization 
can be obtained using approximate analytical equations. In the limit of low temperatures 
there is no general solution and numerical methods must be used for obtaining the spin 
temperatures and polarizations.

4.3.2 Energy Conservation

In dynamic equilibrium all parts of the system are in internal thermal equilibrium and all 
temperatures are steady; some of the temperatures may be equal but this need not be the 
case. The constants of motion (spin temperatures) can then be solved from the equations 
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that describe the conservation of energy. To derive the relevant equation, we shall follow 
the treatment of Borghini [14].

The total time derivative of the total energy described by Eq. 4.20 follows from the 
explicit variations due to the spin-lattice interactions, to the applied RF field, and to the 
spin-spin interactions, so that

 = ∂
∂

+ ∂
∂

+ ∂
∂











d
dt t t t

.
SL RF SS

tot totH H  (4.26)

On the other hand, we have in steady state

 =d
dt

0.totH  (4.27)

If there is no exchange of energy between the spin system and the rest of the sample in 
the processes due to spin-spin interactions, we have also

 t
0,

SS
tot

∂
∂

=H  (4.28)

which is certainly true in pure spin flip-flop processes. Small deviations from this could be 
due to certain rare relaxation phenomena, but experimental evidence tells that these cause 
negligible contribution to the energy balance.

In high field, the part of the total Hamiltonian that is subject to the RF field is then that 
describing the electron Zeeman interaction, so that

 �ω∂
∂

= ∂
∂t t

S ,
RF RF

ztotH  (4.29)

where Sz is the projection of the total electron spin onto the z-axis. This follows simply 
from the fact that the emission or absorption of a photon of energy ℏω happens each time 
when an electron spin flips, because the RF field is much smaller than the dipolar and 
hyperfine fields so that the z-axis remains the axis of quantization. This is true for transi-
tions involving any order in perturbation theory in their description. Furthermore, because 
the spin-spin processes involve the exchange of orientation of two spins, we have

 t
S 0.

SS
z

∂
∂

=  (4.30)

Because Sz  is constant in steady state, we have now

 
∂
∂

= ∂
∂

+ ∂
∂

+ ∂
∂







=

t
S

t t t
S 0,z

SL RF SS
z  (4.31)

which becomes

 t
S

t
S ,

RF
z

SL
z

∂
∂

= − ∂
∂  (4.32)
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after inserting Eq. 4.30.
Combining Eqs. 4.26, 4.28 and 4.32 with 4.27 yields now

 �H
t

S 0,
SL

ztot
ω∂

∂
− =  (4.33)

which is valid in all high-field situations and at any temperature. This equation that states 
that energy and angular momentum are conserved has been used for the calculation of 
steady-state spin temperatures and polarizations for several types of spin systems. The 
limitation of this equation, as Borghini has pointed out [14], is that it only gives the polar-
ization in the limit of strong saturation, and does not give the dependence of polarization on 
the intensity of the RF field. This dependence can only be treated in the high-temperature 
approximation, which is not of great interest for polarized targets because only low polar-
izations are then obtained (by definition of the high-temperature approximation).

Given the fact that we must have s(ω) ≫ 1 for the model to work at the optimum fre-
quency of DNP does not mean that high DNP is impossible even if the electron spin-lattice 
relaxation time is short and therefore the power dissipation is high. Each electron spin sys-
tem has optimizable parameters such as the spin density ne and the microwave frequency 
and power that have optimum values; moreover, the T1e can be controlled by the magnetic 
field on which it depends strongly when the direct process dominates the other spin-lattice 
relaxation mechanisms.

4.3.3 DNP with Inhomogeneously Broadened EPR Line

In most free radicals, the EPR line is much more broadened by the anisotropy of the  g- tensor 
and of the hyperfine tensor than by the dipolar spin-spin interactions. In a magnetic field 
of 2.5 T, for example, the Cr(V) complexes with diols, and the stable compounds, such as 
EHBA-Cr(V), have spectral linewidths of 300 MHz to 400 MHz while the dipolar broad-
ening at spin density of 1020 cm–3 is 0.5 mT or 14 MHz as was calculated in Chapter 3,  
Eq. 3.44 for like spins. As the g-tensor broadens the line so much that the spin packets 
do not entirely overlap, the broadening, in fact, should be predominantly by unlike spins, 
which was taken into account in Eq. 3.44. At high polarization the dipolar broadening can 
be even much less than 14 MHz, but this depends on the way how the paramagnetic mole-
cules are distributed in the material.

Provotorov’s derivation [15] of cross-relaxation for inhomogeneous spin systems, using 
the high temperature approximation and assuming strongly saturating RF field, has been 
extended to show that the spin system can be described as having a single temperature in 
a suitable reference frame, when the cross-relaxation is faster than spin-lattice relaxation. 
This condition is satisfied at low temperatures when the spin density is high enough, as was 
shown in Chapter 3.

We shall express now the Hamiltonian in angular frequency units in order to simplify 
the subsequent formulas. With anisotropic g-tensor only and assuming a high steady field 
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168 Dynamic Nuclear Polarization

superimposed by transverse RF field oscillating at frequency ω, the simplified Hamiltonian 
is obtained from Eq. 4.25:

 � �H eB g S B g S .
i

N

B i i B
i

N

i i
i t

1
0

1
1

e e

∑ ∑µ µ= − ⋅ ⋅ − ⋅ ⋅ ω

= =

 (4.34)

This can be rewritten as

 � � �∑ ∑ω ω= − − ω

= =

S e S ,
i

N

i i
i t

i

N

i
1

1
1

e e

H  (4.35)

where g B /B1 1 �ω µ= .
By recalling the definitions of Section 1.2.2, and by removing the main time dependence 

of the Hamiltonian using transformation to the rotating frame by

 U i t Sexp ,
i

z
i∑ω= −







we get the Hamiltonian in the frame rotating at frequency ω:

 � � S  .
i

N

i i
1

e

H ∑ ω ω( )= − −∗

=

 (4.36)

Before turning the microwave field on the density matrix is

 
exp

Tr exp
,0

0

0

ρ
α

α{ }
( )

( )
=

−

−

H

H
 (4.37)

where α0 = ℏ/(kT 0) is the inverse spin temperature close to that of the lattice; after reaching 
the steady state the density matrix in the rotating frame becomes

 
exp

Tr exp
,ρ

α

α{ }
( )

( )
=

−

−

∗

∗

∗

H

H
 (4.38)

where α = ℏ/(kTS) is the inverse spin temperature in dynamic equilibrium. In this new 
equilibrium in the rotating frame, we may now write the expectation values of Eq. 4.33 in 
the form

 Tr Tr ,0H Hρ ρ{ } { }=∗ ∗ ∗  (4.39)

which can be expressed in the terms of the sums

 P P ,
i

i i
i

i i
0∑ ∑∆ = ∆  (4.40)

or

 ∑ ( )∆ − =P P 0 ,
i

i i i
0  (4.41)
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where

 P P,  ,  tanh ,  tanh  .i i
i

i i i
i

i
1

2 0
1

2 0∑ω ω ω ω α α ω( ) ( )∆ = − = = =D  (4.42)

These give

 ∑ α α ω( ) ( )∆ ∆ −  =tanh tanh 0 .
i

i i i
1
2

1
2 0  (4.43)

We note immediately that at low temperatures the hyperbolic tangents are both close 
to unity, which requires high numeric accuracy for the solution of α from the equation; 
their difference deviates substantially from zero only when Δi is close to zero. The iter-
ative solution then works better if we subtract 1 from both tanh functions, and develop 
Eq. 4.43 into frequency-dependent and frequency-independent parts by substituting 

D Dx x and  i i i iω ω= + = + . The frequency-independent hyperbolic tangents can then be 
separated out of the sum:
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The right-hand side of Eq. 4.44 sums to a value ≪ 1 at low temperatures, which makes 
the iteration fast. The inverse spin temperature α can now be numerically solved for each 
lineshape function f (ω) by iteration of the integral equation

 f x x T x dxtanh tanh 1 , , .i
i

i i
1
2 0

1
2 D

D
D∫α ω α α( ) ( ) ( ) ( )− = +











ω−

∞
 (4.46)

In practice the numeric integration needs to be carried out over the absorption lineshape 
function only in each iteration cycle.

The hyperbolic function T (xi,α,Δ) approaches at low temperatures the Heaviside step 
function, with a step from –2 to 0 occurring at xi = Δ (for positive polarization).

As an example of the application of Eqs. 4.40–4.46 let us consider deuterated propane-
diol (PD-d8) with PD-Cr(V) complexes obtained by reaction of PD-d8 with potassium 
bichromate. This gives an axially symmetric g-factor with an EPR line width of about 
0.4% at 2.5 T field for which the theoretical lineshape is shown in Figure 3.1 (with differ-
ent width of 0.5%). Figures 4.4a, b and c show the results obtained by solving the inte-
gral equation 4.46 at different inverse lattice temperatures α0 and at different microwave 
frequency offsets Δ. The resulting inverse spin temperature α is shown in Figure 4.3 as a 
function of microwave frequency offset Δ from the center of the EPR line for the lattice 
temperatures of 300 mK, 500 mK and 700 mK. The maximum positive and negative α are 
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170 Dynamic Nuclear Polarization

more sharply defined at the negative values, as can be expected for the lineshape function 
that has a steep edge and a sharp peak at Δ/2π = 93 MHz. The maximum positive polariza-
tions are broader and they are obtained at frequencies just above the lower frequency edge 
of the EPR line at Δ/2π = –187 MHz.

The maxima of the positive and negative inverse spin temperatures are plotted as a 
function of the lattice temperature in Figure 4.4b. Both of these increase steeply down to 
TL = 0.6 K and then level off below TL = 0.5 K. As can be expected from the asymmetric 
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Figure 4.4 Simulation of DNP at 2.5 T with axially symmetric g-factor giving rise to inhomogeneously 
broadened 280 MHz wide EPR line, similar to that of perdeuterated PD-Cr(V). (a) Steady-state 
inverse spin temperature as a function of microwave frequency offset for three lattice temperatures; 
(b) maximum inverse temperature as a function of lattice temperature; (c) optimum frequency offset 
as a function of lattice temperature
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lineshape of the EPR line, the negative maxima of α = –3.85 (mK)–1 are higher than the 
positive ones around α = +1.98 (mK)–1; these correspond to the deuteron polarizations of 
–94.7% and +76.5%, respectively.

The frequency offsets |Δ±|/2π at which the maxima are obtained are plotted in Figure 4.4c 
as a function of the lattice temperature. While the frequency for the negative maximum 
decreases by about 10 MHz from 1.2 K to 250 mK, the frequency offset for the positive 
maximum increases by about 50 MHz when the lattice temperature decreases from 1.2 to 
0.6 K. Below this temperature the offset decreases by about 10 MHz.

At the time of performing the above simulations in the 1980s, the best deuteron polar-
izations of PD-Cr(V) at 2.5 T field were +44% and –47% in a dilution refrigerator running 
around 300 mK coolant temperature. While it is clear that the simulations assume ideal 
conditions of DNP and full saturation, it is nevertheless interesting to try to understand the 
leading reasons for the difference between the experimental and theoretical numbers. The 
main reasons are known today to be due to both experimental and theoretical problems:

• The lattice temperature during DNP was not measured and it was substantially higher 
than the measured coolant temperature.

• The EPR saturation was incomplete.
• The nuclear spin polarization was measured using an RF field that was too high.
• The effect of the polarization of the hyperfine nuclei on the EPR line was not included 

in the simulation.
• The effect of dipolar broadening was not included in the simulation.

In the following we shall briefly discuss the above items in more detail.

Temperature of the Lattice
The heat transfer between the target material and the helium coolant will be discussed in 
Chapter 8. Specifically, using the thermal boundary conductance of Section 8.1.1 for simi-
lar glassy solids, we may take for PD-d8
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where CK = 30 W/(K4 m2) is the Kapitza conductance, and using an estimated microwave 
power absorption of 0.2 mW/cm3 and surface-to-volume bead diameter d = 0.2 cm, with a 
filling factor f = 0.6, we may determine the lattice temperature
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At coolant temperature of 250 mK these yield the lattice temperature TL = 295 mK. The 
lattice temperature is therefore about 50 mK higher than that of the dilute solution cooling 
the target. With a much higher power density, the lattice temperature may become almost 
entirely determined by it, when the target is cooled by a dilution refrigerator.
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172 Dynamic Nuclear Polarization

EPR Saturation
By examining the saturation function of Figure 3.5 plotted using the spin-lattice relaxation 
time 38 ms of PD-Cr(V) and the spin density ne = 5 × 1019 cm–3, we see that the power density 
of 0.2 mW/cm3 corresponds to s = 0.1–1.0 when the frequency deviates around 3.0D from 
the Larmor frequency. This validates marginally the hypothesis of strong saturation required 
for the simplified steady-state Eq. 4.33 for the Hamiltonian of Eq. 4.25. Given that one must 
shift the microwave frequency further away from the Larmor frequency spectrum in order to 
get s ≫ 1, one must choose to work with frequency deviations between 3D and 4D; in our 
example this equals 45–60 MHz offsets from the main line. The transition rate then yields a 
low cooling rate for the dipolar reservoir, which, in turn, may become insufficient in com-
parison with the direct lattice contact for the nuclear spins via impurity spin interactions.

The high-temperature approximation of Eq. 4.11 yields the steady-state difference 
between the inverse temperatures of the electron Zeeman and dipolar reservoirs in the case 
of incomplete saturation:
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Based on this we can qualitatively state that the electron dipolar reservoir will remain sig-
nificantly hotter than the electron Zeeman reservoir when s < 0.1.

Saturation of Nuclear Spins by NMR Measurement
In a very good target material the number of harmful impurity spins can be very low, which 
is witnessed by nuclear spin-lattice relaxation measurements. Then the leading loss of 
nuclear spin polarization takes place via RF saturation during NMR polarization measure-
ment. In Section 6.2.5 a lengthy discussion will be presented on the effects of saturation 
of the deuteron NMR line during polarization measurement using the Liverpool Q-meter 
with a standard coil current of 0.3 mA; Eq. 6.72 yields an estimate of about 180 h for the 
saturation time constant of the deuteron NMR signal. This is comparable with the DNP 
time constant at low s, and it was shown that almost twice higher deuteron polarization was 
obtained when the duty cycle of the NMR measurement was substantially reduced [16].

Neglect of Electron Dipolar Interactions
Given the facts of finite saturation required by low lattice temperature, and given that this 
leads to optimum frequencies in the dipolar wings of the EPR line, it is tempting to include 
the dipolar broadening in the simulation of DNP by the cooling of the dipolar interaction 
reservoir. This should be done from the first principles by including the effects of cross- 
relaxation. However, if the cross-relaxation is sufficiently fast due to the high electron 
spin density, one may estimate the effect of dipolar broadening from ad hoc arguments by 
noticing that the frequency offsets grow up to 60 MHz in order to get far enough from the 
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main Larmor frequency spectrum. This is 30% to 40% of the optimum frequency offsets 
without dipolar interactions, which reduce the ultimate inverse spin temperatures by the 
same amount.

Neglect of Hyperfine Interactions
The hyperfine nuclei are also polarized during DNP and they have multiple effects on the 
spin temperature. A high polarization of the solvent nuclei also imposes a high polarization 
of the hyperfine nuclei, which changes the shape of the EPR line, thus complicating the 
simulation. The effect will be estimated in Section 4.6 for the crystalline LMN doped with 
Nd3+; this, unfortunately, cannot be extended to glassy materials doped with free radicals. 
We only know that in the latter case the hyperfine nuclei get the same sign of polarization 
as the solvent nuclei (see Chapter 5), but quantitative measurements are needed for the 
better understanding of their role and impact in DNP [17].

Comparison of Experimental Frequency Dependence of DNP with Simulation
Based on the above arguments, in particular with the strong frequency dependence of the 
saturation in the region of optimum DNP, it is not surprising that the agreement between 
the experimental frequency dependence and simulation is rather qualitative than quanti-
tative. However, the various theoretical estimates have led to improved understanding of 
the phenomenology which, in turn, has had an impact on the experimental techniques and 
choices of target materials. For the future choices, it is clear that better measurements are 
needed in the understanding of the EPR spectrum (see Refs. [18, 19]) and in the knowl-
edge of the electron spin-lattice and cross-relaxation. Moreover, better experimental values 
are desirable for the thermal boundary conductance between the glassy solids and liquid 
helium coolants.

Comparison with Other Simulations
Similar substantial deviations between simulated and experimental spin temperatures have 
been seen earlier by de Boer, for example [20]. These deviations were made smaller by 
introducing a leakage factor in Eq. 4.40 that was adjusted so as to get a better theoretical 
agreement. Phenomenologically the leakage factor may be justified if paramagnetic impu-
rities such as oxygen cause nuclear spin-lattice relaxation with a rate comparable to the 
rate of DNP. Such a leakage, however, should be visible in the spin-lattice relaxation of the 
nuclear spins, and it should also make the temperatures of the various nuclear spin species 
unequal, both in steady state and during transients. No evidence for these have been found 
in good target materials.

In the light of much improved deuteron polarizations beyond 60% in a large deuterated 
target using EDBA-Cr(V) complex [21], and around 80% in smaller samples doped with a 
trityl complex [22], we may suggest that during DNP the leakage of nuclear spin polariza-
tion is small if not negligible in good target materials.
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4.3.4 Time Evolution of Spin Temperatures during DNP at Low Temperatures

The above spin temperature model due Borghini allows one to determine the steady-state 
spin temperature after thermal equilibrium has been reached between the various heat res-
ervoirs. It also requires that the saturation of the microwave transitions is high. Thus, we 
have only rough estimates of the speed at which nuclear spin polarization is obtained, and 
how far from thermal equilibrium the various nuclear spin systems are.

To improve on this, Wenckebach has extended Provotorov’s time-dependent treatment 
of DNP and cross-relaxation to low temperatures where the density matrix must be kept in 
its exponential form [23]. In his treatment the only assumption is that spectral diffusion in 
the EPR spectrum is faster than any other processes. The resulting two equations for the 
spin temperatures cannot be solved analytically even approximatively. Wenckebach pro-
ceeded then to solve them numerically for the EPR line of the free radical TEMPO [23]. It 
is interesting that in 3.4 T field and at 0.75  and 1.5 K temperature the ultimate spin tem-
peratures at saturation parameters s = 1 and s =10 are almost identical, whereas at s = 0.1  
and below the maximum inverse temperature drops rapidly. Similarly, the speed at which 
the DNP is obtained increases little above s = 1 but drops rapidly around s = 0.1.

4.4 Solid Effect

Let us consider a narrow electron spin resonance line with width Δωe ≪ ωn. In such a case 
the first-order forbidden transitions, where one electron and one nuclear spin flip simul-
taneously, can be well resolved from the first-order allowed electron spin transition. Such 
a weak narrow line can be observed when the electron spin density is fairly low, which 
means the range around or below 1019 cm–3. In addition, it is required that there is no sub-
stantial anisotropy in the g-tensor and the hyperfine tensor. Alternatively this can happen in 
a single crystal that is suitably oriented with respect to the magnetic field.

In discussing the ‘solid effect’ below we shall follow the presentations of Schmugge 
and Jeffries [12] and of Abragam and Goldman [24]. The semi-phenomenological model 
is based on probabilities of transitions induced by the microwave field and by the lattice 
interactions, and allows to include effects due to the nuclear polarization ‘leakage’ via 
unwanted paramagnetic impurities, and due to the nuclear spin diffusion barrier.

The energy levels and state vectors for an isolated pair of electron and nuclear spins are 
shown in Figure 4.5. The mixing constants depend on the distance between the electron 
and the nucleus, and on the polar angles between the main field and the connecting vector. 
In the case that the electron and nuclear wave functions do not overlap (no hyperfine inter-
action), they are given by Eqs. 2.10 and 2.11c – f:
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4.4.1 Resolved Solid Effect

Level Populations, Transition Rates and Rate Equations
The populations of the four levels are pa , pb , pc and pd with pa + pb + pc + pd = 1. The elec-
tron and nuclear polarizations are then

 P p p p pe a b c d( ) ( )= + − +  (4.50)

and

 P p p p p .n a c b d( ) ( )= + − +  (4.51)

The population ratios satisfy at all time during microwave irradiation

 p
p

p
p ,a

c

b

d
=  (4.52)

which presupposes that the relaxation transition probabilities can be written
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W W W ,| | | |a c b d L  (4.53)
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with

 �r k T U qqWexp / ;  4 .e B L Lω( )= − = ∗  (4.57)

|a〉 = p|+ +〉 – q∗|+ –〉

|b〉 = p|+ –〉 + q |+ +〉

|d 〉 = p|– –〉 – q |– +〉

|c 〉 = p|– +〉 + q∗|– –〉
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hω
e 

hω
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Figure 4.5 Eigenvalues of a pair of electron and nuclear spins ½ coupled by dipole-dipole interaction 
in a high field
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The averaging must be understood over those n = Nn/Ne nuclei which surround the elec-
tron but have no hyperfine interaction with it:
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follows from averaging of the polar angles

 cos sin 2
15
.2 2θ θ =  (4.60)

The populations of the levels can then be solved in terms of polarizations:
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 (4.61)

The RF field applied along the main field at a frequency ωe + ωn or ωe – ωn causes transi-
tions at a rate which is calculated using perturbation theory to the second order; the result 
normalized per nucleon is

 α= =∗W qq W C W4 ,RF RF RF
(2) (1) (1)  (4.62)

where WRF
(1) is the first-order transition probability of Eq. 1.58 for the electron alone in the 

same transverse field.

Rate Equations and Dynamic Equilibrium Polarization
Using the expressions above we may now write the rate equations for the change of the 
electron and nuclear polarizations during the saturation of the first-order forbidden reso-
nance at ωe – ωn. After quite some algebra these read
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The electron concentration appears here because the rates were normalized per nucleon, 
and there are C electrons per nucleon. In a high field qq* is very small and therefore  
UL ≪ WL can be neglected in the first of these equations. Furthermore, from Chapter 3 we 
recall that

 r W1
1
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e1τ( )+ =  (4.64)

and

 r U1 .L
e1

α
τ( )+ =  (4.65)

With these Eq. 4.63 can be put to the form

 
P

W
C

P P P P

P W P P C P PP

1
;

1 .

e
RF

e n
e

e

n RF n e
e

n e

(2)

1
0

(2)

1
0

τ

α
τ

( ) ( )

( ) ( )

= − − + −

= − − − −

�

�

 (4.66)

By defining the second-order saturation constant per electron
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these can be rewritten
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Because of the smallness of α, the rate of change of the electron polarization is much 
faster than that of the nucleon, and the electrons are therefore at all times at a quasi-equi-
librium obtained by solving the first equation with its left-hand side put to zero:

 P
sP P
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P s P P
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0
0 0( )=

+
+

≅ − −  (4.69)

This approximation is justified because the second-order transition probability is so small 
that the saturation constant is well below 1 for all conceivable microwave field strengths.

Assuming now that we are close to dynamic equilibrium so that Pn ≈ P0, and that the 
saturation constant is so small that we may write Pe = P0, the second equation becomes 
linear and can be written as
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The nuclear polarization then approaches the equilibrium value

 P
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+ −

�  (4.71)

with the rate
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  (4.72)

We see that the rate is linear with the electron concentration and spin-lattice relaxation 
rate, and grows linearly with the saturation parameter if we have s > α, which can be rea-
sonably achieved at high field where α ≈ 10–4–10–3. The nuclear polarization can therefore 
be expected to saturate just below the static electron polarization P0. The polarization time 
constant is of the order of τ1e /(Cs) = 102 s for Cs = 10–6 and τ1e = 10–4 s, typical for LMN 
targets.

When saturating the second-order transition a–d at the frequency ωe + ωn the only change 
in Eqs. 4.63 is to replace Pn by –Pn . The results above are therefore valid also in this case, 
with only the change of sign in Eq. 4.71.

It has turned out in practice that the maximum nucleon polarization does not reach as 
high values as P0. This may be partly explained by the fact that high saturation also means 
dielectric heating of the crystal immersed in the helium coolant, and therefore P0 is lowered 
because the lattice temperature is increased. As an example let us assume that s = 10–3 and 
α = 10–4. If the difference between the electron and nuclear polarizations is 0.1, the mag-
netic power dissipation is
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�  (4.73)

at 70 GHz frequency and with the electron density of 1019/cm3 and spin-lattice relaxation 
time of 0.1 ms. The saturation constant s = 10–3 requires
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 (4.74)

which is equivalent of the transverse field strength of

 B B 34 T1
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when the line width of the allowed transition is 35 MHz and the static field strength is 1.8 T, 
as for Nd3+ ions in a LMN crystal. The dielectric losses are then
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for the loss tangent δ = 10–4. Such a power can be absorbed at 1 K without large tempera-
ture drop at the interface between the solid and the coolant, but increasing the saturation 
parameter by several orders of magnitude would turn out problematic. The crystal over-
heating, however, does not explain in this case the discrepancy between the observed max-
imum nuclear polarizations of about 80% and the electron polarization of nearly 100%. 
The heating of the crystal, however, is a critical factor because if the temperature is raised 
sufficiently, the Orbach process may start to dominate in the spin-lattice relaxation, which 
becomes quickly substantially faster because of the steep temperature dependence. This 
results in larger magnetic power absorption and ultimately in a thermal run-off.

The cavity losses for the Q-factor Qcav = 103 are similarly
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and they are much higher than the magnetic and dielectric losses, particularly because the 
cavity volume must be substantially higher than that of the crystal, in order to ensure good 
cooling and to provide space for the NMR coil for polarization measurement.

Leakage Factor
Another factor which may reduce the nuclear polarization below the value predicted by Eq. 
4.71 is relaxation by impurity electronic spins other than those that are used for the DNP by 
the solid effect. Assuming that these cause nuclear spin-lattice relaxation at the rate

 P P ,n
n

n

(imp)

1τ
= −

′
�  (4.78)

Eqs. 4.63 are easily modified by adding this term to the second equation. This causes a 
straightforward modification into the results: the equilibrium polarization becomes
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 (4.79)
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is called the leakage factor. The rate of nuclear polarization growth is also slightly changed 
and Eq. 4.72 becomes
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  (4.81)

We notice that if α /s = 0.1, f needs to be around 1 in order to explain a 10% discrep-
ancy between the experimental DNP and Eq. 4.71. Variation of the microwave power thus 
allows to control the leakage term and to measure the leakage factor, if all other parameters 
are known.
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At this point it is useful to consider a practical example of an LMN crystal with 1% of 
the La atoms replaced with Nd [12]. The concentration is then roughly C = 4 × 105 and  
α = 8 × 10–5. The nuclear spin relaxation time in an undoped crystal may be 105 s at 1 K, 
and the electron spin relaxation time is roughly 10–4 s at 2 T field. These give the leakage 
factor f = 0.3, which is too small to explain the experimental nuclear polarization of 70% 
at 1.2 K temperature with high microwave power.

A possible explanation is that the microwave field also induces transitions in the impu-
rity electron spin system and therefore increases the polarization leakage. This can be 
expected if the impurities have such broad resonance lines that they cannot be observed. 
Alternatively, the phonon system may be overheated at frequencies close to the electron 
spin resonance, thus causing faster electron spin-lattice relaxation and therefore larger 
polarization leakage through nuclear spin-lattice relaxation.

Diffusion Barrier
Nuclei nearest to the electronic spin have their resonance frequency shifted significantly 
from its average value in the material, because of the static part of the dipolar field of the 
electron, Eq. 2.4. This is

 B
S
r4

1 3cosz
e zstatic 0
3

2µ
π

γ
θ( )= − −

�
 (4.82)

which has the value of 1.76 mT at a distance of 1 nm from an electron spin S = 1/2 with 
a g-factor 2. This may be compared with the dipolar field of protons with the density 
0.79 × 1023 cm–3, Eq. 2.7, which is 0.4 mT. Protons within the radius of about 1 nm from 
the electron have their frequency shifted more than the dipolar width of the bulk material; 
their number is above 300 in this volume. If the electron density is 1019 cm–3, about 4% 
of the protons have a resonance frequency shifted out from the resonance line of the bulk 
material. These protons, however, are most effectively polarized by the solid effect, and we 
must ask the question whether the spin diffusion may be limited so that it will dominate the 
speed of the spread of the polarization into the bulk material.

Experimentally the question is best studied by observing nuclear spin relaxation limited 
by the diffusion barrier radius b, defined as

 b 4 ,n

e n

3

0

π
µ

ω
γ γ

≅ ∆
�

 (4.83)

where Δωn is the nuclear dipolar linewidth. Within the barrier relaxation is fast and it is lim-
ited by spin diffusion outside the barrier. The decay of average polarization then becomes 
non-exponential and can be analyzed in the terms of an appropriate model. These will be 
discussed in the next chapter.

In solid effect the diffusion barrier does not seem to limit the polarization growth speed 
at the usual paramagnetic center densities around 1019 cm–3. This may be due to the fact 
that during saturation of the forbidden resonance line the electron spins have significant 
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probability of finding themselves in a state with zero z-component, during which time the 
diffusion barrier vanishes and nuclei within the diffusion barrier may cross-relax so that 
their polarization can diffuse outwards.

Phonon Bottleneck
The phonon bottleneck was seen to cause non-exponential spin-lattice relaxation of the 
electron spins in Chapter 3, with the approach of equilibrium at the time constant of στ1e 
where σ is the phonon bottleneck constant defined by Eq. 3.100. A strong phonon bottle-
neck causes the phonon system to appear as heated up to a higher temperature, although 
in fact their distribution function may be not the equilibrium Maxwell–Boltzmann distri-
bution. The electronic spin system is warmed up to this temperature, which leads to the 
replacement of Eqs. 4.68 by

 P s P P
P P
P P

P1 ,e
e

e n
e

e1

0

0
0τ σ( )= − − +

−
+









�  (4.84)

while the second equation remains the same because the bottleneck only influences the 
first-order relaxation transitions but not the much less frequent crossed relaxation transi-
tions. This situation has been analyzed carefully by Abragam and Goldman [3].

In the absence of nuclear polarization leakage, the main effect of the phonon bottleneck 
is to lengthen the polarization build-up time. The phonon bottleneck has little effect in the 
DNP by solid effect if the leakage factor f is small, but it begins to reduce the polarization 
when σ > (  fα)–1, which requires a rather strong bottleneck coefficient [3].

4.4.2 Differential Solid Effect

If the resonance line of the electron spin system is not narrow in comparison with the 
nuclear Larmor frequency, it is possible that both crossed transitions are saturated at 
the same time. If the electron line is completely inhomogeneous with negligible cross- 
relaxation, the rate equations 4.68 can be modified under the condition that the saturation 
by allowed transitions causes negligible change in the electron polarization, at least in 
dynamic equilibrium. Such a situation may arise if the electron resonance line is composed 
of many hyperfine lines, for example. It may also happen whenever a ‘hole’ can be burned 
in the electron resonance line due to the absence of cross-relaxation.

The steady-state nuclear polarization then becomes

 P P s s
s s P1

,n 0

0
2α ( )= −

+ + −

+ −

+ −
 (4.85)

where the second-order transition saturation factors are

 π ατ ω ω ω( )= ±±s g
2

,e n1 1
2  (4.86)
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and g(ω) is the normalized lineshape function of the electron resonance line. If the elec-
tron frequencies are spread over a spectrum much wider than that of the nuclear Larmor 
frequency, the nuclear polarization as a function of microwave frequency will resemble the 
derivative of the electron absorption spectrum. This is called the ‘differential solid effect’ [2].

4.5 Cross-Effect

Phenomenological Model

Hwang and Hill [25] introduced in 1967 a phenomenological model to describe their 
 previous results [26] of DNP in polystyrene doped with Ley’s radical, obtained at 4.2 K 
temperature and 2.5 T field. The model described the microwave frequency dependence of 
the dynamic enhancement of proton polarization in three samples with different radical con-
centrations, but required the introduction of three adjustable parameters obtained by fitting 
the experimental frequency dependences of the nuclear spin polarization enhancements.

In the experimental conditions of Ref. [26], the EPR line was thought to be primarily 
due to hyperfine structure and therefore consist of many narrow spin packets broadened 
slightly by dipolar interactions among the packets and with nuclear spins. This picture of 
the inhomogeneously broadened EPR line composed of ‘spin packets’ was originally intro-
duced by Portis [27] in 1953 to describe the saturation of F-centers created by irradiation, 
with a low density.

The spin packets were thought to be saturable almost independently, but unlike the dif-
ferential solid effect, the DNP was based mainly on allowed transitions followed by stim-
ulated emission and multispin flip-flops between the spin packets interleaved spatially. 
The nuclear spin polarization then followed the derivative of the EPR lineshape, because 
the crossed transitions involving nuclear and electron spins had asymmetric rates when the 
microwave irradiation was off-resonance.

The cross-effect might describe correctly spin systems with such low density that the 
dipolar energy reservoir is very small, so that the spin packets are almost independent. The 
rates of transitions producing DNP are then rather slow. In systems with such high density 
that DNP is fast, the nuclear spins couple with the electron dipole-dipole energy reservoir 
with a much faster rate than with individual spin pair or multispin transitions, independent 
of whether stimulated emission or virtual photons are evoked. In any case, the proponents 
of the cross-effect failed to model the contribution of virtual photons in their off-reso-
nance saturation, and ignored that the differential solid effect transitions require such a 
high microwave power that the cross-effect transitions would be oversaturated.

The three parameters obtained by fitting the experimental frequency dependences of the 
nuclear spin polarization enhancements were as follows:

• the width of the saturating ‘ensemble’ (probably meaning the width of the ‘hole burnt’ in 
the EPR line – the original paper [25] is not very clear at this point);

• the saturation parameter s defined by Eq. 3.59;
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• an ad hoc parameter relating the RF-induced transition rates with those caused by 
spin-lattice relaxation.

The fit yields saturation parameters suggesting that at low electron spin concentration 
the DNP might be dominated by the solid-effect transitions, while the high-concentration 
sample could be dominated by spin-temperature effects. This conclusion is also supported 
by the variation of the ad hoc parameter with the electron spin concentration yielded by the 
fits. The hole widths yielded by the fits suggest that the lower concentration samples saw a 
much higher RF field strength, as can be expected.

Our conclusion is that the cross-effect might be observed in materials with low concen-
tration of electronic impurities, which is not of greatest interest for polarized targets. On 
the other hand, applications in chemistry and biology may be satisfied by more modest 
polarization enhancements and with low concentration of paramagnetic impurities; in dis-
solution DNP and magic angle spinning MAS-DNP the cross-effect may therefore offer a 
good model for DNP [28].

The success of the DNP by cross-effect at high temperatures (>10 K) and low radical 
concentrations is amplified by the ingenious development of biradicals that naturally create 
pairs of cross-relaxing electron spins in a matrix where the spin concentration is otherwise 
so low that cross-effect is less probable that the differential solid effect [29].

Extension of the Cross-Effect Model to Low Temperatures

In order to develop a theoretically sound model for the cross-effect that is valid at low 
temperatures, Wenckebach first built a quantum statistical model to describe the EPR line 
in the density domain where the spectral diffusion due to cross-relaxation transitions is not 
fast enough to obtain a constant Zeeman temperature of the electrons in the rotating frame 
[30]. Instead then, the Zeeman temperature of each spin packet will evolve individually 
and reach an equilibrium value that is different for each packet.

Rather than going into mathematical details, we shall here only briefly overview the 
physical principles and the main results of the model of Wenckebach.

The EPR line was thought to consist of these spin packets with width of 10 MHz, much 
broader than the dipolar width which was in the range around 0.3 MHz. He then described 
the saturation of this line by defining the saturation parameter s of Eq. 3.59 and a cross- 
relaxation parameter sff = Wff T1S where Wff describes the rate of the cross-relaxation and T1S 
the electron spin-lattice relaxation time [30]. The Larmor frequencies of spin packets do 
not overlap, and the spectral diffusion occurs only due to the dipolar widths of the packets. 
The rate of cross-relaxation is approximately Wff = πM2D/(2Δp) where M2 is of the order of 
the second moment of the homogeneous line broadening, D is the homogeneous line width 
and Δp is the width of the spin packet.

The spectral diffusion is then described using the saturation and cross-relaxation 
parameters s and sff, by writing the simultaneous rate equations for the polarizations and 
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non-Zeeman energies of all spin packets. For 2n spin packets this involves the solution of 
2n + 2 differential equations, which yield the 2n Zeeman temperatures of the spin packets 
and their common non-Zeeman (spin-spin interaction) temperature.

In the derivation of the above equations, the energy balance was taken into account in the 
same way as in the model of Borghini that covers the case of fast spectral diffusion, as was 
described in Section 4.3.2. By adjusting the cross-relaxation rate parameter sff high enough, 
the model of Wenckebach coincides with that of Borghini [9], which gives confidence for 
the soundness of the principle and approximations that needed to be made [30]. On the 
other hand, if the temperature is assumed to be so high that a linear approximation can be 
made in the density matrix and polarization, the equations reduce to those of Provotorov 
[15] for cross-relaxation.

Using his model Wenckebach simulated the influence of the cross-relaxation parameter 
on the shape and width of the hole burnt in the EPR spectrum of TEMPO radical, with 
the result that at s = 10 and sf f < 102 a hole is burnt in the spectrum, while at sff > 104 the 
cross-relaxation is sufficient to establish a common Zeeman temperature in the entire spec-
trum [30]. The simulation was made for 3.4 T field and 1.5 K lattice temperature.

The polarization of the nuclear spins in the cross-effect is obtained mainly by the simul-
taneous flip of one nuclear spin and the flip-flop of a pair of opposite electron spins whose 
Larmor frequencies differ by the Larmor frequency of the nuclear spin; this triple flip 
conserves energy and is therefore frequent. In the absence of microwave irradiation, these 
transitions bring the nuclear spin system to the lattice temperature. When the off-resonance 
microwave irradiation is turned on, it creates a hole in the EPR spectrum and a steep gradi-
ent in the spectral polarization of the electrons; this difference in the electron spin polariza-
tion is then transferred to the nuclear spin polarization [30]. The simulation in 3.4 T field 
and 1.5 K temperature of a glass with protons and 13C spins doped with TEMPO shows 
that at sf f > 104 the different nuclear species reach practically the same spin temperature, 
while at sf f < 103 a substantially lower inverse spin temperature results and the 1H and 13C 
spin temperatures are clearly different [30]. As the parameter sff depends on the electron 
spin density and spectral width, these results are directly relevant for the choice of the free 
radical and density of doping.

4.6  DNP of Hyperfine Nuclei

The nuclei in paramagnetic atoms, molecules and the atoms just around the paramagnetic 
centers in crystals and other solids may have their wave function overlap with that of the 
paramagnetic electronic system. This leads to the interaction of Eq. 3.21, which has two 
terms: the scalar or Dirac term and the dipolar term leading to anisotropy. The scalar term 
alone splits the narrow EPR line into narrow hyperfine components, as was discussed in 
Section 3.2.2. The selective saturation of one or more of these lines will cause the popu-
lation ratios of the hyperfine magnetic levels change, and leads to DNP of the hyperfine 
nuclei.

                     

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108567435.005
https://www.cambridge.org/core


 4.6 DNP of Hyperfine Nuclei 185

Let us assume a system of dilute paramagnetic atoms or ions in a single crystal where the 
axial symmetry leads to the Hamiltonian

 A S I b I S I S1
2

,HF z z ( )= + ++ − − +H � �  (4.87)

where S = 1
2

 is the electron spin and, for simplicity, also the nuclear spin is I = 
1
2 . In a high 

field the energy levels are then admixtures given by Eq. (4.87) as shown by Figure 4.6. In 
high field the electron Zeeman splitting is larger than A ℏ, whereas the nuclear Zeeman 
splitting is often (but not always) smaller than A ℏ(see Figure 3.3). If the anisotropic term 
is smaller than the isotropic one, the electron resonance line is split by the hyperfine inter-
action with this single nucleus to 2I + 1 = 2 resolved components which can be saturated 
individually. The magnetic energy levels of this simplified system are, from Eq. 3.26,

 µ( ) ( )= +E m m g B Am m, ;S n B n S0  (4.87a)

these are illustrated in Figure 4.6.
Let us denote the level populations by pi , i = a, b, c, d, normalized so that

 p p p p 1.a b c d+ + + =  (4.88)

If the transition a–c is saturated by a transverse microwave field, the populations of the 
corresponding energy levels are equal so that

 p p .a c=  (4.89)

On the other hand, relaxation transitions tend to establish the population ratios determined 
by the Boltzmann factors

 �p
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Figure 4.6 Magnetic energy levels of hyperfine-coupled pair of electron and nuclear spins 1/2, 
together with the state vectors and energy differences of the allowed RF transitions that generated 
DNP
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and
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 (4.91)

By solving the four equations we obtain the hyperfine nuclear polarization

 P p p p p B B
B B

2 1
2 1

.n a c b d= + − − =
− ′ −
+ ′ +

∗  (4.92)

If the temperature is low so that B ≫ 1, the maximum nuclear polarization becomes
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 (4.93)

assuming that B′/B ≈ 1.
When the transition b–d is saturated, the equations to be solved are

 p p ,b d=  (4.94)
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and
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In this case the nuclear polarization becomes

 P B B B
B B B

/ 2
/ 2

.n =
+ ′′ −
+ ′′ +

∗  (4.97)

If again the temperature is low so that B ≫ 1 and it is assumed that B″/B ≈ 1, the maximum 
nuclear polarization reaches
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 (4.98)

In both of the above cases, the polarization of the hyperfine nucleus is positive; it is thus 
impossible to obtain negative nuclear polarization by saturating the first-order transitions 
of the hyperfine line of the electron. The correction due to the hyperfine nuclei to the polar-
ization of the non-hyperfine nuclei, whether they are same nuclear species or background 
nuclei, is thus larger for negative polarization than for positive polarization. This correc-
tion, however, is usually smaller than 1% because the relative abundance of the hyper-
fine nuclei is at most the same as the abundance of the dilute electrons. Furthermore, the 
hyperfine nuclei can be diluted by using isotopic enrichment so that the electrons belong 
to isotopes with no nuclear spin. An example of this is the Nd3+ ions in LMN targets where 
the enrichment with Nd was used.
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When the crossed transition a–d is saturated with a large microwave field parallel to the 
steady field, the hyperfine nuclear polarization is obtained similarly

 P B B
B B B

1
1 2

1,n

1 1

1 1 1=
− ′ ′′

+ ′′ + ′ ′′
≅∗

− −

− − −
 (4.99)

where the numeric value refers again to the case of low temperatures. In the case that the 
transition b–c is saturated, requiring also a high microwave field parallel to the steady field, 
the polarization of the hyperfine nuclei reaches at low temperature the same value

 P B B
B B B

1
1 2

1.n

1 1

1 1 1=
− ′ ′′

+ ′′ + ′ ′′
≅∗

− −

− − −
 (4.100)

The crossed transitions happen at the frequency of the electron spin resonance of the isoto-
pic species with no nuclear spin. This transition leads to no nuclear polarization in materi-
als such as LMN doped with Nd3+ ions, and is therefore of no major concern for DNP using 
the solid effect, if the first-order forbidden transitions are well resolved from the main 
resonance line of the electrons.

If the hyperfine nucleus has a spin higher than ½, the derivation of their polarization 
becomes arithmetically more complicated although straightforward. In all cases the polar-
ization is positive, however.

In glassy materials doped with free radicals or metallo-organic complexes, the hyperfine 
Hamiltonians are generally anisotropic, in particular for protons or deuterons belonging to 
these molecules. The DNP of these hyperfine nuclei cannot then be simply obtained using 
the above expressions. The cases of EHBA-Cr(V) and BHHA-Cr(V) have been studied in 
deuterated butanol with about 2% unsubstituted hydrogen [31]. Their hydrogen NMR lines 
at high positive polarization are shown in Figure 5.7, which indicates that the polarization 
of all hyperfine nuclei corresponds to the same sign of spin temperature as that of the matrix 
protons. At negative polarizations the hyperfine nuclei are polarized negatively, which 
proves that they are cooled by the same mechanism as the matrix nuclei. Unfortunately there 
is no quantitative study of the magnitude of the polarization of hyperfine coupled nuclei, the 
main reason being that at the time of these studies the sweep widths and dynamic ranges of 
the RF sources and Q-meters were not well adapted to sweep width well in excess of 1 MHz .

The above discussion on the polarization of the hyperfine nuclei applies therefore to the 
case of well-resolved EPR lines, and for broader EPR lines each case should be studied 
individually.

4.7 The Overhauser Effect

Overhauser proposed in 1953 [32] that the saturation of the resonance of conduction elec-
trons in a metal will lead to nuclear polarization, because the nuclear spin-lattice relaxation 
is very fast due to simultaneous flips of the electron and nuclear spins. Despite general 
scepticism among the leading experts, Carver and Slichter [33, 34] proved this experi-
mentally in metallic lithium powder at 350 K temperature (!) and 3 mT field, where they 
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reached an enhancement of the 7Li spin polarization by a factor of 100. They also demon-
strated similar results in liquid ammonia with dissolved sodium, where the sodium atoms 
dissociate into diamagnetic Na+ ions and paramagnetic electrons, which move rapidly in 
the liquid and cause fast proton spin relaxation.

In the free-electron model of metals, the thermal motion excites electrons above the 
Fermi surface. This gives rise to a temperature-independent susceptibility due to the elec-
trons, which have their energy in the band of about kT around the Fermi energy EF. In this 
band the population ratio of the magnetic levels is given by the Boltzmann ratio B

 �N
N

e B ,kT/ 1e= =ω+

−

− −  (4.101)

while the remaining conduction electron spins are paired and therefore contribute nothing 
to the susceptibility.

In a high field the spin Hamiltonian of a single conduction electron and a nearby nucleus is

 g B S B I A S I AI S I S,B z n z e z n z0 0µ γ ω ω= − + ⋅ = + + ⋅H � � �  (4.102)

where the scalar term AI S⋅  is due to the overlap of the electron and nuclear wave functions. 
Although the electron interacts simultaneously with several nuclei, we may derive the rate 
equations by treating one electron-nucleus pair at a time, and then allow A to have varying 
strengths when averaging over all spin pairs. In this scalar term only the part AIzSz has diag-
onal elements so that to a good approximation the energy eigenvalues are

 E g B m B m Am m .B S n I I S0 0µ γ= − +�  (4.103)

In this system the electron and nuclear resonance frequencies are (instantaneously)

 �
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 (4.104)

because the first-order electron spin transitions are those with ΔmS = ±1, ΔmI = 0, and 
the nuclear spin transitions with ΔmS = 0, ΔmI = ±1. For simplicity we shall assume that  
S = 1/2 and I = 1/2. We may then label the four instantaneous energy states as shown in 
Figure 4.7, which shows the first-order RF transitions and the dominant relaxation transi-
tions with ΔmS = ±1, ΔmI = 0 and ΔmS +ΔmI = 0; the relaxation transitions ΔmS +ΔmI = ±2 
and ΔmS = 0, ΔmI = ±1 are very slow in comparison with the first ones. It is this relaxation 
behavior which makes the Overhauser effect work.

Referring to the notation of Figure 4.7, the magnetic energy differences are
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and in thermal equilibrium without saturating microwave field, the population ratios of the 
eigenstates pi, i = a to d obey the Boltzmann ratios
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If the transition a–c is strongly saturated by a resonant transverse field, the populations of 
these energy levels are equalized so that

 p p .a c=

At the same time the fast spin-lattice relaxation transitions keep the Boltzmann ratios 
unchanged:
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Because the sum of population numbers is p p p p 1,a b c d+ + + =  we may now solve these 
equations to get the nuclear polarization
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Figure 4.7 The Overhauser effect in a metal. The transitions Wij are induced thermally and tend to 
establish thermal equilibrium; the thermal transitions with dashed arrows are fast, whereas those 
with ΔmS +ΔmI = ±2 and ΔmS = 0, ΔmI = ±1 are slow and they are not marked with arrows. The 
transverse RF field induces transitions at the rate We between the states a and c and/or between 
states b and d
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If also the transition b–d is saturated simultaneously, we have p p ,a c=  p pb d=  and  
pb = pc / B and

 P B
B

P1
1

.n e=
−
+

=  (4.110)

In the limit of strong saturation at low temperatures, the nuclear polarization there-
fore becomes equal to the polarization of the conduction electrons (with opposite sign 
if the nuclear gyromagnetic moment is positive) that are thermally excited above the 
Fermi surface. Only one sign of polarization is obtained, however; if the sign of the 
nuclear gyromagnetic factor is negative, the sign of polarization is the same as that of 
the electrons.

In practice each unpaired electron couples with many nuclei, and the nucleus couples 
with many electrons simultaneously. This results in an electron spin resonance line where 
the two first-order RF transitions of Figure 4.7 cannot be resolved. This can be thought to 
result from the averaging of A over a range of values that depend on the overlapping of the 
nuclear and electron wave functions at particular instants and positions. Both first-order 
transitions are therefore always saturated and the electron resonance line is as if it were 
homogeneously broadened because of the hyperfine coupling with the nuclei.

In the high-temperature limit the strong saturation at the center of the electron absorp-
tion line therefore results in the enhancement of the nuclear polarization over its thermal 
equilibrium value by
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which can be several hundred for protons in practice.
In the Overhauser effect it is important that nuclear relaxation takes place predominantly 

via the flip-flop transitions b–c and rarely via the double-flip transitions a−d.
In polarized targets the Overhauser effect has a limited applicability because a very high 

RF field strength and a low steady field are required. The metal must be finely powdered 
and the strong heating precludes cooling to low temperatures. As a result high nuclear 
polarizations are unattainable.

The Overhauser effect also works with paramagnetic ions or free radicals in a solution 
[35] (see also Section 7.5 of Ref. [36]) where the Brownian motion induces the nuclear 
relaxation via electron-nucleus flip-flop transitions with ΔmS +ΔmI = 0. Similarly, the 
Overhauser effect has also been observed in solids containing paramagnetic free radicals 
strongly coupled by the exchange interaction [37–39].

In liquids the heating by the microwave field is less strong, but because no other sub-
stances than helium are in liquid state at low temperatures, low nuclear polarizations are 
again obtained.

The Overhauser effect in liquid state could be useful for enhancing the signal size and 
the contrast in magnetic resonance imaging (MRI). The problem is that free radicals tend 
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to be toxic in living organisms. One way to alleviate this would be to use short-lived exci-
tations of diamagnetic molecules into a paramagnetic state, such as triplet states accessible 
by resonant optical absorption.

Tests in Bitter Magnet Laboratory of MIT have revealed that Overhauser effect also 
works in insulating solids such as polystyrene in which BDPA radical was dispersed [1]. 
These tests were carried out at high fields up to 18.8 T and at temperatures around 80 K, 
common in DNP magic angle spinning experiments. Microwave power variation studies 
showed that the Overhauser effect saturates at considerably lower power levels than the 
solid effect in the same samples. These results provide new insights into the mechanism 
of the Overhauser effect, and also provide a new approach to perform DNP experiments in 
chemical, biophysical and physical systems at high magnetic fields.

4.8 Frequency Modulation Effects in DNP

Microwave frequency modulation (FM) has been sometimes applied during DNP, in par-
ticular with LMN targets where the solid effect is used. In such cases the improvements of 
a few percent in the ultimate proton polarization has been explained by its compensating 
effect on the inhomogeneity of the magnetic field in the target volume. Other cases where 
FM is effective include the cross-effect (Section 4.5) and differential solid effect (Section 
4.4.2). Because it was known that in EHBA-Cr(V) the dynamic cooling of the spin-spin 
interactions is effective, the dramatic improvement of the deuteron polarization of glassy 
deuterated butanol doped with EDBA-Cr(V) came as a surprise [21].

In Section 3.5.3 we discussed the effect of microwave FM on the in situ EPR spectra 
obtained by the bolometric technique. The experimental observations in a large deuter-
ated target (see Figure 3.11) were clear and convincing, but they were not quantifiable 
theoretically. It was suggested that the dispersion part of the complex susceptibility of the 
paramagnetic dopant EDBA-Cr(V) can produce the effects seen when the frequency is 
not modulated, but this alone could not explain the observed enhancement of microwave 
power absorption with FM. It was therefore also suggested that when the frequency is 
not modulated and power is applied near the optimum frequencies, a hole is burned in 
the EPR spectrum because of the interaction of the paramagnetic electrons with nearby 
hyperfine nuclei that are polarized. When modulating the frequency with sufficient ampli-
tude, all hyperfine lines within the modulated range share the power and, together with 
cross- relaxation, the entire EPR spectrum is responding collectively rather than only by 
the narrow part in which the hole was burnt. This qualitatively explains the higher power 
absorption and higher speed of DNP. The DNP speed enhancement by a factor up to 2 is 
shown by Figure 4.8 [21].

The hypothesis of slow cross-relaxation in EDBA-Cr(V) is not supported by the 
cross-relaxation measurement between protons and 13C spins in undeuterated butanol with 
5% water doped with EHBA-Cr(V) [40]. The polarization recovery time constant for 13C 
spins below 100 mK was found to be in the order of 3,000 min, which can be compared 
with that measured between protons and deuterons in partially deuterated ethylenglycol 
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(EG-d4) doped with EG-Cr(V) around 5,000 min. This explains why equilibrium could be 
obtained between the spin temperatures of the various nuclei after long DNP. On the other 
hand, when turning the microwaves on, the same time constant in EG-Cr(V) was 2 min 
with 0.3 mW/g power, and it was found to be inversely proportional to the microwave 
power with at least three times higher power [11]. This is in strong contrast with the results 
on EHBA-Cr(V) featuring recovery time constants of 295 min with 4.5 µW/g and 190 min 
with 13.5 µW/g [40]; this can be interpreted as a hole burned in the EPR line already at 
these low power densities.

The final deuteron polarization of the large deuterated target of SMC was higher by a 
factor up to 1.7 when applying FM [21]. In order to reach the maximum deuteron polar-
izations of +51% and –60%, the NMR polarization measurement duty cycle had to be 
reduced, because the Q-meter was found to cause some saturation in continuous measure-
ment mode [41]. In the case of continuous NMR measurement, the saturation time constant 
was 180 h, i.e. just in the same range as the equilibrium time constant for different nuclei. 
This will be discussed in more detail in Section 6.2.5.

Small sample DNP tests with the same target material yielded better results without FM, 
but these tests were carried out with other microwave sources and perhaps with higher 
power density [42]. Also, the Q-meter coil had less target material in the proximity of the 
coil wire. The two large double-cell targets of SMC, with different magnetic field uniformi-
ties, showed identical improvements with FM; this excludes that the compensation of the 
magnetic field inhomogeneity could contribute significantly to the enhancement. Because 
of the differences of response to FM between small samples and the large targets, a study 
was carried out in order to see possible effects due to the electrodynamic response of the 
large volumes of the cavity and the target.

Firstly, the frequency fm at which the full enhancement due to FM was reached was 
determined to be about 100 Hz, which is close to the inverse spin-lattice relaxation time 
of the EDBA-Cr(V). Modulation at a frequency higher than this brought little additional 

50

25

0

–25

–50
1 10

Time (min)

P
D

 (%
)

100 1000

Figure 4.8 Deuteron polarization growth as a function of time in the two oppositely polarized halves 
of the SMC double-cell target made of deuterated butanol with 5% heavy water and 7 × 1019 spins/
cm3 of EDBA-Cr(V) [21]. Black dots: no FM; open circles: 20 MHz peak-to-peak FM at 1 kHz 
frequency. The natural emission bandwidth of the EIO source was 0.1 MHz. The target cells were 
40 cm long and 5 cm in diameter, and the homogeneity of the 2.5 T superconducting magnet was 10–4
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absorption. Therefore, all subsequent power absorption tests were carried out at fm = 500 Hz 
or 1 kHz, despite of the fact that at low power the additional absorption levelled off at a 
somewhat lower modulation frequency.

Secondly, the dependence of the additional power absorption on the amplitude of the FM 
(defined as the peak-to-peak frequency deviation) was studied using different input powers 
as shown in Figure 4.9. The absorbed microwave power was determined from the coolant 
temperature and the previously measured cooling performance of the dilution refrigerator. 
The additional absorption grows rapidly up to about 10 MHz p–p FM amplitude and then 
more slowly; when optimizing the p–p amplitude with regard to the resulting DNP, the 
highest values of positive and negative polarizations were obtained using 30 MHz p–p FM 
amplitude, at center frequencies of f + = 69.070 GHz and f – = 69.540 GHz, in a magnetic 
field corresponding to 106.45 MHz proton NMR frequency.

Thirdly, saturation of the magnetic absorption was studied with and without FM, at the 
optimum frequency f – = 69.540 GHz for the negative polarization and in the central part 
of the EPR spectrum [21]. The input power was measured by a calorimeter at room tem-
perature, and the additional magnetic losses in the target were obtained from the reading 
of the in situ bolometers. The results are shown in Figure 4.10 where the magnetic losses, 
measured with the bolometers, are plotted as a function of input microwave power, mea-
sured using the calorimeter at room temperature. As can be expected, when the microwave 
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Figure 4.9 Additional absorption due to FM, as a function of the peak-to-peak FM amplitude, at 
different microwave powers, from Ref. [41]. Highest deuteron polarizations were reached at 30 MHz 
p–p FM amplitude. Reprinted from Ref. [41], with permission from Elsevier
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frequency is tuned to the center of the EPR line, the power is insufficient to saturate the 
resonance, and therefore the FM has no effect in the relationship between the power in the 
input and in the cavity; the target is ‘black’ (using optical terminology). On the other hand, 
when irradiating the target at the frequency of optimum negative polarization, the target is 
semi-transparent, and the cavity power can be substantially altered by FM that influences 
the spectral spread of the power over the EPR line, and alters the standing waves in the 
cavity, thus making the power spread spatially more uniformly.

The improvement in the speed and final value of DNP with FM is demonstrated in 
Figure 4.11 where the time evolution of the deuteron polarization is plotted for the two 
opposite polarized cells of the SMC target [43]. On the left is shown the difference of the 
mean polarizations of the target cells, with no FM applied during the first 55 h of DNP. At 
time 55 h the FM with 20 MHz p–p FM was turned on in both EIO tubes feeding the two 
target cells; this is seen as a dramatic increase in the speed of DNP. On the right is shown 
the speed enhancement during the first 10 h of DNP, without and with 20 MHz p–p FM, for 
positively and negatively polarized cells.

Ajoy et al. have modified the FM techniques by applying swept microwave frequency 
combs [44] in a 7 T field. They observe that 13C DNP enhancement in their microdiamond 
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Figure 4.10 Relative magnetic losses in the deuterated target material, as a function of the microwave 
power. The small deviation B of the upper curves from straight lines is due to the small non-linearity 
of the calorimeter; here the frequency is tuned to the center of the EPR line. The lower curves describe 
power losses at the optimum frequency for negative DNP; in both of these the higher curvature B is 
due to increasing saturation of the resonant transitions at the semi-transparent edge of the EPR line. 
The difference of the two lower curves is due to the additional absorption caused by FM
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sample increases from 30 to 100 when applying the modulation. Furthermore, they spec-
ulate that applying this technique to samples doped with TEMPO with low density could 
produce gains better than one order of magnitude in the enhancement. A microwave fre-
quency comb is obtained by the modulation of the amplitude and/or phase of the micro-
wave source at a suitable radiofrequency; in the case of DNP using hyperfine broadened 
EPR spectrum, the suitable RF frequency should be equal to the hyperfine splitting. In the 
case of 6LiD, for example, this splitting is about 10 MHz.

When using solid effect for DNP with a hyperfine split EPR line such as that of 169Tm2+ 
(I = ½) in CaF2, Abragam and coworkers note that the saturation of the satellite of only one 
of the EPR lines results in its rapid depopulation, which can be cured by saturating the other 
line EPR during 4% of the time. This repopulates the original line and entails much faster 
DNP with the original satellite line that is saturated 96% of the time, as is described on p. 361 
of Ref. [24]. This is a clean mechanism for the benefit of FM in the DNP by solid effect.

Noda and Koizumi used microwave FM with peak-to-peak width of 100 MHz in 3.35  
and 6.7 T field in their DNP apparatus [45]. At 1.2 K and 6.7 T, they achieve high pro-
ton spin polarizations of +76% and −84% with short build-up time constants of 3.2  and 
4.1 min in a polystyrene film doped with 50 mM of TEMPO. The gain in polarization is 
by a factor of about 1.2 in a field of 3.35 T and the speed of DNP is practically unchanged. 
In contrast, the gain in the speed of DNP is remarkable in 6.7 T field, because the DNP 
becomes very slow without FM, for both concentrations of TEMPO. The authors suggest 
that the line width at higher field causes slower spectral diffusion and therefore a much 
slower DNP, when FM is not applied.
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Figure 4.11 Effect on turning on the FM in the BuOH-d10 target of the SMC [41]. (a) Difference of 
the opposite polarizations of the two target cells, when 20 MHz FM was turned on at time 55 h. (b) 
Initial 10 h of DNP growth without FM (open symbols) and with 20 MHz p–p FM (black symbols). 
The circles refer to negative polarizations and squares to positive polarizations. The microwave 
power and frequency were continuously optimized during data taking. Reprinted from Ref. [41], 
with permission from Elsevier.
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5
Nuclear Magnetic Resonance and Relaxation

We shall first discuss the origin of the spins and magnetic dipole moments of the nucleons 
and nuclei (Section 5.1). The nuclear magnetic resonance (NMR) lineshape in solids will 
then be reviewed in Section 5.2 in general theoretical terms first, before turning to the 
microscopic sources of line broadening that are valid for solid materials only. Here fre-
quent reference is made to Chapters 1–3. The relaxation mechanisms of nuclear spins will 
then be described in Section 5.3.

5.1 Nuclear Spins and Magnetic Moments

5.1.1 Nucleon Dipole Moments

A nucleus with a non-zero spin I has a magnetic dipole moment defined by Eq. 1.11

 µ γ µ= =
�

�� gI I  ˆ  ˆ,N  (5.1)

where γ is the nuclear gyromagnetic ratio and

 e
m2N
p

µ = �  (5.2)

is the nuclear magneton which is defined identically to the Bohr magneton of Eq. 1.9 with 
proton mass mp replacing the electron mass. Equation 5.1 also defines the nuclear g-factor 
whose experimental values for the proton, neutron and heavier nuclei deviate substantially 
from the Dirac value 2, a fact which suggests that nucleons and nuclei have a rich structure.

The nuclei consist of protons and neutrons, the nucleons, which themselves are the sim-
plest nuclei with spin 1/2 and g-factors of 5.587 and –3.826, respectively. In the naïve 
non-relativistic quark model the nucleon has three quarks arranged in a symmetric S-state, 
and the nucleon magnetic moment operator is

 ∑µ =
�

�� g q
m

I
2

 ˆ  ,n
i

i i

i
i  (5.3)

where the sum is over the constituent quarks with i = u, d labelling the quark flavors. The 
proton consists of two u quarks with charge qu = 2e/3 and one d quark with charge qd = –e/3, 
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200 Nuclear Magnetic Resonance and Relaxation

whereas the neutron is made of one u quark and two d quarks. Assuming that the quarks 
are pointlike and have g-factors close to 2, and that all quarks have the same mass mq, the 
expectation value of Eq. 5.3 yields the magnetic moment of (mp/mq ) Nµ  and –2/3( mp/mq ) Nµ  
for the proton and the neutron, respectively, using angular momentum algebra. The ratio of 
these magnetic moments is –1.5, very close to the experimental value –1.46. This was one 
of the first successes of the simple quark model of hadrons.

Using similar arguments and the magnetic moment of the Λ particle which contains 
one s quark, the naïve quark model also predicts values for the magnetic moments of all 
baryons containing u, d and s quarks. Such predictions are surprisingly close to the exper-
imental magnetic moments. In view of these and other successes of the model to predict 
the static properties of the ground states of baryons, it was mysterious that deep inelastic 
scattering of polarized muons on polarized protons and deuterons yielded spin-dependent  
structure functions of the nucleons whose integrals could not be understood without 
evoking models which involve only a small (30%) contribution of the quark spins to the 
nucleon spin, the rest being contributed by the orbital motion and by the gluons. [1, 2]. The 
dilemma has been theoretically resolved by taking into account the axial anomaly [3] that 
adds a gluonic component to the helicity of the proton. Furthermore, following the mea-
surements of the deuteron spin asymmetry and experimental tests of the Bjorken sum rule, 
the strong coupling constant could be determined with improved accuracy and the nuclear 
spin decomposition could be theoretically understood [4]. Perturbative quantum chromo-
dynamics (QCD) corrections played an essential role in reconciling the interpretations of 
the data taken using different polarized targets [5].

Deur, Brodsky and de Téramond review the present theoretical understanding of the 
nucleon spin in the light of the deep inelastic scattering of polarized muons and electrons 
on polarized targets [6]. They make the strong point that the nucleon spin provides a critical 
window for testing QCD, the gauge theory of the strong interactions, since it involves fun-
damental aspects of hadron structure which can be probed in detail in these experiments. 
This was one of the main motivations for developing in the 1970s and 1980s the large twin 
polarized target techniques for the polarized muon beams, and radiation-hard polarized 
target materials for polarized electron beams.

5.1.2 Nuclear Moments

Magnetic Moment
Table A3.1 shows the spins, magnetic moments and electric quadrupole moments of 
selected stable nuclei and some radioactive ones. The magnetic moments, defined by Eq. 
5.1, are expressed in Table A3.1 scaled by the nuclear magneton Nµ  of Eq. 5.2, which is an 
analogy with the Bohr magneton of Eq. 1.9.

The magnetic dipole operator for a nucleus is a sum of two terms originating from orbit-
ing protons and from the intrinsic spins of the nucleons [7]:
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where gL
k( )  and gI

k( )  are known as the orbital and spin g-factors. For protons the orbital 
g-factor is 1 and for neutrons it is 0, because neutral particles contribute no orbital magnetic 
moment. The expectation value of the z-component of this operator is the magnetic moment, 
which can be formally expressed using Glebsch–Gordan coefficients and the reduced matrix 

element µ�I Iˆ  describing the dynamics of the nuclear ground state with spin I:

 µ µ=
+







�I
I

I I
1

ˆ .

1
2

 (5.5)

The deuteron is experimentally known to have spin 1 and magnetic moment 
0.857438d Nµ µ= [7]. If the two nucleons were bound only by central forces, the ground 

state of deuteron would be 3S1 with L= 0 and S = 1, and the magnetic moment would be the 
sum of the moments of the proton and the neutron, which is 2.5% higher than the experi-
mental value. Corrections due to a tensor force between the nucleons lead to an admixture 
of the 3D1 state in the deuteron ground state wave function and the magnetic moment [7]

 P3
2

1
2

,d p n p n D D
MECµ µ µ µ µ µ= + − + +







+ ∆  (5.6)

where PD = 4.81% is the D-state probability and D
MECµ∆  ≈ 0.02 Nµ  is a theoretical correction 

due to meson-exchange current [7].
The 3H and 3He nuclei are isospin mirrors and angular momentum algebra yields the 

magnetic moments:
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where A 30µ ( )=( )  and A 31µ ( )=( )  are isoscalar and isovector contributions given by [7]:
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 (5.8)

and the probabilities Pi are those of the principal S-state S2
1/ 2  (0.897), the mixed-symmetry 

state S2
1/ 2′  (0.017) and the three D4

1/ 2 -states (0.086). The probabilities of the three P-states 
are small and are ignored. The meson-exchange term is small and positive for the isoscalar 
case, similar in magnitude to that of the theoretical correction for the deuteron, but it is 

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108567435.006
https://www.cambridge.org/core


202 Nuclear Magnetic Resonance and Relaxation

somewhat more significant for the isovector case. The model gives a rather precise result 
for the isoscalar moment, but the isovector moment has a larger error due to the fact that 
the corrections are more dependent of the model.

Among heavier nuclei 6Li has spin 1 and a magnetic moment 4.1% smaller than that 
of deuteron; the nucleus can be understood as a deuteron loosely bound to a 4He nucleus. 
Corrections from higher-state admixtures to the ground S-state are therefore small, and the 
6Li nucleus can therefore be used in a polarized neutron target with corrections which are 
not substantially larger than those applied for the deuteron.

Other slightly heavier nuclei that are simple and accurate to describe theoretically 
belong to the category of odd-mass nuclei; the reason for this is the Pauli exclusion princi-
ple, which tends to lead to the pairing of the equal nucleons in light nuclei. For odd-proton 
nuclei the magnetic moment often is close to [7]

 

µ µ µ

µ µ µ

= −






+ = +

=
+

+






−
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j j l

j
j

j j l
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 (5.9)

the experimental values of all odd-proton nuclei fall between these two predictions. 
Examples of the case = +j l 1

2  are 19F (l = 0) and 7Li (l = 1) whose magnetic moments are 
0.16 and 0.54 nuclear magnetons lower, respectively, than the values predicted by Eq. 5.9. 
For the case = −j l 1

2
, l = 0 a good example is 15N whose magnetic moment is –0.28298 Nµ  

while the prediction above gives –0.2645 Nµ .
Similarly, the magnetic moment of odd-neutron nuclei fall between the predictions

 
j l

j
j

j l

,                            1
2

;

1
,                  1

2
.

n

n

µ µ

µ µ

= = +

= −
+

= −
 (5.10)

A light nucleus whose magnetic moment falls 0.1 Nµ  below the prediction of the second 
equation 5.10 is 13C, which has l = 1, whereas 17O (l = 2) has a magnetic moment that is less 
than 0.1 Nµ  above the first of the two equations 5.10.

The magnetic structures of other light nuclei and of all heavier nuclei are more compli-
cated, with the exception of 14N. The shell model of the 14N is a zero-spin 12C core with the 
remaining proton and neutron in a P1/2 state. It can be shown that their spins have probabil-
ity 1/3 to be oriented parallel to the 14N spin and a probability 2/3 to be oriented antiparallel 
to it [8]. Thus, the polarization of the 14N spin corresponds to 1/3 of the proton and neutron 
polarizations in this nucleus. The proton and neutron together are assumed to behave like a 
deuteron, and therefore produce a scattering asymmetry of

 ( )= −A A( N )
1
3

H .14 2  (5.11)
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Quadrupole Moment
The quadrupole moments of the nuclei are sensitive to the probabilities of the D- and 
higher states, and theoretical models describe only the lighter nuclei with reasonable 
accuracy.

Table A3.1 lists the electric quadrupole moments in addition to the spins and magnetic 
moments of selected stable nuclei and some radioactive ones. The magnetic moments, 
defined by Eq. 5.1 I g INµ γ µ= =� , are expressed in Table A3.1 scaled by the nuclear mag-
neton Nµ  of Eq. 5.2, which is an analogy with the Bohr magneton of Eq. 1.9. The magnetic 
moments of nuclei are obtained mostly from NMR measurements in diamagnetic liquids, 
where chemical shifts (to be discussed later in this section) up to several hundred ppm put 
limits to the uncertainty of their value; we note that the zeros in the end of the numbers 
given are not significant. The gyromagnetic ratios are related with the given experimental 
magnetic moments by Eq. 2.5:

 
I

.γ µ
=
�

  (5.12a)

Table A3.1 also gives the NMR frequencies of the free nuclei at 2.5 T magnetic field; this 
number is practical for finding the approximate frequency in any weakly magnetic material 
and in any field by

 f B f
2.5 T

.2.5=   (5.12b)

The natural abundances are given with 10 ppm resolution, but the last zeros are not 
significant.

We emphasize that the resonance frequencies of the nuclei in Table A3.1 refer to 
free nuclei, a condition which can be met with in atomic beam experiments. The NMR 
frequency in solids is shifted due to interactions with surrounding electrons and other 
nuclei, because solids have a high density. The resonance signal will then be shifted, 
broadened and possibly split depending on the detailed physics and chemistry of the sub-
stance. These and the resulting frequency dependence of the transverse RF susceptibility 
will be discussed in the following sections. The NMR signal measurement techniques, 
suitable for determining the nuclear polarization in polarized targets, are the subject of 
Chapter 6.

Nuclei with spin I ≥ 1 have a quadrupole moment, which is also listed in Table A3.1. 
The quadrupole frequency and splitting depends on the strength of the electric field 
gradient tensor at the location of the nucleus. This, in turn, depends on the chemical 
binding and environment of the atom in the material of interest, so that no universal 
frequency may be associated with the quadrupole moment. The influence of the quad-
rupole moment on the NMR absorption spectrum will be discussed with examples in 
Section 5.2.2.
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5.2 Transverse Magnetic Susceptibility and NMR Absorption Signal

5.2.1 NMR Linewidth in Linear Response Theory

The NMR technique of nuclear spin polarization measurement, which will be discussed 
in Chapter 6, relies on the accurate recording of the absorption lineshape. The lineshape 
depends on the various interactions of the nuclear moments among themselves, with 
moments of other spin species, and with electromagnetic fields due to the structure of the 
solid material. These interactions were already discussed in Chapter 2, and many results 
which are directly related with lineshapes were derived. In this section we shall discuss the 
lineshapes themselves in the limit of very low saturation where the linear response theory 
is valid and where the complications due to the spin dynamics can therefore be avoided. We 
recall here Eq. 2.140 which gives the condition to the RF field strength for the applicability 
of the linear response theory

 B
T t
1

,1 1
2 exp

ω γ
π

= <<  (5.13)

where 1/T2 ≈ D is defined by

 
H{ }
{ }

=
�

D
I

Tr

Tr
D

z

2

2

2 2
 (5.14)

and is related to the dipolar line width of the absorption signal; texp is the time during which 
the susceptibility is measured. In swept-frequency techniques a safe limit is obtained by 
replacing texp by the time required for scanning the FWHM of the absorption lineshape 
when the main cause of line broadening is the dipolar interaction.

If the frequency sweep is produced by a stepped-frequency digital synthesizer, the step 
interval is the relevant texp, which must be longer than D–1 so that the transverse magnetiza-
tion has time to stabilize after each step.

The requirement of Eq. 5.13 is most difficult to satisfy for nuclei with large magnetic 
moment in materials leading to a relatively narrow dipolar linewidth. As an example, pro-
tons in normal butanol or ammonia may be assumed to have D = 2π ·30 kHz, which leads 
to the requirement

 B
T t

D1 1

2
0.3 mT.1

2 expγ π πγ
<< ≈ =  (5.15)

This field limit is obtained at 1 mm radius from a wire carrying a current of 1.5 mA, and 
may be compared with the usual current of about 0.3 mA, which is normally applied in 
the proton NMR coil in a series tuned Q-meter circuit. It might be of interest to lower the 
current to 0.1 mA or below if a high precision (e.g. 1%) of the NMR signal shape or inte-
gral is needed. The lineshape distortion resulting from not obeying well the requirement of 
Eq. 5.13 can be obtained from the Provotorov equations, which were discussed in Section 
2.4.4.
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5.2.2 General Features of the Complex Susceptibility

Let us briefly summarize here the general characteristics of the lineshape functions and the 
complex transverse susceptibility, which were obtained in Sections 2.4.1 and 2.4.2 under 
the assumptions of linear response and high temperature for fairly narrow lineshapes. The 
lineshape functions for the absorption and dispersion were Fourier transforms of the pulse 
response G(t)

 g G t tdt1 cos
0
∫π( ) ( )∆ = ∆
∞

 (5.16)

and

 g G t tdt1 sin .
0
∫π( ) ( )′ ∆ = ∆
∞

 (5.17)

The integral of the absorption lineshape is normalized to 1

 g d 1∫ ( )∆ ∆ =
−∞

∞

 (5.18)

and the absorption lineshape is symmetric in the case of dipolar interactions only at high 
temperatures.

The derivatives of G(t) immediately after the pulse at t = 0 are related with the even 
moments of the absorption lineshape function

 ( ) ( )
= −











=

M
d G t
dt

1n

n
n

n

t

2

2

2

0

 (5.19)

and the odd moments are zero if the lineshape is symmetric, which can be shown to be 
the case for dipolar interactions. For n = 0 we get M0 = G(0) = 1, which agrees with the 
definition of G(t).

The dispersion lineshape can be expressed as a series expansion of 1/Δ

 ∑π( )′ ∆ =
∆ ∆=

∞

g
M1

,
n

n

n
0

2

2  (5.20)

which converges for values of Δ for which the second and higher terms in the sum are much 
smaller than 1; in practice this requires that Δ2 > 2 M2 in the case of dipolar lineshapes. For 
an infinitely narrow resonance, the dispersion lineshape is

 g M1 1 ,0π π( )′ ∆ =
∆

=
∆  (5.21)

which agrees with that of Eq. 2.83 obtained directly from the Kramers and Krönig rela-
tionship if we recall that the absorption line has antisymmetric components about zero fre-
quency, and that the dispersion part of the susceptibility is related to its lineshape function by
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 g
2

.0 0χ π ω χ( ) ( )′ ∆ = − ′ ∆  (5.22)

The absorption part of the susceptibility is similarly related to its lineshape function by Eq. 
2.85, which we rewrite here

 g
2

.0 0χ π ω χ( ) ( )′′ ∆ = ∆  (5.23)

We recall that these formulae assumed the absorption line to be narrow and that the polar-
ization to be low. The deviations due to nearly complete proton polarization, however, are 
rather small and can be often neglected if the frequency shift due to the internal magne-
tization is taken into account in the magnetic induction. At high polarization, however, 
the absorption line narrowing can be substantial, and the lineshape is different from that 
at low polarization; furthermore, the line often becomes asymmetric. Deviations for lines 
which are broadened by quadrupole interaction can be quite substantial, in particular at 
high polarization and at low field.

Equation 5.20 is practical for fitting experimental dispersion signals to theoretical 
expressions because the drift of the NMR circuit forces to have a reliable model for the 
signal shape at frequencies far from the Larmor frequency. Because the moments can be 
determined accurately from the absorption signal, these can be used for the calculation 
of the dispersion signal shape which enables a fit to be made to eliminate the circuit drift 
effects. This will be discussed in better detail in Chapter 6.

5.2.3 Broadening by Dipolar Interactions in Solids

Low Polarization
At high temperature the method of Van Vleck can be used for the calculation of the 
moments of the dipolar lineshape resulting from the truncated Hamiltonian of Eq. 2.100. 
For like spins the dipole-dipole interaction Hamiltonian was written in the form

 
r

I I I I
2

1 1 3cos 3 .D
j k jk

jz kz j k
0
2 2

3
2∑

µ γ
θ( )( )= − − ⋅

≠

H
�

 (5.24)

and the second moment was given by

 � ∑µ γ ( )∆ = +I I b1
3

1 ,
II

k
jk

2
0
2 2 4 2  (5.25)

where the lattice sum is over the square of the function of distances and direction cosines 
between the nucleus j and its neighbors k

 b
r

3
2

 
1 3 cos

.jk
jk
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2

3

θ
=

−  (5.26)

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108567435.006
https://www.cambridge.org/core


 5.2 Transverse Magnetic Susceptibility and NMR Absorption Signal 207

The fourth moment for like spins is by a factor of about three times the square of the second 
moment.

For a powder of cubic crystals the sum can be evaluated yielding the second moment

 µ γ ( )∆ = +� I I
d

5.1 1
1

II

2
0
2 2 4

6  (5.27)

where d is the lattice spacing between the like nuclei. This equation is also useful for glassy 
materials where the lattice spacing must be replaced by the average spacing between the 
like nuclei d = n1/3.

For unlike nuclei which have gyromagnetic ratios γI and γS, and corresponding Larmor 
frequencies so far apart that the resonance lines are well resolved, the dipolar Hamiltonian 
must be rewritten

 
r

I I
2

1
 

1 3cos 2D
I S

j k j k
j z k z

0
2

3
2∑

µ γ γ
θ( )= − ⋅ ⋅

≠

H
�

 (5.28)

because the term B due to mutual flip-flop transitions does not contribute, as was discussed 
in Section 2.3.1. The resulting second moment of spin I is 4/9 times that of Eq. 5.25

 S S b4
27

1 .
IS I S

k
jk

2
0
2 2 2 2 2∑µ γ γ ( )∆ = +�  (5.29)

In evaluating the sum for the case where the spins S are those of dilute electronic impurities 
one must approximate the distribution of distances and direction angles as random, which 
leads to the approximate expression for the second moment contribution.

High Polarization
The above formulae are only valid at high temperatures, which is not the domain of main 
interest in polarized targets. Abragam and Goldman have derived general equations for the 
lineshape functions without resorting to the high-temperature approximation:

 f H t t F t t dt
4
tanh

2
, cos , sin ,1 0 ∫

ω βω
β β( ) ( ) ( ) ( ) ( )∆ = ∆ + ∆ 

−∞

+∞

 (5.30)

where the functions H and F represent the real and imaginary parts of the expectation value 
of the anticommutator of the transverse spin components:

 
H t iF t I I t, , , ,

0
β β { }( ) ( ) ( )+ = − +�  (5.31)

where the subscript 0 refers to unperturbed conditions, and

 I e I e .i t i tD D=+ + + −H H�  (5.32)
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The function H( β,t) is even in β and t, and F( β,t) is odd in β and t . Analytical expres-
sions cannot be obtained for the general lineshape functions directly from these equations, 
but they can be used for numerical evaluations in principle. Some simple results can be 
obtained, however, directly from the symmetry of the functions. Notably, this leads to

 f f, ,β β( ) ( )∆ = − −∆ −  (5.33)

i.e. by inversing the spin temperature the lineshape function is antisymmetric with respect 
to the Larmor frequency at low polarization.

Moments of Dipolar Lineshapes
Abragam and Goldman [9] derived general expressions for the moments of dipolar line-
shapes at high polarization. The zeroth moment is

 ∫
π ω πω( )= ∆ ∆ =   = −

−∞

+∞

− +M f d I I I
2

, ,z0 1 0 1 0
 (5.34)

which is a more general proof of the linear relationship between the absorption lineshape 
function and the polarization, valid also at low spin temperatures only in the case of dipolar 
interactions.

We quote here similarly the results of Abragam and Goldman [9] for the higher moments. 
The nth moment, if defined as

 M
f d

f d

1
,n

n n∫

∫

( ) ( )

( )
=

− ∆ ∆ ∆

∆ ∆

−∞

+∞

−∞

+∞  (5.35)

leads to the first moment
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′ +

+ −
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 (5.36)

which can be evaluated similarly to Van Vleck’s method of Section 2.4.3 for spin i

 M P a IP3
2

.i1( ) =  (5.37)

Here

 ∑
µ
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θ

=
−

�a
r4

1 3cos
i I

j

ij

ij

0 2
2

2  (5.38)

is the Weiss field factor for spin i which may vary depending on its location in the sample. 
For a spherical sample of spins in crystallographically equivalent positions, all ai are equal. 
If this is not the case, average must be taken over all positions i, which can be carried out by 
dividing the sample into two regions. The inner region is a sphere centered at i of diameter 
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much larger than the lattice spacing, in which the Weiss field can be summed as above, 
and the outer region limited by the surface of the inner sphere and by the sample boundar-
ies, over which an integral can be taken disregarding the crystal structure. The procedure 
is rather tedious, and because polarized targets are usually composed of small spherical 
beads, we need here only the Weiss field result. For targets made of irregularly shaped 
pieces, averaging must be made also over the various possible shapes; the result should 
intuitively converge towards that of a sphere if the NMR coil is in contact of a sufficiently 
large number of such pieces and they are randomly oriented.

The factor 3/2 in the first moment comes from the effect of the resonant transverse field 
of the identical spins and must be removed when calculating the Weiss field effect of one 
spin species to another.

The polarization dependencies of the second and higher moments for spin 1/2 are [9]

 ( )( ) ( )= −M P M P0 12 2
2  (5.39)

in the case of spherical sample and simple cubic lattice with no other spins contributing. 
It should be noted that the centroid for the second moment is taken to be the point about 
which the first moment is zero, and not the Larmor frequency at low polarization. In glassy 
materials the second moment cannot be expected to go to zero at P 2 =1, but a significant 
narrowing and shape difference of the proton absorption line is always observed.

In polarized targets, however, the assumption of a single spin species is never the case 
because electronic spins are needed. The additive contribution of the electronic spins must 
therefore be calculated separately; this results in a non-zero residual width at P2 = 1.

For the conditions of simple cubic symmetry and spherical sample, the third and fourth 
moments of a single spin 1/2 system read [10]

 M P M P P0.39 0 1 ;3 2

3/2 2( )( ) ( )≅ −   −  (5.40)

 ( )( )( ) ( )≅   − −M P M P P2.18 0 1 1 0.42 .4 2

2 2 2  (5.41)

The non-zero values of the third moment for 0 < P 2 < 1 shows that the absorption line is 
asymmetric; the asymmetry is likely to be highest around P2 = 1/3 where the third moment 
has maximum value.

The ratio
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( )

≅
−

−

M P

M P
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P
2.18

1 0.42
1

4

2
2

2

2  (5.42)

diverges at P 2 = 1, which indicates that the lineshape approaches the Lorentzian shape. This  
can be understood by considering almost all spins pointing in the same direction except 
for a few randomly placed spins in opposite orientation. This random array should give a 
Lorentzian lineshape with cut-offs due to the nearest approach limited by the lattice spac-
ing, similar to the shape obtained for highly diluted spins [11].
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In real target materials, the contributions of all spins must be summed for the first and 
higher moments. This leads to much less pronounced effects of nuclear polarization on the 
moments, because the electron spin polarization is almost complete and therefore constant. 
The following qualitative changes, however, can be observed: 

(1) The shift of the centroid of all lines is proportional to P at low polarization; at high 
polarization the shifts scale with a weighted average of the polarizations of the differ-
ent nuclei.

(2) All lines become narrower; the narrowing scales with the root of the second moment at 
low polarization where the shape is close to a Gaussian, whereas at high polarization 
the Lorentzian-shaped lines have a narrowing which scales with 1 – |P|.

(3) The absorption lines become asymmetric at high polarization. In glassy materials, 
however, the dipolar line broadening is to an increasing extent due to the random ori-
entations of the direction vectors of the spin pairs, and therefore the line asymmetry is 
not very pronounced and may be hidden by the asymmetry due to the circuit used for 
the NMR signal measurement.

5.2.4 Quadrupolar Interactions and Lineshapes

In the following we shall discuss the lineshape resulting from the Hamiltonian of Eq. 2.19, 
rewritten here explicitly in the coordinate system where the electric field gradient tensor 
is diagonal

 c I I I I I3 1 3 1
2

,Q Q z
2 2 2 2ω η( )( ) ( )( )= − − + + +









+ −H �  (5.43)

where c = cosθ. In the case of spin 1 and η = 0, this was transformed to the coordinate 
system 0x′y′z′ in which the magnetic field is along z′

 c I c c I I I c I I3 1 3 2 3 1 ,
1

2
.Q Q z z

2 2 2
2

2 2ω { }( )( ) ( )( )= − − + − + +
−

+










′ ′ + − + −H �  (5.44)

The asymmetry parameter η is rather small in the presently known target materials and 
its influence on the lineshape will be only briefly discussed below.

In high magnetic field, the quadrupole shift of the energy levels can be obtained pre-
cisely from first-order perturbation expansion, allowing one to obtain the powder line-
shape functions in analytical form. This will be discussed in detail for spin I = 1 below. 
We shall then describe how non-zero asymmetry parameter changes the lineshape in high 
field. Finally we shall show that when the quadrupole energy is not very small compared 
with the Zeeman energy, the lineshapes become distorted so that only numerically simu-
lated results are available; recent work on 14N in NH3 will be reviewed below to illustrate 
such methods.
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High Field
Let us assume that the magnetic field is so high that the second-order terms in Eq. 2.22 are 
much smaller than the first-order terms of Eq. 2.21, which is sufficiently well satisfied (in 
comparison with the accuracy of signal measurement) when

 ε
ω
ω= < −10 .
Q

L

2  (5.45)

This ratio is about 0.13 × 10–2 at 2.5 T field for deuterons covalently bonded to carbon 
chains in deuterated hydrocarbons. In such cases the use of first-order theory is well jus-
tified, and the relatively small linewidth also allows to measure the absorption signal at 
constant magnetic field using the frequency-sweep method. The case where ε > 10–2 will be 
discussed later in this section, with an example of 14N in NH3 with ε = 0.0514.

The first-order energy levels for spin 1 are, from Eqs. 2.20 and 2.21

 E m m3cos 1 3 2 ;m L Q
2 2ω ω θ( )( )= − + − −� �  (5.46)

here m are the magnetic quantum numbers of the unperturbed Hamiltonian, and the shifted 
energy levels are shown in Figure 5.1 for cos2θ  = 1 and cos2θ  = 0. The angular frequency 

Qω  is defined by Eq. 2.23 as

 
e qQ
8

.Q

2

ω =
�

 (5.47)

The energy differences for the transitions between the two lower levels (m = 1, 0) and the 
two higher levels (m = 0, –1), labelled by subscripts + and –, respectively, are

 E 3cos 1 .L Q
2ω ω θ( )∆ = −



± � ∓  (5.48)

Figure 5.1 The magnetic energy level shifts for spin I = 1 by quadrupole interaction, for two polar 
angles producing the extreme values of the frequency spectra of the two magnetic transitions. The 
illustration is schematic
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The frequency spectra for the two transitions are obtained analogously to Eqs. 3.7–3.9 by 
considering the uniform distribution over the solid angle Ω = 2π of the upper- hemisphere 
polar angles θ between the direction of the electric field gradient and the magnetic field 
vectors. Only positive values of cosθ need to be taken because of the symmetry properties 
of the quadrupole Hamiltonian. The frequency spectrum is therefore

 f d d d d
2

1
2

2 sin   cos .ω ω
π π

π θ θ θ( ) ( )=
Ω

= =  (5.49)

This gives the number density of nuclei within the frequency interval dω; the relation 
between the polar angle and the angular frequency is obtained directly from Eq. 5.48

 E 3cos 1 ,L Q
2ω ω ω θ( )∆ = = −



± ±� � ∓  (5.50)

which yields

 θ =
∓ x

cos
1

3
 (5.51)

where

 x
3

.L
Q

ω ω
ω

=
−

 (5.52)

Inserting this into Eq. 5.49 results in

 ω
ω

θ
ω

θ
ω

( ) = = =± ∓
f d

d
dx
d

d
dx x

cos  cos
1

3 3

1
1

Q

 (5.53)

for the two transitions. These two shape functions are shown in Figure 5.2, together with 
their sum broadened by Gaussians with two values of σ.

In the foregoing the lineshape function was obtained without resorting to formal expres-
sions of susceptibility, thus ignoring any spin-spin interactions. This approach of can be 
justified when the spread of the resonance frequencies due to the quadrupole interactions 
is much larger than that due to the dipolar interactions. A system of spins obeying such a 
condition behaves under strong RF field in a different way compared with a system with 
dominant homogeneous broadening, as was already discussed in Chapter 4. In particular, 
the absorption spectrum is obtained by summing over the absorption spectra of the ‘spin 
packages’, even at low temperatures. In doing so care must be taken to use the right popu-
lation ratios between the magnetic levels. This ratio

 r
p
p em

m

E E kT

1

/m m 1θ( ) = = ( )
−

− − −  (5.54)

is not independent of the polar angle θ because the energy differences, given by Eq. 5.50, 
depend on it. The ratio, however, is constant to a good approximation if the maximum 
variation of the exponent above is much less than 1, i.e.

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108567435.006
https://www.cambridge.org/core


 5.2 Transverse Magnetic Susceptibility and NMR Absorption Signal 213

Figure 5.2 Absorption signal shapes for spin I = 1 with quadrupole broadening of the two magnetic 
transitions
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Taking the value 3ωQ = 2π ·65 kHz (C–D bond in butanol) the requirement becomes

 µ>>T 3.1 K.  (5.56)

It should be noted that this requirement is independent of the value of the magnetic field, 
and that it is easily satisfied in polarized targets where spin temperatures may reach values 
not much less than ±1 mK. Lower spin temperatures may be obtained by demagnetizing to 
a low field, but then there will be additional complications in the lineshape arising from the 
low field value itself. These will be discussed later in this Section.

If the condition above holds, the absorption signal arising from the two transitions can 
be described as a superposition of the two functions 5.53, weighted by the population ratio 
r which is assumed to be constant:
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r r
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r r
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The multiplier of the shape function which has a pole at x = 1 is thus growing faster with 
inverse spin temperature than the other, producing an asymmetric lineshape. The multiplier 
of the function with a pole at x = –1 reaches a maximum at r 1 3= +  and then decreases to 
zero at P = 1. At negative spin temperatures the ratio r is smaller than 1, and the asymmetry 
is reversed. If the asymmetry is determined precisely, for example, by fitting a model shape 
to the NMR signal data with r as one of the free parameters, polarization can be determined 
from this by

 P r
r r

1
1

,
2

2=
−

+ +
 (5.58)

provided that the polarization sampled by the NMR probe is very uniform, and that the 
experimental signal distortions caused by the resonant circuit are corrected for, either by 
including the circuit effects in the model of the signal shape, or by separate circuit mod-
elling. If the polarization is not uniform or there are no strong reasons to believe so, the 
variation of the polarization can be estimated by comparing rP calculated from P obtained 
from the integral of the NMR signal, with r determined from the signal asymmetry. This 
will be discussed in more detail in Chapter 6.

If the quadrupole energy and therefore the angular frequency of Eq. 5.47 has positive 
sign, the pole at x is at the high-frequency side of the centroid of the combined lineshape 
function of Eq. 5.57. This allows one to determine the sign of qQ from the polarized deu-
teron signal asymmetry. If the quadrupole moment and its sign are known, the polarized 
NMR signal gives the sign and magnitude of the electric field gradient tensor. The method 
has been used more often in the opposite sense, to determine signs of quadrupole moments 
of nuclei from signals arising from compounds where the electric field gradient is known.

When the asymmetry parameter η is non-zero, the derivation of the lineshape function 
becomes tedious, and we shall quote the results only here. The first-order energy levels for 
spin 1 are

 E m m3cos 1 sin cos2 3 2 ,m L Q
2 2 2ω ω θ η θ ϕ( )( )= − + − + −� �  (5.59)

where θ and φ are the Euler angles defining the relative orientations of the magnetic field 
and the principal axis of the electric field gradient tensor. The shape function can now be 
expressed as
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where
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and K is the complete elliptic integral of first kind defined by

 K y
y

d1

1 sin
.

0

/2

2∫
θ

θ( ) =
−

π

 (5.62)

The function K is tabulated in most mathematical tables of functions; for numerical evalu-
ations it can be calculated to a precision of 3 × 10–5 from the approximation [12]

 K y a a y a y b b y b y y1 1 1 1 ln 1 ,0 1 2
2

0 1 2
2( ) ( )( ) ( ) ( ) ( )= + − + − − + − + −



 −  (5.63)
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 (5.64)

This approximate function has been used successfully for fitting model lineshapes with 
experimental data of deuteron NMR signals [13].

Low-Field or Large Quadrupole Interaction
At zero field the Zeeman term vanishes in Eq. 5.46 and the energy eigenvalues are in the 
case of axially symmetric electric field gradient tensor (η = 0)

 ( )( ) ( )=
−

− +E e qQ
I I

m I I
4 2 1

3 1 .m

2
2  (5.65)

The states m = ±n are thus degenerate, and there is only one resonance frequency for spin 1

 
e qQ

1
3
4

.q

2

ω ( ) =
�

 (5.66)

This resonance can be seen using a coil in a circuit identical to that used for NMR measure-
ments. Although the term ‘quadrupole resonance’ is often used for the observable signal, 
the transition is due to the magnetic interaction of the dipole moment of the nucleus with 
the RF magnetic field.

At zero external field, the spin polarization is zero, because there is no direction in 
space on which the spin vector has a non-zero projection. At low temperatures and zero 
field, however, a large resonance signal may be observed, due to the uneven populations 
of the quadrupole energy levels; these populations obey Boltzmann statistics. This clearly 
violates the statement that the integral of the NMR absorption signal is proportional to the 
vector polarization and indicates that at low field values there may also be an error in such 
a statement. We shall therefore discuss below the quadrupole broadened absorption signal 
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at such field values where the inequality 5.45 is not well satisfied. This situation arises, for 
example, for 14 N in NH3 at 2.5 T field, where ε = 5.14 × 10–2, and therefore clearly observ-
able effects can be seen in the population of the magnetic states and in the relation between 
the population ratios and the vector polarization. We should also note that the quadrupole 
broadened absorption line spans the frequency range of 6ωQ, which is equal to the Larmor 
frequency when ε = 1/6. Such broad lines cannot be measured at constant field, which com-
plicates the analysis of experimental signals measured piecewise at different field values 
SMC [8]. This adds to the difficulty that the amplitudes of such broad lines are extremely 
small and can be measured only at relatively high polarization.

At intermediate fields between zero and high values, the projections of the spin vec-
tors on the axis along the magnetic field become gradually larger with the field, and the 
state vectors gradually change from completely mixed states towards pure magnetic states. 
The state vectors m  are obtained by solving the energy eigenvalues directly from the 
Schrödinger equation

 H =m E m ,m  (5.67)

where the Hamiltonian is the sum of the Zeeman term and the quadrupole term of Eq. 5.44:

 I .Z Q L z Q'ω= + = +H H H H�  (5.68)

The explicit matrix representation of the Hamiltonian is obtained by inserting in Eq. 5.44 
the matrix representations of the components of the spin 1 vector given by Eq. 1.32. This 
yields
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and
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The eigenvalues are the solutions of
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where

 
�

e E .m
m

Lω
= −  (5.72)

The roots of Eq. 5.71 are the solutions of the third-order polynomial

 ε ε ε( ) ( )− + − − + =e e c1 12 2 3 1 16 0.m m
3 2 2 3  (5.73)

It can be seen immediately that if ε = 0 the roots are ±1 and 0, as expected for the pure 
Zeeman states. Figure 5.3 shows the polynomial plotted for three values of ε and for the 
values 0, 0.5 and 1 of c. There are three roots for each case and it can be seen that the larg-
est value of ε requires treatment beyond the first-order perturbation method, because of the 
large asymmetry of the polynomial. The first- and second-order energy levels were already 
given in Section 2.1.2, Eqs. 2.21 and 2.22, and we shall examine here the accuracy of the 

Figure 5.3 The polynomial of Eq. 5.73, the roots of which are the solutions of the eigenvalue equation 
of Eq. 5.71. The polynomial is plotted for (a) ε = 0.01, (b) ε = 0.03, (c) ε =0.1, for three values of cosθ
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second-order treatment by comparing with the exact solution in the case of 14N in solid NH3 
in a 2.5 T field, in which case we have ε = 0.0514.

The general solutions of the third-order polynomial 5.73 are

 
ε φ π ( )=

+
+ − −









e m m2

1 12
3

cos
3 3

4 3 ,m

2
2  (5.74)

where m has the values of –1, 0 and +1, and
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 (5.75)

These energies are plotted in Figure 5.4a as a function of c = cosθ for 14N in solid NH3 in a 
2.5 T field; in this scale the energies obtained from the first- and second-order perturbation 

Figure 5.4 Magnetic energy eigenvalues for 14N in solid NH3 in a 2.5 T field. (a) The three energy 
eigenvalues of Eq. 5.74 as a function of cosθ. (b) and (c) Comparison of the first-order and exact 
energy eigenvalues for the states m = +1 and m = –1
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treatment are indistinguishable. The plots of Figures 5.4b and c zoom up on the energy 
level differences between the exact solution and the first-order treatment in the case of 
the magnetic states m = –1 and m = +1; the energy from the first-order treatment of m = 0 
practically coincides with the exact solution and is not shown. Figure 5.4 suggests that the 
first-order expressions for the NMR signal are likely to yield vector polarizations that may 
have a few percent systematic errors.

The second-order perturbation theory gives energy levels which deviate only slightly 
from the exact solution as shown by Figure 5.5. The deviation is zero at cosθ = 0 and at 
cosθ = 1, and it peaks just above cosθ = 0.8 for all three magnetic states. Therefore, for 
the practical purposes, the second-order expression is sufficiently accurate for the numeric 
evaluation of the NMR signal shape and its relation with the vector polarization.

The exact solution, however, is equally easily amenable to the numerical calculation of 
lineshapes and vector polarization as a function of the spin temperature. These calcula-
tions require the knowledge of the state vectors which are obtained from Eq. 5.67 for each 
energy eigenvalue. The explicit matrix equation is
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− −
− − +
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Figure 5.5 Magnetic energy level differences between the second-order perturbation expression and 
the exact solution, for 14N in solid NH3 in a 2.5 T field
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This set of three linear equations has the solutions

 

( )
( )

( )
=

















=

+ + −

+ − 

− − +





















−

−

−

m
a

b

c

N

A C e

B C A e B

A C e

1

2

1

.
m

m

m

m

m

m

1

2 1

1

 (5.77)

The normalizing constant N is found by requiring that =m m 1 , because the set of equa-
tions give only two of the ratios of the components bm /am and cm /bm, which define am /cm. 
The signs are known therefore relative to each other and one must resort to the original 
equations to fix the sign of the major component. This is best done by writing the state 
vector in the form
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using relations 5.70. This form is practical for numeric computations because it avoids 
divergences of normalization at all values of c except m = 0, c = 0 and m = ±1, c = 1. 
The divergence must be properly accounted for in numeric calculations. Another method, 
which is more correct theoretically but somewhat cumbersome in programming, is to fix 
the value of the leading component to 1 and determine the remaining two components from 
their ratios with the fixed one; these ratios do not diverge at any values of m and c.

The components of the state vectors of Eq. 5.78 are needed for the calculation of the 
NMR signal shapes as a function of spin temperature.

The vector polarization as a function of the spin temperature can be calculated by using 
the density matrix techniques of Section 1.22, with the density matrix of Eq. 1.81 having 
the diagonal elements of Eq. 1.83:
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 (5.79)

and by integrating over the polar angle θ. Here m–1 = c–1, m0 = b0, m1 = a1 are obtained from 
the components of the state vector |m〉 of Eq. 5.78. For 14N in NH3 in 2.5 T field the expres-
sion of Eq. 5.79 deviates by no more than a few % from the simple integral of the first-order 
energy levels as a function of θ. Numeric integration of the exact simulated Eq. 5.79 was 
compared with the first-order signal expression and it was found that at low polarization 
the integrated experimental signal underestimates the polarization more for negative than 
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positive P, while at 50% polarization of 14N the integrated NMR signal overestimates the 
polarization [14]. The study also confirms that the second-order perturbation calculates the 
energy levels and state vectors almost identically with the exact expressions, and because 
these are simpler to use, there is no need to apply the exact solution for the correction of the 
integrated absorption signal when determining the polarization of 14N.

The SMC collaboration performed a study on the contribution of the 14N polarization 
on the longitudinal muon-proton deep inelastic scattering asymmetry from their polarized 
NH3 target [15]. Using cross-calibration techniques at a constant frequency of 6.47 MHz, 
they established that the equilibrium polarizations of 14N and protons corresponded to 
equal spin temperatures over a broad range of polarizations, and that the thermal equilib-
rium was established with a time constant of about 25 min when microwaves were turned 
on for DNP. For the cross-calibration techniques corrections due to Eqs. 5.74 and 5.78 
played a minor role because the nitrogen NMR signal peak measurements were made at 
2.45  and 1.68 T fields. Because the proton signal measurement was performed at 0.15 T, 
care had to be taken to avoid thermal mixing and superradiance during the field ramps 
down and up.

Quadrupole Coupling Constants for Common Polarized Target Materials
The NMR absorption signal shapes that are quadrupole broadened are similar to the smooth 
curves of Figure 5.2 in the case of glassy deuterated solids and in microcrystalline ammonia 
obtained by rapid freezing. In slowly frozen and crushed ammonia, the crystals are large and 
therefore the NMR probe coil in contact with some tens of crystals may sense the material 
with higher sensitivity than the rest of it. This will result in a signal that looks rough because 
some polar angles θ are favored over other ones. In such a case, the NMR signal will be dif-
ficult to fit with theoretical expressions based on the uniform distribution of the polar angles.

Table 5.1 shows the quadrupole coupling parameters for deuterons in butanol and ammo-
nia and for 14N in ammonia. 6Li is the only other spin-1 nucleus as shown in Table 5.1. In 

Table 5.1 Total spectral width 12ωQ /2π, dipolar broadening σ, and asymmetry 
parameter η for some solid polarized target materials at low temperature and 2.5 T 
field. Measurement at zero field for 14N in NH3 gives an extrapolated value of 
12ωQ /2π = 4747.5 ± 4.5 kHz [16] at T = 0 K.

Material (chem. bond) 12ωQ /2π
(kHz)

σ
(kHz)

η Reference

ND3 (N–D) 335.6 19.4 0.1263 [13]
NH3 (H–14N) 4744.0 0 [16]
d-Butanol (C–D) 258.96 4.0 0 [17]
d-Butanol (O–D) 319.2 4.0 0.15 [17]
D6-propanediol (C–D) 234
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6LiD, however, the structure has a cubic symmetry that has zero electric field gradient so 
that both nuclei show no quadrupole broadening in the NMR signal. For half-integer spin 
nuclei 3/2 and higher, the quadrupole broadening is complex.

5.2.5 Molecular Spin Isomers and NMR Line Due to Indirect Spin Interactions

Nuclear spin influences the electron spin wave function and may produce effects which 
range from dramatic symmetry properties to small shifts in the effective field value at the 
nuclear sites. The symmetry effects result in molecular energy levels which depend on 
the total nuclear spin and rotational quantum numbers; of these hydrogen (H2) and methane 
(CH4 ) are good examples. Other materials where this happens include water (H2O) and 
acetylene (C2H2). The exclusion principle and symmetry laws determine the ground state 
total nuclear spin, which is I = 0 in H2, H2O and C2H2, and I = 2 in CH4, and in all these 
cases there is good experimental evidence that conversion to the ground state takes place 
in the molecular crystals of these materials [18]. It can then be concluded that only solid 
methane is a potentially good material for polarized targets. A more detailed discussion of 
the symmetry properties of molecules and brute-force polarizable materials will be given 
in Chapter 10.

In the molecular crystals discussed above, the binding forces between the molecules 
are weak, and therefore they preserve their rotational freedom even at low tempera-
tures. However, if these molecules are strongly bound by electrostatic forces in a solid, 
the protons may regain their individuality. A clear example of this is water in an ionic 
crystal such as the lanthanum magnesium nitrate La2Mg3(NO3)12·24H2O (LMN), which 
has been used as a polarized proton target in the past. Another example is water in 
glassy solids such as 1-butanol with 5% H2O. The absence of spin conversion to the 
ground state is easily verified by following the evolution of the NMR lineshape and 
the growth of the thermal equilibrium NMR signal integral at constant temperature. 
The absence of molecular rotation is also evident if the proton spin-lattice relaxation 
time becomes very long at low temperatures, because in the case that J is a good quan-
tum number, the molecules in the J = 1, I = 1 state provide a relaxation mechanism 
which is much faster than that due to the paramagnetic impurities at low temperatures 
and high field.

When a molecule is strongly bound by electrostatic forces in the lattice of a crystal or in 
a glass matrix, the positions and axes of the molecule are well defined. Then the rotational 
moment, which is a conjugate variable to the orientation of the axes, is not defined at all 
because of the uncertainty principle. Consequently J is not a good quantum number and 
there is no correlation between the total nuclear spin value and the quantum state of the 
molecule [18]. This is very important for the measurement of polarization based on the cal-
ibration of the absorption signal integral at a known temperature, because the method relies 
on the knowledge of the thermal equilibrium polarization based on individually behaving 
spins.

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108567435.006
https://www.cambridge.org/core


 5.2 Transverse Magnetic Susceptibility and NMR Absorption Signal 223

Hydrogen
A free molecule of H2 has a total wave function which is antisymmetric under exchange of 
the proton variables:

 1,2 2,1 ,ψ ψ( ) ( )= −  (5.80)

because the proton is a fermion. It is important to note that this can only hold if the mole-
cule does not experience external binding forces which are comparable with respect to the 
internal forces of the molecule. The total wave function in these conditions can be approx-
imated by the factored form

 ,e v r sψ ψ ψ ψ ψ=  (5.81)

where ψe, ψv, ψr and ψs are the electronic, vibrational, rotational and nuclear spin wave 
functions, respectively. The factorization is a valid approximation when the electronic and 
vibrational energy levels are very high with respect to the rotational and nuclear spin lev-
els. The molecule is then in the ground state with respect to these at low temperatures. As 
the electronic and rotational wave functions are symmetric under exchange of the protons, 
we must have

 1,2 1,2 2,1 2,1 .r s r sψ ψ ψ ψ( ) ( ) ( ) ( )= −  (5.82)

The rotational energy levels are

 E BJ J 1 ,J ( )= +  (5.83)

where J is the rotational quantum number and B/k = 86 K. For even values of J the rota-
tional part of the wave function is symmetric, and for odd values it is antisymmetric:

 1,2 1 2,1 .r

J

rψ ψ( ) ( ) ( )= −  (5.84)

From Eqs. 5.82 and 5.84 it follows that ψs must be antisymmetric for even values of J, 
and it must be symmetric for odd values of J. As the two proton spins add either to a total 
nuclear spin I = 0 or I = 1 and these give antisymmetric and symmetric ψs, respectively, it 
follows directly that for even J we must have I = 0 and for odd J we have I = 1.

Molecules with I = 0 are called para-hydrogen and those with I = 1 ortho-hydrogen. 
The ground state of the molecule is the para state with J = 0 and I = 0, which cannot be 
polarized because the total nuclear spin is zero. Labelling the energy levels by E(J,I ) we 
have then the energies of the four lowest rotational levels from Eq. 5.83: E(0,0) = 0 K, 
E(1,1) = 0 172 K, E(2,0) = 516 K and E(3,1) = 1,032 K.

In the gaseous state, after preparation by chemical means, the statistical weights are 
equal to 2I + 1, which yields 3/4 of ortho-hydrogen molecules and 1/4 of para-hydrogen 
molecules. Collisions that change J between even and odd values are very rare because 
they involve the simultaneous change of I, so that the two molecular species behave as a 
mixture of two non-converting gases. The conversion between the two species can take 
place in contact with walls, and this is speeded up by magnetic materials.
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Hydrogen solidifies at about 14 K where practically all para molecules are in the state 
J = 0 and all ortho molecules are in the state J = 1, because the higher rotational states 
are much above the two lowest states. Because the binding forces between the molecules 
are weak, J remains a good enough quantum number which allows to distinguish the two 
molecular isomers. This is not generally true for other solids where binding forces in solid 
state are larger and the excited molecular levels are not much above the rotational levels.

The ortho molecules, however, convert slowly in solid into the para form at a speed 
which depends on their molar fraction:

 �c c3 1
hour

.2= −  (5.85)

The original c = 0.75 becomes 0.40 in roughly two days in a very pure sample. The conver-
sion releases heat per unit mass by

 =
−

=
� �Q
m

ckB
m

c kB
m2

3
2

 
1

hour
,

p p

2  (5.86)

which is 1.93 mW/g for c = 0.75. This is a very substantial amount of heat in view of the 
thermal conductivity of hydrogen and the Kapitza resistance to cooling medium at low 
temperatures. Brute-force polarized solid ortho-hydrogen has not been used as a polarized 
target, because the removal of the conversion heat would require large amounts of thermal 
contact material relative to the mass of hydrogen. Its use as a source of polarized hydrogen 
gas has been contemplated, however.

Because ortho-hydrogen has the ground state spin I = 1, its polarization is given for the 
Brillouin function 1.63′ for spin 1, which is 4/3 higher than that of spin 1/2 for low values of 
B/T. At 10 T field and 20 mK spin temperature, the polarization of ortho-hydrogen is 57%. 
Pure ortho-hydrogen can be prepared by selective adsorption on alumina powder, for example.

Methane
The methane molecule CH4 can be modelled by the shape of an equilateral tetrahedron 
with hydrogen atoms at the four corners and the carbon atom at the center. Because of the 
symmetry of the molecule, the rotational levels can also be expressed by Eq. 5.83 with 
B/k = 8 K. The total nuclear spin can have the values of I = 0, 1, 2; the selection rules for 
the rotational and nuclear spin states are more complicated to find out and are given in the 
Table 5.2 where the allowed combinations are marked.

In the ground state, the methane molecule thus has the maximum nuclear spin I = 2, 
which is of interest in polarized targets. The first rotational level is at E/k = 16 K so that its 
equilibrium population is negligible below 1 K; however, in pure methane the conversion 
speed is very slow between the rotational states at low temperatures. The J = 1 rotational 
level has the statistical population of 9/16 after fabrication; its influence on the proton spin 
lattice relaxation is substantial.

Solid methane containing oxygen impurity on the level of 0.1–1% has much faster con-
version speed in the range of hours [19] and the measured nuclear susceptibility shows that 
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all molecules have the total spin I = 2 and therefore the nuclear polarization is twice higher 
than in the case that the nuclear spins would be independent. The nuclear spin-lattice relax-
ation in the ground state is controlled by the paramagnetic oxygen impurity and is slowly 
increased to 1.35 s at 1 K and 2.5 T after 4 days of conversion [19].

Ammonia
An important material to understand from the point of view of nuclear spin states is ammonia, 
which is used in polarized proton and deuteron targets. The relatively high melting point of 
195.4 K is a sign of strong binding in the solid, and this is confirmed by the large shift of 15% 
in the 14N quadrupole coupling constant between the gaseous and solid states [16]. Studies of 
the width and shape of the NMR absorption signal show a transition in the solid at 65 K where 
the half-width, measured from the inflection points of the line, changes from a plateau of 
21 kHz up to 50 K to a plateau of 16.5 kHz from 75 K upwards [20]. This transition is believed 
to be due to an onset for thermally activated rotation about the C3 axis (symmetry axis of the 
molecule perpendicular to the triangle of the protons), with the experimental activation energy 
of 9.62 ± 0.17 kJ/mol. The rotation of the molecule is thus hindered below 50 K, and it may 
be expected that at low temperatures the second moment should be that due to a rigid lattice 
which amounts to 0.4607 mT2. This is contradicted by the value measured at 2 K of 0.175 mT2 
[20], and was first interpreted as rotation by quantum mechanical tunnelling about the C3-axis.

It has been later recognized that the NMR spectrum in ammonia and several other sub-
stances such as ammonium halides is more complex due to second-order couplings where the 
diamagnetic atomic electrons are involved. These effects were independently discovered by 
Hahn and Maxwell [21] and Gutowsky, McCall and Slichter [22] in substances such as PF3 in 
which the NMR lines were split into equidistant components independent of field and tempera-
ture. The authors pointed out that the interaction which results in such a splitting cannot be due 
to the chemical shift because of the absence of the field dependence; it can only be of the form

 H = ⋅A I I ,1,2 1,2 1 2  (5.87)

which produces a splitting similar to the isotropic hyperfine interaction and depends only 
on the relative orientations of the nuclei but not on the orientation of the molecule.

Table 5.2 Combinations of the rotational and total nuclear spin 
states J and I allowed by the symmetry and exclusion principles 
in the methane molecule in solid methane.

J I = 2 I = 1 I = 0

0 Allowed
1 Allowed
2 Allowed Allowed
3 Allowed Allowed
4 Allowed Allowed Allowed
5 Allowed Allowed
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Ramsey and Purcell [23] proposed a model where the two nuclei interact with the nearby 
electrons and where the electron spins were also included. These ideas were extended to 
solids by Bloembergen and Rowland [24] and Ruderman and Kittel [25]. The interaction is 
a second-order effect due to the polarization of the electrons by the nuclear spin; the electron 
polarization is seen by all other nuclei in the molecule. These indirect nuclear spin interac-
tions are called pseudo-dipolar and pseudo-exchange interactions, because their effective 
Hamiltonians have spin dependences identical to the dipolar and exchange interactions, 
respectively. An introductory discussion on these is given in Section 4.9 of Ref. [26].

In solids the pseudo-dipolar interaction causes broadening which is indistinguishable from 
ordinary dipolar broadening. The pseudo-exchange interaction of Eq. 5.87 can be observed 
in solids if the linewidth is narrow enough to enable resolving the resulting splittings.

An example where molecular isomerism is observed is the ammonium group in ammo-
nium halides. In NH4I the conversion between the nuclear spin isomers makes the lineshape 
evolve after quenching the sample to helium temperature [27]. This was later confirmed by 
observing the evolution of the NMR absorption signal integral after quenching to 4.2 K; the 
relative size grew from 4.64 after 0.5 h to 26.61 after 8 h [28].

In solid NH3 below 1 K, the NMR line is split into three components which are not very 
well resolved, as can been seen in Figure 5.6 [29]. It was first thought that this could be 

Figure 5.6 NMR absorption signals for protons in solid NH3 at 2.502 T magnetic field at different values 
of DNP: (a) +90%, (b) 0.3% and (c) –93%, with 400 kHz frequency sweep about 106.45 MHz center 
frequency. The curve (d) is the first derivative of the curve (a). The NMR line consists of three equidistant 
unresolved lines that behave as if caused by isotropic hyperfine splitting by the term of Eq. 5.87

a) b)

d)

9 Gauss

NH3 f0= 106.45 MHz
P = 89%

c)
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due to molecular spin isomerism but could equally well be caused by the dipolar coupling 
between the protons of the equilateral triangle of the molecule, as has been shown numer-
ically [30]. No sign of conversion between nuclear spin isomers has been observed by fol-
lowing the evolution of the integrated absorption signal during TE calibration process, and 
it is therefore concluded that if the spin isomers do exist, molecular rotation is hindered, J 
is not a good quantum number at 1 K and the proton spins behave as independent.

5.2.6 Interactions with Electron Spins

Dipolar and Hyperfine Interactions in Dielectric Solids
The hyperfine and dipolar interaction between the nucleus and nearby paramagnetic elec-
tron was briefly discussed in Section 2.1.4. It arises from the scalar magnetic coupling 
γeγnS·I between the magnetic moments as shown by Eq. 2.44.

The dipolar terms lead to the broadening that can be evaluated by applying the Van 
Vleck formulas for unlike spins of Section 2.1.1.

The Fermi contact interaction term gives rise to the isotropic hyperfine tensor, which 
manifests itself as a splitting of the magnetic levels without broadening. The other terms 
depend on the relative orientations of r and B and lead to an anisotropic hyperfine tensor 
which splits and broadens the resonance lines.

Expression 2.44 is linear in Ix, Iy and Iz and in Sx, Sy and Sz and it can be shown that it can 
be reduced to the general form

 A I S A I S A I SS A I .hf x x x y y y z z z= ⋅ ⋅ ≡ + +�H  (5.88)

If there are several hyperfine nuclei in the molecule, very complicated EPR line structures 
may arise. In the case of only isotropic couplings, the magnetic levels are

 E g B a m m .B
i

i i S∑µ= +








  (5.89)

In such cases the isotropic hyperfine constants ai may be resolved in dilute liquid samples. 
The EPR spectra with hyperfine interactions were discussed in Chapter 3.

The hyperfine interaction will also be seen in the resonance of the hyperfine nuclei, 
which are split in the same way. The resonance frequencies are, in the isotropic case and in 
high field, for a given nucleus i,

 B
a m

,i i
i S

0ω γ= +
�

 (5.90)

where mS is the projection of the electron spin (assuming S = ½) on the direction of the 
magnetic field. Such spectra are often spread over several MHz and they are beyond 
accurate direct NMR spectroscopy in solids. These may be observable by the ENDOR 
techniques, which consist of measuring the effect of nuclear resonance saturation on the 
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electron resonance signal. However, ENDOR cannot be easily applied in situ in a polarized 
target, because the multimode cavity around the target is not suitable for this purpose, and 
because the NMR probes usually sample only a small fraction of the target material.

The NMR spectra of the protons of paramagnetic molecules EHBA-Cr(V) and BHHA-
Cr(V) have been measured in dynamically polarized deuterated glassy butanol with 5% 
deuterated water, as shown in Figure 5.7, which was measured at 5 T field and 0.3 K tem-
perature. The glassy matrix of the butanol-water solvent contained 2% of unsubstituted 
protons that give rise to the narrow central signal in both cases. Judging from the chemical 
composition of the complex molecules and taking into account the undeuterated water 
of crystallization that is likely to be distributed uniformly in the glassy matrix, it can be 
deduced that the hyperfine proton polarization is not different from that of the solvent pro-
tons. This is also to be expected because the NMR resonance lines overlap so that cross-re-
laxation transitions can establish rapidly a uniform spin temperature within the spectra.

It remains to be measured how quickly the hyperfine protons reach common spin tem-
perature with that of the matrix nuclei. Furthermore, it will be interesting to measure the 
spectra with negative polarization, because some of the hyperfine protons may be oppo-
sitely polarized due to the effects discussed in Section 4.6 in connection with DNP in crys-
talline materials with resolved hyperfine interactions.

Chemical Shift
The NMR techniques to measure accurate chemical shifts has become an important tool 
for analytical chemistry. These involve free induction decay NMR signal techniques with 
sophisticated pulse sequences and offline signal treatment for noise reduction. Sample 

Figure 5.7 Proton NMR absorption spectra of undeuterated Cr(V) complexes in glassy deuterated 
butanol with 5% deuterated water, at 5 T magnetic field and 0.3 K temperature, at 90% proton 
polarization. Left: EHBA-Cr(V); Right: BHHA-Cr(V); concentration 5 × 1019 spins/cm3

EHBA - Cr (V)

FIELD : 5T

SWEEP : 1.2 MHz

BHHA - Cr (V)

FIELD : 5T

SWEEP : 1.15 MHz
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spinning compensates to a large extent most broadening mechanisms and permit high- 
resolution spectroscopy also in solid samples. This, combined with DNP to enhance 
the NMR signal size, has made it possible to study the chemistry of elements with rare 
nuclear spins.

As was discussed in Section 2.1.5, chemical shifts in diamagnetic materials are expressed 
as

 1 ,Lω σ ω( )= −  (5.91)

where ωL is the Larmor frequency of the bare nucleus. However, as the field cannot be mea-
sured with high absolute accuracy, usually the shift is defined with respect to a known res-
onance line whose shift is thus arbitrarily defined to be zero. For protons and 13C the usual 
reference is the Larmor frequency of protons in tetramethylsilane Si(CH3)4, abbreviated 
TMS. With reference to this, the shifts for protons in organic substance are up to 12 ppm.

The range of the chemical shift increases with the atomic weight; for 13C this ranges up 
to 200 ppm in organic substances, and for fluorine the shift ranges 600 ppm.

The chemical shifts are anisotropic so that they can be best measured in liquid state, 
where pulsed NMR techniques produce very narrow resonance lines, because the rapid 
motion of molecules averages out entirely the dipolar broadening, and partly the quadru-
pole and chemical shift anisotropy broadenings. Progress in high-resolution pulsed NMR, 
however, with magic angle spinning (MAS) techniques, has enabled the measurement of 
chemical shifts also in solid samples. In the MAS technique the solid sample is rotated 
inside the NMR probe, driven by a miniature gas turbine, at speeds ranging from 1 kHz to 
130 kHz, about an axis that makes the magic angle θm = 54.74° (cos2θm =1/3) with respect 
to the steady magnetic field.

Such MAS-NMR measurements in dynamically polarized materials have made rare 
nuclei accessible for the MAS-DNP experiments in materials with suitable paramagnetic 
impurities [31]. In these experiments, performed at fields in excess of 5 T, the sample can 
be rotated down to 30 K temperature, using 4He as drive gas [32].

Knight Shift
The Knight shift is due to the conduction electrons in metals, as was discussed in Section 
2.1.5. These produce an effective field at the nuclear site, due to the spin orientations of 
the electrons thermally excited conduction electrons close to their Fermi surface, in the 
presence of an external field. This is responsible for the shift observed in the NMR and for 
the temperature-independent paramagnetic susceptibility. The shift comes from Pauli spin 
susceptibility, in addition to the electron s-component wave functions at the nucleus. In 
cubic metals the shift is isotropic, and in non-cubic metals the Knight shift depends on the 
relative orientations of the crystalline axes and the applied field. Then a tensor part must be 
added to the constant K of Eq. 2.52, for each spin species i:

 H ∑γ= − ⋅ ⋅I K B.K
i

i i i  (5.92)
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In axially symmetric crystals such as those with tetragonal structure, the tensor causes 
broadening similar to the g-shift in electron resonance. The broadening is smaller than the 
shift itself, which is around 1,000 ppm for 23Na, for example.

The interaction between the conduction electrons and the nuclear spins also leads to a 
fast spin-lattice relaxation in metals, which was mentioned in Section 1.3.5 and which will 
be discussed further in Section 5.3.4.

DNP and NMR in metals are limited by the penetration of RF magnetic field (skin depth) 
and by eddy current heating; these force the studies to be limited to surface layers, thin 
films or fine powder samples.

5.3 Nuclear Spin Relaxation and Diffusion

The relaxation of the spin magnetization in dielectric solids was discussed in general terms 
in Section 2.3, where its relationship with phonons and other excitations was derived, in 
the terms of the lattice stress tensor coefficient F1 for one-phonon (direct) process and F2 
for two-phonon (Raman) processes. These and the Orbach process were further elaborated 
for electron spins in Section 3.4. It was shown that below 1 K the direct Zeeman relaxation 
of nuclear spins was very slow, so that their only contact with the lattice remained via their 
interaction with the paramagnetic electrons.

5.3.1 Relaxation via Paramagnetic Electrons

The relationship of the spin-lattice relaxation of electrons and nuclei was studied in LMN 
doped with Nd3+ ions by Schmugge and Jeffries in 1965 [33]. As their treatment is equally 
valid in glassy hydrocarbons and irradiated materials with dilute paramagnetic spins, we 
shall briefly outline their theoretical arguments and results.

In their shell-of-influence model all nuclear spins within the shell r1 < r < r2 belong to the 
paramagnetic spin at r = 0. Here r1 is the minimum distance between the nuclear spin and 
the electron spin, and r2 is roughly half the average spacing between the paramagnetic spins

 r
n
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 (5.93)

A single shell is then considered to represent the bulk of the material, in which the nuclear 
spins flip together with the electrons spins at the rate
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is the mean ratio of the electron-lattice relaxation rate and electron-nucleus simultaneous 
relaxation rate within the shell; Pe is the instantaneous electron polarization and Pe0 is the 
electron polarization in thermal equilibrium with the lattice. In the absence of microwave 
transitions Pe –>Pe0 rapidly, and the shell-of-influence model predicts
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for the relationship between the two relaxation rates.
As was discussed in Section 3.4.1, Eq. 3.74 yields the electron spin-lattice relaxation 

below 1 K and at high magnetic field dominated by the direct process
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where ΩD is the Debye frequency, va is the velocity of the acoustic phonons and m is 
the mass of the atoms in the unit cell of the lattice in the case of crystalline materials. In 
glassy materials the meaning of these parameters remains vague, although the specific heat 
measurements [34] and electron spin-lattice time measurements [35] can be interpreted 
in the terms of the Debye model standing behind Eq. 5.96. These terms can therefore be 
interpreted as scaling parameters permitting rough comparison between different materials 
and, above all, as means of extrapolating the field and temperature dependences of the 
relaxation time. In this view it is noteworthy that the electron spin-lattice relaxation has 
no temperature dependence when the coth term approaches unity below 1 K, while T1n 
increases steeply due to the sech2 term when the temperature is lowered below 1 K. Also, 
the relaxation times scale with the magnetic field as T1e ≈ B–5 and T1n ≈ B–3. These tempera-
ture and field dependences were confirmed by the proton relaxation time measurements in 
propanediol-Cr(V) [36] shown in Figure 5.8, where the lines obey
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The second term in Eq. 5.97 is empirical and was added to follow the temperature depen-
dence of the experimental points above 50 h relaxation time. The first term in Eq. 5.98 is 
due to the direct process that dominates the magnetic field dependence, and the second 
term was added to improve the field dependence of the fitted functions at low magnetic 
field values. Such a field-dependent term may be due to a two-phonon process relaxing 
exchange coupled pairs or clusters of electrons [37]. Other measurements of the electron 
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spin density effects on the nuclear spin-lattice relaxation time also suggest that exchange 
coupling may be responsible for low-field transition rates exceeding that due to the direct 
process [38].

As was discussed in Section 3.4.1, the direct process of electron spin-lattice relaxation 
dominates the Orbach process and Raman process in polarized targets running in 2.5 T or 
5 T magnetic field and at or below 1 K temperature. Frozen spin operation at a low field 
or with passages in a low field, however, requires the knowledge of nuclear spin-lattice 
and cross-relaxation phenomena; we recall here the low-field mechanisms of Blume and 
Orbach [39–41], the ‘wobble’ of Waugh and Slichter [42] and spin exchange of Harris and 
Yngvesson [37, 43] briefly discussed in Section 3.4.1.

5.3.2 Polarization Dependence of Nuclear Spin Relaxation

During the operation of CERN frozen spin polarized target in a 1 T magnetic field [44], it 
was noted that the positive proton polarization relaxed more slowly than the negative one. 
The target operation consisted of cycles of 24 h with about 3 h reversal procedure that 
included cooldown and transports between the polarizing 2.5 T field and 1 T holding field. 
The difference of the loss rates was substantial: 1.4±0.6%/d loss for +90% proton polar-
ization and 4.3±2.0%/d loss for –90% polarization, based on the compilation of data from 
60 days of operation. Superradiance was first ruled out during the transport of 0.3 T field 
minimum by performing sequences of successive transports; these yielded losses less than 

Figure 5.8 Proton spin-lattice relaxation time as a function of temperature and magnetic field in 
propanediol-Cr(V). Reprinted from Ref. [36], with permission from Elsevier.
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0.1%/transport for both signs of polarization. It was also suspected that the optical spark 
chambers surrounding the target could interfere with the NMR Q-meter system and cause 
saturation that is higher with the negative polarization, but this was ruled out by finding no 
correlation between negative polarization loss and number of spark triggers [44].

The asymmetry in the relaxation rate was traced to originate from the asymmetry in the 
direction of energy flow between the proton spin system and the coolant dilute helium at 
about 30 mK temperature. The bottleneck of the heat transfer at this temperature is between 
the spin system reservoirs, shown in Figure 4.1, rather than between the lattice phonons 
and the coolant; the effect of the lattice heating or cooling only causes a secondary effect 
via the temperature of the electron spin-spin interaction reservoir that closely follows that 
of the proton spins, while the electron Zeeman temperature rises above or cools below that 
of the lattice phonons and produces the dependence of the relaxation rate on the nuclear 
spin polarization. Evidently the effect would be less significant for a deuterated target 
material because of the lower magnetic moment and therefore lower energy flow due to 
nuclear spin relaxation.

During operation in the beam the target beads of diameter d = 1.5 mm and bulk density ρ 
warm up slightly by energy deposited by the 6 GeV/c π– beam spills of about 0.5 s duration 
every 3 s, with the mean flux n 10  s cmb

5 1 2= − −� :
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Here dE/dx = 2 MeV cm2/g is the minimum ionizing energy loss, α is the Kapitza con-
ductance at the bead-helium interface, TL is the lattice temperature and THe is the coolant 
temperature. These yield [44]
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when the coolant temperature is 20 mK.
The thermal time constant of the propanediol-Cr(V) target bead is
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  (5.101)

where cL = 50 × 10–7·TL J/(gK2) is the lattice specific heat of a similar amorphous solids [45]. 
This yields a time constant τL = 18 ms at TL = 26 mK, which means that the bead temperature 
follows the beam current closely, while averaging its faster time structure due to the bunches 
circulating in the machine during the slow extraction. By using the relaxation time of the posi-
tive polarization as a thermometer, the mean temperature of the beads was 28 mK during most 
of the operation [46]. This attenuates the time variation of TL for both signs of polarization.

The thermal asymmetry in proton spin-lattice relaxation due to the Kapitza resistance 
can be estimated by solving TL from
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where np = Np/V is the number density of protons in the propanediol target, and τp (TL) is the 
temperature-dependent proton spin-lattice relaxation time of Eq. 5.97). For 1 T field this 
yields the maximum asymmetry of 2 × 10–3 between +100% and –100% proton polariza-
tions, and therefore rules out the bottleneck due to the Kapitza resistance.

In the above it was assumed that the electron Zeeman temperature TZ was close to that 
of the lattice. If we now assume that TZ may be heated or cooled by the nuclear spin system 
and that the nuclear spin-lattice relaxation depends directly on TZ as shown by Eq. 5.97, 
we may equate the heat flow due to the nuclear spin relaxation with that of the electrons. 
The cases of high-positive and high-negative polarizations may need different treatments, 
because of the considerable difference in the electron Zeeman temperatures. In the case of 
negative proton polarization we have
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where TZ ≫ TL and we may approximate Pe(TL) ≈ 1 to get
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from where we may solve TZ by using again Eq. 5.97. To do this we also need Eq. 5.98 to 
scale the field dependence of the electron spin-lattice relaxation time from 2.5  T to 1 T field 
which yields τ1e = 3.7 s. These give the results TZ = 94 mK and τp (TZ) = 200 h, which has the 
right order of magnitude given the large variance of the experimental loss of 4.3±2.0%/d.

In the case of positive polarization we might have TZ ≪ TL and could possibly solve TZ 
now from
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However, in this case the extrapolation of Eq. 5.97 downwards to get τp (TZ ) is highly 
uncertain, because the relaxation mechanisms are unknown and there are no accurate 
experimental results below 50 mK temperature.

We may conclude that at a 1 T holding field the negative polarization loss time constant 
is always determined by the electron Zeeman temperature just below 100 mK, when the 
lattice temperature is well below this value and the holding field is 1 T. On the other hand, 
the much longer positive polarization loss time constant probably depends on a different 
mechanism and perhaps also on impurity electron spins.

The asymmetry in nuclear spin-lattice relaxation has been later confirmed by the results 
of the CERN Spin Muon Collaboration [8, 47].
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5.3.3 Nuclear Spin Relaxation in Metals

Metals are important for brute-force polarized targets and for the nuclear demagnetization 
cooling systems, in addition to the research of nuclear magnetism which was discussed 
briefly in Chapter 1. The brute-force nuclear spin polarization will be discussed in Chapter 
10. In metals the nuclear spin-lattice relaxation is due to their interaction with the con-
duction electrons that produces time constants in the range of milliseconds to seconds, in 
strong contrast with dielectric solids where phonons and paramagnetic impurities are at 
play.

The crystalline lattice of metals consists of positive ion cores of the atoms surrounded by 
a cloud of free or almost free conduction electrons; these are the valence electrons that are 
delocalized while the core ions are localized in their lattice positions. The conduction elec-
trons are assumed to go into so-called Bloch states extended throughout the whole crystal. 
The free-electron wave functions are described by the Bloch functions

 ψ ψ( )= = ⋅s u ek r, ,s
i

sk k
k r  (5.106)

where Sψ  is the electron spin wave function and the plane wave part exp(ik·r) is modu-
lated by the lattice function u(r), which has the periodicity of the lattice and which peaks at 
the nuclei positioned at r = 0. In the most simplified picture u(r) is constant and the energy 
of the electron plane wave states is

 E k
m

k
2

.
e

2 2

( ) =
�

 (5.107)

In this case the constant energy surfaces are spheres in the space of the wave vector k. 
The allowed values of k are distributed with density V/8π3 in this space. For each value of 
k there are two electron states, of opposite spin according to the Pauli principle. Supposing 
that there are Z electrons per atom and 1 atom per unit cell of the lattice and N unit cells per 
unit volume, the electron states are filled up to a wave number kF where

 k ZN4
3

2
8F

3
3π

π
=  (5.108)

or

 k ZN3F
2 1/3

π( )=  (5.109)

defines the radius of the Fermi sphere kF (in our simplified model of free non-interacting 
electrons). The Fermi energy or Fermi level is then
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E
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e

2 2

=  (5.110)

This means that the wavelength of the electron near the Fermi level is comparable with the 
interatomic spacing:
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where rs is the radius of the Wigner–Seitz sphere.1

In practice u(r) is a smooth periodic function and the Fermi surface may have a complex 
shape that depends on the crystal structure and effective number of free electrons per unit 
cell. Many results can be, however, obtained using a much simplified model of the electron 
wave function, including the basic understanding of the nuclear spin-lattice relaxation. The 
effect of electrons on the relaxation of the nuclear spins can be understood as scattering of 
an electron with initial state sk  and final state ′ ′sk  on a nucleus with initial state m and 
final state n. The detailed derivation, given in Section 5.3 of Ref. [26], is beyond our scope 
here, and we shall outline it only briefly.

Using the above notation and following Slichter [26], the rate for one nuclear spin tran-
sition is

 
π δ( )= ′ ′ + − −′ ′ ′ ′�

W m s V n s E E E Ek k2
| | ,m s n s m s n sk k k k,

2
 (5.112)

where V is the interaction that provides the scattering and where it is assumed that the ini-
tial state is not empty and the final state is not already occupied. The total rate of transitions 
is obtained by adding up the rates from all initial and final states:
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′ ′

′ ′ ′ ′
W W f E f E1 ,
mn

s s

m s n s s s

k k

k k k k

;

,
  (5.113a)

which can be inserted in Gorter’s formula for the relaxation time [49]
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In Eq. 5.112 the probabilities of occupation of a given electron state k s are obtained 
from the Fermi distribution function
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=

+ −
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E E kT
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s F

k
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 (5.114)

The dominant contribution to V of Eq. 5.112 is due to the s-state coupling in metals with 
a dominant s-character of the wave function at the Fermi surface:

 �
π γ γ δ ( )= ⋅V I S r8
3

,e n
2  (5.115)

1 An introduction to the electrons and phonons in solids is given in Chapters 2 and 3 of Ref. [48].
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where the nucleus is assumed at the origin. The initial and final wave functions are prod-
ucts of the spin function s  and Bloch function of Eq. 5.106:

 m s m s u ek r ,i
k

k r( )= ⋅  (5.116)

 n s n s u ek r ;i
k

k r( )′ ′ = ′ ′
′⋅  (5.117)

which yield the matrix element
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2
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Inserting this into Eq. 5.112 yields for a single scattering event of an electron
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Slichter substitutes this into Eq. 5.113a to compute Wmn, which can then be inserted into 
Eq. 5.113b to get the relaxation rate (T1)

–1. The computation is tedious and requires several 
approximations in order to get usable results; we shall only list here the main steps and 
arguments:

• The sum of Eq. 5.113a over k and k′ involves slowly varying functions and the sum can 
be performed by integrals using the density of states on the Fermi surface.

• The delta function of Eq. 5.119 simplifies the integrals.
• At such low temperatures that kT ≪ EF the product of the Fermi distribution functions 

( ) ( )−



′ ′f E f E1s sk k

 resembles the delta function and simplifies further the sums and 
the integrals.

• The difference of the nuclear spin energy Em – En ≪ kT which lets us ignore it in the 
Fermi functions.

• Because the density of states and the function ( )′u 0
2

k
 are both slowly varying functions 

of the electron energy Ek, the functions can be evaluated at the same value Ek.
• The sums of the electron spin matrix elements yield δαα′/2, because the integral over the 

Fermi distributions is independent of the electron spin states.

Using further the presentation of Slichter, Eq. 5.113a can be written
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where ρ(EF) is the density of states on the Fermi surface. This, however, describes the 
interaction of the electrons with a single nucleus at r = 0 and we must modify it because the 
electrons in fact see also the neighboring nuclei simultaneously, although with amplitudes 
that rapidly decrease with distance from r = 0. By summing up these Slichter arrives at a 
rate that is twice that of Eq. 5.113b:

 π γ γ ρ( ) ( )= = �
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a u E kT1 64
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0 .e n
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00
3 3 2 2 2

2
2

k
F

 (5.121)

Here the lattice function ( )′u 0
2

k  appears in the same way as in the Knight shift, Eq. 2.52, 
which we may use to relate it with the shift and spin susceptibility:
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to get finally the relation
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If the free electrons can be assumed to form a non-interacting Fermi gas, it can be shown 
that its susceptibility is related with the density of states at the Fermi surface by

 E1
2

,s
e F0

2 2
0χ γ ρ ( )= �  (5.124)

where the subscripts 0 label the approximate parameters valid for non-interacting elec-
trons. In this approximation Eq. 5.123 becomes the well-known Korringa relation
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The more accurate relation can be now written in the form [26]

 �ω
ω

χ
χ

ρ

ρ
γ
γ π

( )
( )

∆





=










T
E

E kT4
.e

s

s

f

f

e

n
1

2

0

0

2
2

2  (5.126)

D. Pines has computed the correction terms for many metals for which the Korringa 
constant

 TT1κ =  (5.127)

remains validated in a wide range of temperatures, for example, in aluminium where  
κ = 1.85 sK between the melting point near 1,000 K and superconducting transition tem-
perature near 1 K.

Magnetic impurities and superconducting transition have a substantial effect on the con-
duction electrons and therefore on the Korringa law. In metals such as Cu and Ag annealing 
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in low-pressure oxygen atmosphere neutralizes the magnetic impurities which is seen in 
the increased nuclear spin lattice relaxation time.

For copper κ = 0.88 sK near RT, increasing to 1.3 sK below 1 K and reaching at 0.2 K the 
relaxation time of about 2 h, i.e. κ = 15 sK. For silver κ = 12 sK and the relaxation time at 
0.2 mK reaches 14 h.

In pure platinum we have a very low κ = 0.03 sK [50]; the Curie law of Pt has been used 
as a thermometer around and below 1 mK temperatures for the reason of this fast relaxation 
and because of the ability to use the Korringa constant as a method to calibrate the NMR 
absorption susceptibility at a temperature where the Korringa law is known to hold.

In a narrower range of temperatures the Korringa law holds for some intermetallic com-
pounds such as AuIn2 (κ = 0.11 sK), which is used for nuclear demagnetization refrigera-
tion [50].

The Korringa constant is an important parameter to characterize the strength of the inter-
action between the conduction electron and the nuclei. For the materials where the cou-
pling can be considered weak, the Korringa constant is larger than 1 Ks. As the spin lattice 
relaxation time T1 becomes very long at temperatures below 1 mK, it is possible to cool 
only the nuclear spin system to nanokelvin or even picokelvin temperatures for a time long 
enough to perform nuclear magnetic investigations, while the conduction electrons stay 
at a much higher temperature (Te > 100 μK). For systems such as these, nuclear magnetic 
ordering phenomena below the transition temperature Tc have been observed in silver (Tc = 
0.6 nK) and copper (Tc = 60 nK) [50, 51]. It appears that the nuclear magnetic ordering 
temperatures roughly obey a simple rule

 T
I I 1

c κ
( )

≈
+

 (5.128)

in many simple metals [51].

5.3.4 Cross-Relaxation and Diffusion of Nuclear Spins

Cross-Relaxation between Different Spin Species
In the absence of microwave-induced transitions the electron spin Zeeman temperature 
quickly relaxes close to that of the lattice, with the relaxation time of the direct process 
(which does not depend on temperature below 4 K). When the lattice is cooled below 1 K, 
the number of electron spin-spin transitions, however, is strongly reduced by the small-
ness of the factor 1 – Pe

2 proportional to the exponentially reduced population of the elec-
tron spins in the upper energy state. This leads to the steep increase of the theoretical 
nuclear spin-lattice relaxation time of Eq. 5.97 that was experimentally validated by data 
of Figure 5.8.

It remained to be shown how the thermal equilibrium is reached between the different 
nuclear spin species and within the spectrum of inhomogeneously broadened NMR signal 
of deuterons, when the electron spin concentration is optimized for high DNP with fast 
build-up rate.
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This is illustrated in Figure 5.9, which shows how the proton and deuteron spins 
approach equilibrium with the lattice, with each other, and within the quadrupole broad-
ened deuteron spin system [52]. The partly deuterated d4-propanediol was chosen for this 
study because the Cr(V) electron spin density of 7 × 1019 cm–3 could be easily prepared in 
it; consequently DNP could be efficiently produced by microwave cooling of the electron 
spin-spin interaction reservoir. The measurements were made in a dilution refrigerator at 
2.5 T magnetic field.

Figure 5.9 Spin-lattice and spin-spin equilibrium time constants in d4-ED-Cr(V): Upper curve and 
round symbols: proton and deuteron spin-lattice relaxation time; middle curve and triangle symbols: 
proton-deuteron spin-spin equilibrium time constant; lower curve and square symbols: recovery time 
constant for spin temperature in the deuteron NMR absorption spectrum after RF alignment. The 
curves are drawn to guide the eye. Reprinted, by permission from Springer Nature Customer Service 
Center GmbH, from Ref. [52].
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After DNP the sample was cooled down in a few minutes to the minimum temperature 
below 100 mK and the various series of measurements were performed:

– In the first step, the spin-lattice relaxation times of the protons and deuterons were 
measured by following the evolution of their NMR signals and spin polarizations at 
various lattice temperatures. As can be expected, these relaxation times were not per-
fectly exponential, and the times shown in Figure 5.9 correspond to high positive and 
negative polarizations; the scatter is believed to be due to the differences of the polar-
izations between the data points.

– In the second step, after DNP and cooldown at 2.5 T field, the proton spin polarization 
was reduced close to zero by strong NMR saturation, and the evolution of the proton 
and deuteron NMR signals was recorded in order to determine the relevant time con-
stant at various lattice temperatures.

– In the third step, after DNP and cooldown, the deuteron polarization was zeroed by 
strong RF saturation, and then the deuteron spin system was aligned by strong RF applied 
off-resonance of the proton NMR frequency. The recovery of the thermal equilibrium 
within the deuteron spectrum was followed by plotting the experimental quantity

 X A D P D3
4

2( ) ( )= −  (5.129)

as a function of time.
The upper curve is quite similar to Eq. 5.97 shown in Figure 5.8; this shows that above 

300 mK the direct process dominates in the temperature dependence of the nuclear spin 
relaxation, and that below 300 mK some less well-known mechanisms overtake in the evo-
lution of the relaxation rate, similar to propanediol-Cr(V) with high spin density.

The fact that the middle curve has a shape similar to the upper one suggests that the tem-
perature dependences arise from the same source, while the equilibrium time constants are 
different by about one order of magnitude. Referring to Figure 4.1, this might be explained, 
in relaxation between nuclear spin species, by the fact that little energy is required to pass 
to the lattice from the electron Zeeman energy reservoir while one nuclear spin system is 
cooling another via the electron spin-spin energy reservoir. Therefore both of the two terms 
of Eq. 5.97 appear to apply also to the cross-relaxation between the nuclear spin species in 
a high magnetic field.

Furthermore, the lower curve of Figure 5.9 also seems to have the same temperature 
dependence as the upper one, and we may draw the same conclusion as above: the cross- 
relaxation leading to the cooling of the dipolar spin temperature within the deuteron spec-
trum suggests that the two terms of Eq. 5.97 apply and limit the rate at which the deuteron 
spin system reaches the internal equilibrium. However, this happens again about ten times 
faster than the proton-deuteron relaxation, because a much lower quantity of energy needs 
to be transferred.

The electron spin concentration plays a decisive role in the above processes via Eqs. 5.94 
and 5.95 that leads to linear relationship between the inverse nuclear spin relaxation time 
and the electron spin concentration.
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Diffusion of Nuclear Spin Polarization
The diffusion of molecules in solids at low temperatures is hindered (apart from solid 3He) 
and therefore polarization can diffuse only by cross-relaxation transitions that are effective 
within molecules and over molecular distances. Dipolar broadening provides a mechanism 
to conserve energy in spin flip-flop transitions between lines that have different chemical 
shifts and between hyperfine lines that have a small shift.

Close to a paramagnetic spin the dipole field increases causing a nuclear Larmor frequency 
shift that exceeds the dipolar frequency. Two-spin flip-flops are then slow and it has been 
speculated that the nuclei nearest to paramagnetic electrons, inside this diffusion barrier, 
are excluded from uniform DNP. This has been experimentally verified and it has been con-
cluded that such a barrier is likely to be overcome by energy-conserving four-spin flip-flops.

The speed of polarization diffusion within paramagnetic molecules has been studied by 
time-resolved coherent neutron scattering [53]; this is described briefly in Section 11.3.2. 
The time scale for reaching uniform polarization in such molecules during DNP is tens of 
minutes, similar to the time scale of the DNP itself.
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6
NMR Polarization Measurement

In this chapter we shall first briefly review the principles of the continuous-wave (CW) 
NMR techniques used for the measurement of the nuclear polarization in polarized targets. 
These principles were discussed extensively in Chapters 1, 2 and 5, and we shall refer back 
to them and remain brief here.

The circuit theory of the series-tuned Q-meter is then described in detail in Section 6.2, 
in view of calculating precisely the CW NMR absorption signal and its integral, the signal-
to-noise ratio, the probe coupling and sampling and the signal saturation.

Optimization of the series-tuned Q-meter circuit is discussed in Section 6.3, on the basis 
of the above circuit theory.

Improved Q-meter circuits will be reviewed in Section 6.4. These include the capaci-
tively coupled Q-meter, the crossed-coil NMR circuit and the introduction of quadrature 
mixer that enables the measurement of the real and imaginary parts of the radio frequency 
(RF) signal simultaneously.

Calibration and measurement of very small NMR signals then follows in Section 6.5. 
Here we shall also treat the signal-to-noise issues, the electromagnetic interferences (EMIs) 
and the NMR circuit drift issues.

6.1 Principles of the NMR Measurement of Polarization

6.1.1 Spin Polarization and Magnetization

The CW NMR method is certainly the most accurate polarization measurement technique 
today. It allows to determine the spin polarization of all nuclear species individually, and is 
not sensitive to impurities, contaminants or addenda other than those containing unpolar-
izable nuclei of the same species. Its principle relies on the relationship between the inte-
gral of the NMR absorption signal and the static magnetization due to the spin species of 
interest. The method is inherently accurate for nuclei with spin 1/2, but its accuracy can be 
shown to suffer little from the quadrupole interaction of higher spins, if the magnetic dipole 
interaction with the static field is substantially stronger than the quadrupole interaction.

The vector polarization P(I) of the spin species I was defined by Eq. 1.60 as the expecta-
tion value of the component of the spin along the static field, divided by its maximum value:
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 P I
I

I
.

z( ) =  (6.1)

The spin polarization is associated with the static magnetization given by Eq. 1.64, which 
we also repeat here

 �M I n IP I( ) .z I Iγ ( )=  (6.2)

Because dynamic polarization requires a rather large concentration of electronic spins with 
a large gyromagnetic factor, the determination of the nuclear spin polarization based on the 
measurement of the static magnetization in the material is subject to errors in the measure-
ment of the electronic spin density. Although this, in principle, can be overcome by deter-
mining the magnetization from the frequency shift of a narrow NMR line between zero 
and finite polarizations of the given spins, with electronic polarization unchanged, there 
remains the problem of knowing the concentrations and polarizations of the contaminant 
nuclear spins in the material. This is why in all polarized targets today the magnetization 
and polarization are measured by magnetic resonance methods; their selectivity is based 
on the fact that the Larmor precession frequencies of the various nuclear spin species are 
usually very well resolved. It may be instructive, however, that even the resonance meth-
ods (basically) rely on the above linear relation of the static magnetization with respect to 
the polarization, which was pointed out already in Section 2.2.1.

This was seen by considering the static susceptibility1 due to spins I

 
M I

B
,z

0
0

0

χ
µ ( )

=  (6.3)

which was also seen to be linear in P(I) by inserting Eq. 6.2:

 
� ( )χ

µ γ
=

n I

B
P I .I I

0
0

0

 (6.4)

These equations are very general as they do not require the populations of the magnetic 
energy levels to be in thermal equilibrium (TE), although they were first discussed in 
Chapter 1, Eqs. 1.64–1.66, in the terms of Boltzmann distribution of the level populations.

6.1.2 Transverse Susceptibility

We shall now relate the static susceptibility to the generalized complex transverse suscepti-
bility χ(ω), which describes the response of the spin system to a time-dependent excitation 
Bx = B1cosωt of such small amplitude that the response of the system remains linear. This 
requires the amplitude B1 to satisfy inequalities 5.14 and 2.139.

We remind that this frequency-dependent susceptibility has the real and imaginary parts

1 In SI system, the usual definition is B = µ0(H + M) = (1 + χ 0 ) μ 0H, which deviates slightly from the definition of Eq. 1.65. The 
difference is insignificant in dilute paramagnetic systems and totally negligible in nuclear magnetism, even at high polarizations.
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 iχ ω χ ω χ ω( ) ( ) ( )= ′ − ′′  (6.5)

called dispersion and absorption parts, respectively, because they describe the dispersion 
and absorption of the electromagnetic wave which excites the magnetization of the spin 
system in the plane perpendicular to the static field B0; the absorption and dispersion of the 
wave were discussed in Section 2.2.1. In a linear system, these parts are related with each 
other by the Kramers–Krönig equations introduced in Section 2.2.2:

 d1 ,∫χ ω χ
π

χ ω

ω ω
ω( ) ( )

( )
′ − ′ ∞ =

′′ ′

′ −
′

−∞

+∞

P  (6.6)

 d1 ,∫χ ω
π

χ ω χ

ω ω
ω( ) ( ) ( )

′′ = −
′ ′ − ′ ∞

′ −
′

−∞

+∞

P  (6.7)

which give restrictions and extremely general and useful relationships on the NMR signal 
by adding few other assumptions or observations. The only additional assumptions, which 
we require, are that

(1) the spin absorption line be a single narrow function of frequency;
(2) the dispersion due to the spin system should tend to zero at infinite frequency (which 

in practice means that the particular spin must not possess higher magnetic resonance 
frequencies due to the inner structure of the nucleon).

It is rather easy to show that the second assumption follows the first one, if the deeper struc-
ture of the nucleon can be regarded independent of the external spin degrees of freedom, 
which is well satisfied at field values obtainable in the laboratory.

Because the response of the spin system to a linearly polarized transverse oscillating 
magnetic field should be totally independent of the sign of the frequency of oscillation, 
the dispersion and absorption must be symmetric and antisymmetric functions, respec-
tively, about the zero frequency, i.e.  –χ ω χ ω( ) ( )′ = ′  and –  –χ ω χ ω( ) ( )′′ = ′′ . This also 
implies (0) 0χ′′ = , i.e. that absorption be zero with a static transverse field, a result which 
can be understood even without linear response theorems. The same is true with dispersion 
at zero frequency: supposing that the transverse field Hx = Hx(0) is steady and very much 
smaller than the steady main field Hz = H0, its effect is to rotate the field and magnetization 
slightly so that

 
M

M

H

H

0 0x

z

x

z

( ) ( )
=  (6.8)

and the magnitude of the magnetization along the z-axis remains unchanged. We have then 
from Eq. 1.65

 M
M
B

H H0 0 0 .x
z

x x
0

0
0

µ
χ( ) ( ) ( )= =  (6.9)
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On the other hand, the definition of the susceptibility is just

 M H0 0 0 ,x xχ( ) ( ) ( )= ′  (6.10)

which proves that

 0 .0χ χ( )′ =  (6.11)

On the other hand, we may express χ’(0) using the Kramers–Krönig relation 6.6 at zero 
frequency

 P d0
1

.0 ∫χ χ
π

χ ω
ω

ω( ) ( )
= ′ =

′′ ′

′
′

−∞

+∞

 (6.12)

As the absorption part of the susceptibility is antisymmetric with respect to 0, the integra-
tion can be performed from 0 to +∞ and multiplied by 2; inserting now the static suscepti-
bility from Eq. 5.6 gives
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P I d
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,I I
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0

0 0
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χ ω
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 (6.13)

which yields for P after expressing the magnetic field in the terms of the Larmor frequency

 P I
n I

d
2

.
I I0
2

0

0

�
∫( ) ( )

π µ γ
χ ω

ω

ω
ω= ′′

+∞

 (6.14)

Assuming that the absorption signal is very narrow and in addition symmetric about its 
centroid, one may replace ω in the denominator of the integrand by the Larmor frequency 
ω0, which yields the usual linear relationship of Eq. 2.65 between the integrated absorption 
signal and the polarization of the material.

In the case of deuterons and many other nuclei with I ≥ 1, the quadrupole broadening 
may be so large that the above statements do not hold well enough. This happens in partic-
ular at low magnetic field (say, 0.5 T for deuterons), at high polarizations when the absorp-
tion lineshape becomes very asymmetric, and especially for 14N. The usual formula must 
then be replaced by Eq. 6.14, which we shall always use unless stated differently.

At high field (say, 2.5 T), the difference between this expression and the more customary 
formula, with the integral of the absorption curve only, remains smaller than 1% at PD = 
0.5, and can easily be corrected for. Such corrections, however, have seldom been made, 
because in the experimental absorption signal there are always several other distortions 
which may cause even larger errors. These come from the measurement circuitry on the 
one hand, and on the other hand from the microscopic description of the non-saturating 
passage of the deuteron resonance line at very low spin temperature.

The integral of Eq. 6.14 accurately gives the polarization of the spins I, once the param-
eters in front of the integral have been determined experimentally. In practice, this is 
achieved by measuring the real part of the NMR signal, known to be a good representation 
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of the imaginary part of the transverse susceptibility, under conditions in which the polar-
ization is accurately known. This calibration process yields the missing parameters, and 
it is usually performed at 1 K temperature. At this temperature, the Curie law of Eq. 1.70 
gives a very accurate value to the polarization. This and the calibration procedure for very 
small signals will be discussed further in Section 6.5.1.

6.2 NMR Signal Measurement Using a Series-Tuned Q-Meter

Two main types of Q-meter have been used for NMR signal acquisition and spin polar-
ization measurement in polarized targets: the parallel-tuned circuit and the series-tuned 
circuit. Both circuits feature an inductive circuit element placed in or around the target, 
and they differ obviously by the placement of the tuning capacitor, either in parallel or in 
series with the inductor.

At resonance the parallel-tuned circuit has maximum impedance, whereas the series-
tuned circuit has minimum impedance. For a linear response the coupling resistances (or 
impedances) should be substantially higher than the resonator impedance; in the series-
tuned circuit this is easily realizable, while in the parallel-tuned circuit the resistances must 
be so high that the parasitic capacitances begin to influence the circuit tune significantly. 
Moreover, in the series-tuned circuit, the theoretical signal is linear with the resonance 
susceptibility in first order, while in the parallel-tuned circuit the signal is inversely propor-
tional to the susceptibility, i.e. the circuit is inherently non-linear.

These facts were recognized in 1967 by Petricek [1], and various implementations of 
the series-tuned Q-meter were used for the polarization measurement. In the earliest ones, 
the RF signal, amplified after the resonant circuit, was converted by a simple diode detec-
tor that is sensitive only to the signal amplitude [2, 3]. A substantial improvement in the 
linearity and noise performance was achieved when Court and coworkers introduced the 
double balanced mixer that enables phase-sensitive detection of the real part of the signal, 
and therefore yields a much improved separation of the absorption and dispersion parts 
of the susceptibility [4, 5]. The team developed and designed the circuit, called Liverpool 
Q-meter; this was produced semi-industrially and continues to be used successfully by 
most polarized target teams in the world [6].

6.2.1 The Series-Tuned Q-Meter Circuit Theory

The schematic diagram of the series Q-meter circuit is shown in Figure 6.1. The coupling 
admittance of the hybrid resonator is

 Y
R R
1 1

,
i o

= +  (6.15)

where Ro is the oscillator feed resistance and Ri is the amplifier input impedance, both of 
which are assumed to be purely real parameters. The real and imaginary parts of the voltage 
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ui in the input of the amplifier can be written in terms of the real and imaginary parts of the 
resonator impedance Z as

 u u
Z Y Z Z

R Y Z Y Z
Re

Re Re Im

1 Re Im
i o

o

2 2

2 2 2( )
{ }

{ } { } { }

{ } { }
=

+ + 

+ +





 (6.16)

and

 u u
Z

R Y Z Y Z
Im

Im

1 Re Im
.i o

o

2 2 2( )
{ }

{ }

{ } { }
=

+ +





 (6.17)

The hybrid resonator impedance Z is

 Z R
i C

Z
Z Z
Z Z

1 tanh
tanh

,c
L c

c Lω
γ
γ

= + +
+
+

�

�
 (6.18)

where the coil impedance ZL can expressed in terms of the RF susceptibility and effective 
filling factor of the spin polarized material η (see Section 6.2.5) by

 ω η χ ω χ ω{ }( ) ( )= + + ′ − ′′ Z R i L i1 ,L L  (6.19)

and the propagation constant and characteristic impedance of the coaxial line of electrical 
length ℓ are given by

 R i L G i C i LC
iQ

1 1
2c c c c c c

c

γ ω ω ω( )( )= + + ≅ +








  (6.20)

b) Resonant circuit

Oscillator Resonant
circuit

uo R0

Z

ui
Ri

Amplifier

a) Q-meter circuit

R C γ  ≈ nπi L

Tuned cable

Target

RL

Figure 6.1 Series Q-meter circuit – (a) block diagram, not showing the matching elements of a 
coaxial line between the oscillator and the circuit blocks; – (b) elements of the hybrid resonator 
circuit, with a tuned transmission line connecting the series coil and tuning capacitor
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and
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=
+

+
≅ +













  (6.21)

Here the subscript c labels the distributed parameters of the coaxial transmission line, 
and we have furthermore defined (as usual)

 = =Z
L
C

Q
L
R

and .c

c
c

c

c
0

ω
 (6.22)

These definitions and the approximations of Eqs. 6.20 and 6.21 were first time used in 
Ref. [7] and it is important to note that the precise understanding of the tuning and shape 
distortions of wide-sweep NMR circuits should use these or even more accurate expres-
sions, rather than the usual parameters involving a real characteristic impedance and a 
simple (or zero) attenuation constant.

6.2.2 Series Q-Meter Signal Expansion

Expressions 6.16 and 6.17, in principle, give accurately the output signal of the apparatus 
used for NMR measurements, once the gain of the amplifying and detecting circuitry is 
known. These or slightly less accurate expressions have been used for numeric simula-
tion of the output signal, as a response to numeric input spectra of the RF susceptibility. 
Such simulations are useful for many purposes such as evaluating the distortions and non- 
linearity of a known circuit. However, these simulations are tedious for the optimization 
of the circuit itself and are unhelpful for the understanding of the circuit tuning procedure. 
To gain insight in these, Eq. 6.16 was expanded in power series of the susceptibility, with 
coefficients themselves expanded as power series of the frequency offset from the Larmor 
frequency [7]. With appropriate tuning the real part of the RF voltage ui is

   

u
R

u
A x

A x L x A x L x

A x L x x A x L x x

Re i
o

o
0

1 1

2

2 2 2
2

2
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+

 (6.23)

where x is the relative frequency offset from the Larmor precession

 x .0
0

ω ω
ω

=
−

 (6.24)

The term A0(x) is proportional to the experimental Q-curve, which can be measured 
when χ(ω) = 0; this is obtained by shifting the main field off resonance. The aim of the 
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circuit design is to make all higher order coefficients An, An′ small except A1(x), which 
should be a large and flat function of x. These features provide selectivity for the absorption 
lineshape, yielding low distortions and good linearity. The coefficients An, An′ depend only 
on the circuit parameters, which was discussed in Ref. [8]. They can be approximated for 
narrow frequency sweep, fairly high Qc and low Y by

 A x R Lx Y R Lx L x2t0

2

0

2 2
�ρω ρω ω δ δ( ) ( ) ( ) ( ){ }= ′+ + − ′+ + + + +  (6.25)
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where Q = ωL /RL is the Q-factor of the coil which has the equivalent series resistance RL, 
and δ is the relative offset of the cable resonance frequency from the Larmor precession. 
For brevity we have used the following parameters:

• effective damping resistance R’ of Z at ω0

 R R R n Z
Q

R
Z

Q
2

1 1 ;L
c

L0

0

2

2π ( )′ = + + +








 −












 (6.30)

• frequency sensitivity of effective damping

 n R
Z

;L
0

ρ π=  (6.31)

• tune shift due to damping in the coaxial line
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• and capacitor tune shift
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0
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ω
= −  (6.33)

The above equations were derived using the following approximation for �tanhγ :

 n x
Q

ixtanh 1
2

,
c

�γ π≅ + +








  (6.34)

which is good for | x | ≤ 0.1 when n = 1 and Qc ≈ 30 (as defined by Eq. 6.22).

6.2.3. Ab Initio NMR Signal Size

One of the problems in NMR polarization measurement of the deuteron and other spin-1 
systems is related with the calibration of the integrated absorption signal at a known polar-
ization, usually at 1 K temperature where the spin-lattice relaxation is rapid (≈1 minute) 
and where the TE and uniformity are very easy to achieve, by immersing the target in pure 
superfluid 4He. The size of the signal under these conditions is very small and requires signal 
averaging over extended periods of time (≈30 min) in order to show up above the noise. This 
would be relatively simple to do, if the circuit drift during averaging could be eliminated. 
There is, in fact, an optimum averaging time, beyond which the Q-curve drift results in 
errors greater than that due to the noise. Only repeated measurements and statistical analysis 
then will enable one to gain in the statistical accuracy, at the cost of some loss in systematics, 
because details of the signal such as the line center cannot be resolved with precision. In 
the following, we shall calculate the size of the NMR signal from first principles using the 
circuit model parameters and compare it with the amplifier and oscillator noise. Deuterons 
are used as an example, but the treatment is valid for all NMR signals of comparable size.

In the case of deuteron NMR signal, the susceptibility is so small in all experimental 
conditions that the contribution of the second and higher order terms in Eq. 6.23 can be 
ignored. Furthermore, the frequency sweep may be limited to ±1.5% where the frequency 
dependence of the coefficients An, An′ may be small if the circuit is well designed and tuned. 
We may then write the output signal in the form (after subtracting the Q-curve)

S G u u Gu
R

x L A x x A x xRe Re 0 1 ,i i
o

o
0 1 1ω χ ηω χ χ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ } { }≡ −



 ≅ + ′′ + ′ ′   (6.35)

where uo is RF source voltage and G is the system voltage gain between the inputs of the 
preamplifier and the analog-to-digital converter (ADC).

By integrating Eq. 6.35 we can write the relationship between the signal integral, the 
polarization and the circuit parameters in the form appropriate for wide sweep:

 ∫ ∫ω
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If A1(ω) is a flat function and A1′(ω) is a symmetric function about ω0, and if the absorption 
part of the susceptibility is also symmetric with cut-offs in both wings, then we can write 
using Eq. 6.14
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 (6.37)

where the gain, oscillator voltage and feed resistance values were expressed in the terms of 
the signal voltage S0 at the minimum of the Q-curve, with no NMR signal present:

 S A Gu
R

0 .0 0
0

0
( )=  (6.38)

The relationship 6.37 gives polarization in the terms of variables that are accurately and 
directly measurable and/or calculable, with the exception of the effective filling factor η. If 
the filling factor is known from other measurements, then no calibration is required for the 
measurement of polarization. The approximate ratio of the coefficients A1(0)/A0(0) from 
Eqs. 6.25 and 6.26
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is obtained using the circuit parameters, the values of which can be verified with preci-
sion by fitting the Q-curve with the theoretical expression of Eq. 6.16. The spin density is 
obtained from the density of the material and from the chemical formulae of its compo-
nents. We shall discuss below several applications of Eq. 6.37.

6.2.4 Signal-to-Noise Ratio

In the following we shall assume narrow NMR absorption lines, which are the usual case 
in high field, such as protons and deuterons at 2.5 T. Within the frequency range of inter-
est, we may then put (ω0/ω)2 ≈ 1, which allows us to define the absolute effective signal 
strength Seff from Eq. 6.37 once we know the effective width of the NMR signal Δωeff, 
defined as

 S d S .e
0

ff eff∫ ω ω ω( ) ≅
+∞

D  (6.40)

As an example, let us estimate the deuteron NMR signal height in glassy deuterated buta-
nol-water, with Δωeff = 2π·280 kHz, at 2.5 T field. With circuit parameters R’ = 15 Ω,  
L = 450 nH, n = 1, Q = 10, Qc = 80, and Y ≅ 1/(50 Ω) and filling factor η = 0.2 usual with 
embedded probe coils, we find from Eqs. 6.37–6.40
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and
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the first case corresponding to maximum deuteron polarization and the second to the 
calibration signal measured in TE around 1 K temperature. With about 0.3 mA current 
into the resonant circuit, we have S0 = 4.5 mV; this corresponds to 12 µV and 12 nV 
changes in the enhanced and calibration signal amplitudes at the input of the preampli-
fier, respectively. These have to be compared with the amplifier noise floor of 40 nV 
(with 30 kHz single-sideband bandwidth) and the oscillator noise of 100 nV (using the 
RF source signal-to-noise ratio of 93 dB). The theoretical TE signal-to-noise ratio is 
therefore
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= ×
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≅

−

 (6.43)

which indicates that the TE signal is always completely invisible without signal averaging. 
The fully polarized signal, however, is about hundred times higher than the root-mean-
square (RMS) noise, but even this is only about one-third of the depth of the Q-curve (with 
500 kHz sweep width).

Above we have calculated the signal-to-noise ratio from the first principles, applicable 
for a raw experimental spectrum obtained by one frequency scan. A large reduction of 
noise is obtained by the appropriate processing of many such signals. The processing 
consists of averaging a number of spectra, subtracting the Q-curve obtained by averag-
ing over same number of spectra without NMR signal, correcting for the Q-curve drift 
and field effect by subtracting a function (usually a polynomial of order 2) obtained by 
fitting the sides of the spectrum to an expected residual Q-curve, and integrating the 
resulting spectrum. This procedure is repeated a number of times to reach the desired 
statistical accuracy and to examine systematic effects in the equipment used for the 
measurements.

In the CERN deuteron NMR equipment [9], the deuteron NMR signals are digitized and 
averaged at Np points of the frequency scan with about 500 kHz width. The scan is made by 
stepping from the minimum to the maximum frequency and then stepping back to the min-
imum frequency; a scan thus has two measurements of the spectrum. Averaging Ns such 
scans reduces the noise by [2Ns]

–1/2; subtraction of a Q-curve obtained with equal number of 
scans increases the noise by 21/2. Ne points on each end of the scan fall out of the absorption 
spectrum and are used to determine the residual Q-curve under the signal. Integration of 
the signal then improves the signal-to-noise ratio by a factor f

 f
N

N N N
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1
2
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p e e
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+

 (6.44)
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With Ns = 104, Np = 400 and Ne = 70, the above equation gives f = 954; applying this to Eq. 
6.44 yields a statistical accuracy of about 1% for determining the integrated absorption 
spectrum from one set of averaged signals and Q-curves. This was confirmed by determin-
ing the RMS noise in the experimental signal outside the edges of the DMR absorption 
lineshape [10].

By repeating the measurement Nn times, a further theoretical improvement by a factor of 
[Nn]

1/2 will be obtained in the statistical accuracy of the integrated calibration signal. With 
Nn = 100 the theoretical statistical accuracy is 0.1%. This can be achieved in about 2 days 
of data taking. The result is interesting because it has been previously thought that precise 
TE calibration for deuterons is impossible without substantial saturation. This result also 
calls for improved control of systematics if a comparable systematic accuracy is desired.

6.2.5 Saturation

In the following we shall assume a series-tuned Q-meter circuit in which a double reso-
nant circuit consists of the probe coil in series with a capacitor, with tuned coaxial line 
connecting these elements, as was described in Section 6.2.1. By appropriate choice of the 
damping and coupling parameters, a linear measurement of the RF transverse susceptibility 
χ(ω) results. The choice of the circuit parameters can also be made so that the real part of 
the output signal is an almost undistorted absorption (imaginary) part of the susceptibility 
and contains only a small contribution from the dispersion (real) part of the susceptibility.

In performing the NMR measurement, a small but finite loss of polarization occurs due 
to the saturation of the polarization near the probe wire. Here we shall focus on the errors 
in the polarization measurement due to this saturation. To be able to obtain practical results, 
we first derive the approximate equations for the sampling efficiency as a function of radial 
distance from the NMR probe coil wire. As a by-product we shall obtain a fundamental 
formula for the filling factor η of the probe coil, which is required for absolute calculations 
of the signal size.

The term ‘saturation’ describes a parameter that depends on the RF field strength and on 
the sequence of the measurement. This parameter is needed in the equations for the error 
in polarization measurement during DNP. It is particularly useful in the evaluation of the 
decay of the NMR signal after the DNP is stopped and the target is put in the ‘frozen spin’ 
state.

Numeric results are finally obtained for a simplified example where the NMR probe is 
a wire in a circular cavity with radius b, both coaxial with the main field, and the target 
material fills the cavity from radius a to b.

Self-Inductance and Continuous-Wave NMR Signal
The sinusoidal AC current in a conductor of a coil can be decomposed in rotating and 
counterrotating components as

 i I e e I t2 cos .j t j t
coil ω( )= + =ω ω−  (6.45)
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The self-inductance2 L of the coil carrying this current is defined as

 
� �

L
i

B H dv1 ,
v

coil
2

∫= ⋅  (6.46)

where the averaging is over time and the integral of the scalar product of the complex 
vectors of the magnetic field and induction is over the volume filled by the field. Note that 
we have decomposed the oscillating current to rotating and counterrotating components, 
which helps in writing the resulting field in rotating components, for example, at radius r 
in the proximity of a round wire:

 H t I
r
e e

2
.t j t

1
j

π ( )( ) = +ω ω−  (6.47)

These definitions are used in the complex circuit theory which is the basis of the ab initio 
calculation of the absolute signal size of Section 6.2.3. Assuming constant frequency ω, 
the oscillating current gives rise to a voltage u when passing through the lumped-element 
impedance Z:

 u i Z i R j L i R j L 1 ,coil coil coil L coil L 0ω ω ηχ ω( )( ) ( )= = + = + +



  (6.48)

where χ (ω) is the complex transverse susceptibility due to the resonance of the nuclear spins, 
and η is the effective filling factor of the probe coil. It is this voltage which shows up in the 
experimental NMR signal after amplification, phase-sensitive detection and the removal of 
the Q-curve. In the following we shall not focus on the problems related with the pure circuit 
theoretical considerations, which were treated in the previous section but wish to elaborate 
only on the geometrical sampling function of the probe coil, on the spatially inhomogeneous 
saturation of the resonance signal and on the effective filling factor of the probe coil.

The following simplifying assumptions are made:

(1) High frequency so that the skin depth is negligibly small; this avoids problems related 
with the complex susceptibility of the conductor material(s).

(2) Longitudinal susceptibility is zero because the longitudinal relaxation time of the nuclear 
spins is very long in comparison with the period of the RF field, and the longitudinal 
susceptibility due to first-order forbidden transitions at 2ω0 is negligibly small at ω0.

(3) Transverse susceptibility due to the nuclear spins is independent of time because the 
saturation is very small and the speed of passage through the resonance is very slow 
in comparison with the dipolar width, which is the main cause of homogeneous line 
broadening.

Sampling Function of the Probe Coil
We may now proceed to write the homogeneous static field in z-direction

 
� �H H z ,0 0

0=  (6.49)

2 In the following we use the common abbreviation ‘inductance’ for the correct term ‘self-inductance’.
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the RF magnetic field of the probe coil

 H H H z e e ,j t j t
1 ||

0
� � �( )( )= + +ω ω

⊥
−  (6.50)

and the RF magnetic induction:

 B H H z e e H e .j t j t j t
1 0 ||

0
� � � �

µ χ ω( )( ) ( )= + + +





ω ω ω
⊥

−
⊥  (6.51)

Here the vector fields and the complex susceptibility are position dependent, although we 
have not written this explicitly. Note also that only one of the rotating components of the 
field gives rise to transverse magnetization and contributes to the resonant susceptibility, 
because the component counterrotating with the spins is far from resonance.

Assuming that the wavelength at frequency ω is much larger than the size of the probe 
coil, we can readily write the inductance:
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 (6.52)

where

 L
I

H dv
v0

0
2 1

2∫
µ

=  (6.53)

is the inductance of the empty coil. We note that the susceptibility contributes linearly 
under the integral 6.52, but it is weighed by the square of the RF field component perpen-
dicular to the static main field.

Equation 6.52 allows us to estimate numerically possible errors in the measurement of 
volume-averaged polarization if the polarization and hence the susceptibility are not uni-
form in the sampled volume, and if the perpendicular component of the RF field is known.

Filling Factor
Equation 6.52 can also be used to calculate the effective filling factor, which is defined by 
Eq. 6.48, and which is due to the fact that the target beads do not fill all the volume where 
the field is confined. This is done by writing the susceptibility in the form

 � �r r, ,χ ω χ ω( ) ( ) ( )= Ψ  (6.54)

where the spatial distribution function of the polarized material is separated from the fre-
quency-dependent susceptibility, which is assumed independent of position. Inserting this 
in Eq. 6.52 and using Eq. 6.48 yields
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Ψ ⊥  (6.55)

Here Ψ is 1 inside the target beads and 0 elsewhere.
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Saturation
Saturation has a clear and simple meaning in magnetic resonance; it refers to the rate equa-
tions which describe the time evolution of the longitudinal susceptibility (or polarization) 
under time-varying transverse fields. For simplicity, let us assume a system of spins with 
I = 1/2 so that we may write the populations of spins with their z-component parallel and 
antiparallel to the field as N+ and N– so that the total number of spins and the population 
difference are

 
N N N

n N N

,

.

= +

= −
+ −

+ −

 (6.56)

Under the action of the RF field, the populations undergo changes at rates
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 (6.57)

which are equal but opposite because of the conservation of the number of spins, and fur-
thermore, are proportional to the matrix elements V V

2 2
〈 〉 〈 〉+ − = − +  of the interaction 

V(t) due to the perturbing RF field.
Other perturbations also cause changes in the nuclear spin populations; among these are 

the spin-lattice interaction which is strongly temperature dependent, and the interaction of 
the nuclear spin system with that of the electronic spins. The former actually mainly pro-
ceeds via the latter. In both cases an equilibrium population ratio

 �N
N

N n
N n

e kT
0

0
0

0

/ S0≡
−
+

= ω−

+

−  (6.58)

is asymptotically reached with a time constant which results from the rate equations. Here 
TS is the spin temperature of the paramagnetic electron system; this temperature may be 
very low under favorable DNP conditions, and it may be positive or negative depending on 
the frequency of the microwave field. If there is no microwave field, the equilibrium spin 
temperature is equal to the lattice temperature TL.

Spin-lattice relaxation in the absence of microwaves proceeds with a time constant T1, 
which now yields another rate equation:
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 (6.59)

which has the solution (in equilibrium)

 n
n

WT1 2
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 (6.60)
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We recognize here the saturation time constant

 
W
1

2
,RFτ =  (6.61)

which is calculable, for example, by using Eq. 1.58. We also note that in the limit of weak 
saturation 2WT1 ≪ 1 and n ≈ n0, whereas in the limit of strong saturation n ≈ 0 according to 
our (unfortunately simplistic) Eq. 6.60. The case of NMR polarization measurement must 
fall in the limit of weak saturation in which case Eq. 6.60 holds well. The case of strong 
saturation requires a quantum statistical treatment, similar to DNP.

In our case, the CW NMR signal is measured during a slow passage through the reso-
nance line, which is repeated a large number of times. The most general one can be found 
in [11] and it can be put in the form

 P k P e0 k( ) ( )= ε−  (6.62)

where k counts the passages and
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If passages are made with intervals of Δ t, we find the effective saturation time constant

 t
B
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τ

ω

πγ
= D  (6.64)

The saturation thus varies inversely proportional to the squared transverse RF field strength, 
which indicates that care must be exercised in order not to partially kill the polarization 
near the wire of the probe coil if it is embedded in the target material. Some errors have 
been made in this respect in the past, due to the fact that a thin bare wire has been placed 
directly in contact with the target material.

We shall now estimate the polarization P*(t) from the NMR signal due to the slightly 
saturating NMR measurement. Its decay is non-exponential and is readily calculated from 
the above formulae. Under the assumption that at time t = 0 the polarization is uniform 
with a value P0, and that there is no time evolution due to DNP or spin-lattice relaxation, 
we find

 P t P
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 (6.65)

The volume-averaged effective instantaneous saturation time P*(t)/[dP*(t)/dt] is in this 
case not a constant but increases as a function of time in a way which depends on the 
geometry of the probe coil.
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Error in Polarization Measurement Due to Saturation
Equations 6.59 and 6.60 can be also used for estimating the saturation due to NMR during 
DNP, by simply replacing T1 by the polarizing time constant Tpol:
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P P
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2 ;

pol

= − +
−∞  (6.66)
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The error made in the estimation of the steady equilibrium DNP value P∞ from the slightly 
saturated NMR signal can now be calculated by
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where the explicit radial position dependence has been written for clarity.

Example for Error Due to Saturation of Deuteron NMR during DNP
Let us assume a cylindrical cavity with radius b = 20 mm, with wire of radius a in its center 
coaxial with the main steady magnetic field and the z -axis. The RF current runs along the 
wire and returns along the cavity, forming a kind of coaxial transmission line, with electri-
cal length much smaller than the wavelength. The sweep interval is 40 ms and the ampli-
tude of the current in the coil is 0.3 mA (approximate values for the Liverpool Q-meters 
used with the deuterated target of Spin Muon Collaboration (SMC) [10]. Let us denote the 
wire length by ℓ. For numeric estimates we take b = 20 mm and a = 0.5, 1, 1.5 and 2 mm.

Let us first write expressions for the inductance with the sampling function:
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where
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The probe ‘coil’ (a coaxial resonator in our present case) filling factor is
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this is the 1/r rule for the signal sampling function near a current-carrying wire.
The effective saturation time constant at distance r from the center of the probe coil wire 

is

 t
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r45.7 h
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πγ
= = ×









D  (6.72)

so that the nearest beads at 2 mm radius see a saturation time constant of about 183 h. The 
measured average saturation time constant was 250 h; the above calculation did not take 
into account the real coil geometry and ignored that, between the blocks of a few hundred 
double sweeps, some time was spent for transferring the NMR data and analysing the sig-
nals, before a new block of sweeps was executed.

The error in polarization determined from NMR signal is then obtained from Eq. 6.68 
in steady state of DNP:
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This ratio decreases quickly for low a. Figure 6.2 gives values for the error with param-
eters relevant to the 1992 run of NA47. The graph shows the percentage error in the mea-
sured polarization as a function of the radial distance from the center of the NMR wire to 
the polarized material, for DNP time constants varying from 0.1  to 30 h. We conclude that 
polarization time constants in excess of 1 h lead to ≥ 2% errors in polarization measurement 
if the radial distance to the material is less than 2 mm.

Example for Deuteron NMR Signal Decay Due to Saturation in Frozen Spin State
Here we assume that DNP is stopped and the target cooled so as to freeze an initially 
homogeneous polarization and estimate the evolution of the deuteron NMR signal decay.

The time evolution of Eq. 6.65 results in the integral of the volume-averaged instanta-
neous NMR signal and its saturation time
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∫

∫
( ) =

τ ( )−

 (6.74)

which has no closed-form analytical solution. Developing the integrand in the nominator 
into series yields the signal decay due to saturation
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 (6.75)

This yields the initial instantaneous saturation time at t = 0
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Here τa = τRF
eff(a) is the local saturation time constant at the inner radius of the target. With 

inner radii of 2, 1.5, 1.0, 0.5, 0.25 and 0.10 mm we find initial saturation time constants of 
850, 535, 274, 84, 25 and 4.8 h. These may be compared with the measured values around 
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Figure 6.2 Error in deuteron polarization measurement in conditions during NA48 run of 1992, in 
steady state of DNP, as a function of the minimum distance from the coil wire to the nearest beads of 
the target. The set of curves correspond to different time constants of DNP build-up
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250 h for coil wire isolation radius of 1.75 mm. The difference may be due to the fact that 
the current in the coil was underestimated.

We also note that after a very long time (when there is little polarization left), the satu-
ration time approaches the longest effective time constant at radius b. When starting from 
dynamic equilibrium with the polarization distribution given by Eq. 6.67 and initial signal 
by Eq. 6.68, the initial saturation time depends on the polarization time constant at the 
time of stopping DNP. With both time constants in the same order of magnitude, the initial 
saturation time is of the order

 a b
a

ab
 45.7 h 

mm
,RF RF

* eff
2τ τ ( )≅ = ×  (6.77)

which yields the saturation time of 1,370 h for a = 1.75 mm. This time is much longer than 
the polarization time constant and therefore the initial decay time after DNP is likely to come 
closer to the value with initial homogeneous polarization, around 600 h (with 0.3 mA current).

Figure 6.3 shows the decay of the integrated NMR signal after turning on the NMR 
measurement, starting with homogeneous frozen polarization at time t = 0. The risk with 
material at a small radius is well illustrated by the lower curves.
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Figure 6.3 Decay of deuteron NMR signal due to RF saturation, in frozen spin state with initially 
homogeneous polarization
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We conclude that when the polarizing time constant is in excess of 1 h, target beads 
nearer than 2 mm radius lead to potential errors in the deuteron polarization measurement 
during DNP. The problem is particularly serious in the case of proton polarization mea-
surement, if 0.3 mA current is used in the probe coil. Consequently, the design of the NMR 
probe coil and current in the coil of the Liverpool Q-meter was reconsidered.

Regarding deuteron polarization measurement, target material at radius smaller than 
2 mm is not advisable. The design of the probe coil of the 1994 run of NA47 was improved 
so that the RF field was very low everywhere, even on the surface of the flat strip conduc-
tor. As a result of the low saturation, very high deuteron polarization was reached in the 
deuterated butanol target, and the error due to saturation was also lower than in the 1992 
run of NA47.

The hypothesis that the NMR saturation causes error in polarization measurement can be 
easily tested by stopping the RF feed to the Q-meter during DNP when a steady state has 
been reached with constant microwave power. After continuing DNP at constant micro-
wave power for a few hours, the NMR signal is remeasured. If the signal has grown higher, 
this can be interpreted as a recovery of the polarization in regions close to the NMR coil 
wire.

Consequently, it is recommendable to use the probe coil current of 0.1 mA for deu-
teron polarization measurement and of 30 µA for proton polarization measurement. The 
alternative to keep 0.3 mA current in the probe coil and stop NMR measurement by 
lowering the duty cycle, from the signal-to-noise point of view, is less efficient, because 
the same saturation improvement means lowering by 10 or 100 times the measurement 
duty cycle.

6.3 Optimization of the Series Q-Meter

6.3.1 Design Criteria

With the analytical expressions of Eqs. 6.23–6.33 the optimization of the series Q-meter 
circuit can be performed for each particular case. These equations give the distortion and 
non-linearity of the transfer function of the complex RF susceptibility, allowing their 
optimization. The signal-to-noise ratio can also be maximized using these equations. 
Furthermore, criteria for the stability for each component can be easily obtained, with 
requirements imposed by the TE calibration signal size which is calculable.

Equations 6.23–6.33 also show how the circuit should be tuned for best performance. 
This will be discussed Section 6.3.2. The criteria of the tuning follow from the require-
ments of the signal symmetry and absence of dispersion contribution, and from the shape 
of the Q-curve which sets requirements for the dynamic range.

In the circuit design two major parameter specifications emerge: maximum signal size 
and required scan width. For narrow signals and high susceptibility, such as that of highly 
polarized protons, the circuit design problem involves mainly the control of the linearity of 
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the response function. For very small signals, the signal-to-noise ratio is to be maximized, 
while ensuring a reasonable flatness of the functions An and An′.

The case of very wide signals can also be dealt with Eqs. 6.23–6.33, although more 
precise description of the coaxial line resonator will be required then. The practical limit of 
sweep width is determined by the nearest quarter wavelength resonances of the coaxial line 
below and above the half wavelength resonance near the Larmor frequency; for n = 1 the 
sweep width is thus limited to less than ±50% relative to the Larmor frequency.

The most important component of the circuit is the probe coil, the design of which is 
discussed in Section 6.3.4.

6.3.2 Q-Meter Tuning

Equation 6.34 for the coaxial transmission line is valid if the cable length is adjusted by 
minimizing the impedance

 ��Z Z tanhc γ=  (6.78)

of a shorted line at frequency ω0. This procedure results in a length of
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which can be shown [8] to give good symmetry properties for the transfer function of the 
resonant circuit.

If the cable tune is not correct or if the cable length is used for obtaining particular char-
acteristics of the tuned circuit, we may replace x in Eq. 6.34 by x – xc where xc is the relative 
offset of the cable resonance from the Larmor precession:

 x .c
c 0

0

ω ω
ω=
−

 (6.80)

In Ref. [7] the assumption was made that the transmission line is tuned to resonate at the 
frequency ωc, which has a relative deviation of

 x
Q
Q2
.c
c

=  (6.81)

This tuning that was derived for a special case of proton NMR circuit at 106.5 MHz 
results in the cancellation of the coefficient of the first-order dispersion term at the center 
of the NMR line, which, in turn, ensures that the first-order contribution of the dispersion 
part of the RF susceptibility in the experimental Q-meter signal becomes rather symmet-
ric about the center frequency, if the absorption part is a symmetric function. This holds 
only for low values of Q/Qc. Low-frequency and wide-sweep systems require a more 
precise expression for estimating the required cable mistune, and Eq. 6.37 cannot then 
be used.
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The tune shift δ due to damping in the coaxial line influences the flatness of all param-
eters An and An′. The tune shift can be reduced by designing the coaxial line so that a high 
effective quality factor results. This is strongly influenced by the cryogenic part of the line, 
where high-resistivity materials are used for reducing the heat input to the target refrigera-
tor. Outer conductor material made of alloys such as BeCu, CuNi and brass are excellent, 
because of their low heat conductivity. If the center conductor is silvered, the quality factor 
is mainly determined by the skin depth of the outer conductor, and Qc becomes nearly 
temperature independent because these materials have a small temperature coefficient of 
the resistivity.

In copper-jacketed semi-rigid coaxial lines with high Qc, the center conductor surface 
resistivity determines the quality factor. Because this is a function of temperature, thermal 
drift of the line results in a tune shift of the circuit. Thus, the temperature of such a line 
must be stabilized for ultimate stability of the Q-curve and transfer function (see Section 
6.5.4). Moreover, the stabilization of the temperature of the tuned cable also reduces ther-
mal drift of its electrical length, which is due to phase transitions occurring in the crystal-
lized fractions of the PTFE dielectric at 19°C and 30°C [12].

Small diameter of the center conductor and low εr result in high Z0, which is beneficial 
for low circuit distortions. Low εr is also desirable because lower n can be achieved in 
high-frequency applications. Although presently 50 Ω solid PTFE-isolated lines are used 
almost exclusively, it would be interesting to develop foam-isolated semi-rigid 75 Ω lines 
for NMR polarization measurement applications.

Finally, the part of the coaxial line which runs in the magnetic field must be made of 
non-magnetic materials so that the Q-curve will not change when the magnetic field is 
shifted for the measurement of the baseline curve. The BeCu lines with silvered center 
conductors have turned out to be excellent in this respect.

The value of the tuning capacitor is adjusted first to obtain a fairly symmetric Q-curve. 
This value is usually corrected with highly polarized spins by making the NMR absorption 
signal as symmetric as possible. Equation 6.26 explicitly shows how the capacitor tune 
shift δ influences the symmetry of A1(x), while mainly influencing only the magnitude of 
A1′(x). The coefficients A2 are also changed by the capacitor tune, but all the functions can-
not be made symmetric with the same value of the capacitor.

6.3.3 Circuit Design

In discussing the design of the series Q-meter circuit we shall use Eqs. 6.23–6.34. Equation 
6.25 shows explicitly the frequency dependence of the Q-curve. We note that the Q-curve 
can be made symmetric by a suitable capacitor tune shift δ, although this is perhaps not the 
main aim, as was discussed above. The depth of the Q-curve is mainly determined by the 
inductance L of the probe coil, which should be made as small as is practical. The depth 
is also strongly influenced by the coupling admittance Y, which should also be made as 
low as possible, while maintaining the imaginary component in the coupling negligible. In 
high-frequency systems, this is difficult and a compromise is often necessary.
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The flatness of the function A1(x) is improved by high Qc, low Y, low L and low Q. The 
latter cannot be made arbitrarily small by a choice of a high-resistivity material, because 
these are often magnetic. The probe coil design will be discussed in greater detail later in 
Section 6.3.4.

The same parameters reduce and flatten the coefficient of the dispersion term in the same 
way; there is thus no conflict in pushing these parameters to their practical limits. The same 
is true with the second-order coefficients of Eqs. 6.28 and 6.29.

Specific problems in the circuit design at 106.5 MHz for protons and at 16.35 MHz for 
deuterons will be addressed below.

Design of the Proton Series Q-Meter
Based on Eqs. 6.25–6.29, the following rules apply for the series Q-meter optimized for the 
measurement of proton polarization:

(1) The cable should have a loss-factor as low as possible, to yield a high effective Qc.
(2) The cable should be as short as possible, preferably n ≤ 3.
(3) The coil should have a low inductance, preferably ωL < Z0.
(4) The feed resistance and the amplifier input impedance should be as high as possible, 

while maintaining both real. This requires placing a resistor of about 70 Ω in series 
with the input of the preamplifier, and using low-inductance resistors in series to build 
the feed resistance with a value in the range 200 Ω to 600 Ω.

(5) The Q-factor of the coil should be low (≈3), and its series resistance should therefore 
be high; it is preferable to place the additional damping resistor R ≈ 15 Ω between the 
coil and the cable rather than between the cable and the tuning capacitor.

(6) One must have maximum ηχ″(ω)ωL < 0.3 R′ to preserve good linearity of the inte-
grated absorption signal with respect to the polarization, and to avoid superradiant 
oscillations at large negative polarization. With embedded coils this requires special 
precautions for obtaining a low enough effective filling factor (to be discussed below).

(7) One must satisfy maximum η|χ(ω)|ωLY ≪ 1 to avoid non-linear distortions of the 
lineshape; this condition is difficult to achieve in sizable polarized proton targets, and 
satisfactory results can be obtained with the less stringent condition 6. The less strict 
condition is often sufficient because the non-linear signal distortions tend to integrate 
to zero.

(8) To avoid linear distortions of the lineshape, one must have 2Qx ≪ 1, 2YωLx ≪ 1, 
2nπ(RL/Z0)YωLx ≪ 1, and Q2nπYZ0x ≪ 1. One or more of these conditions limit the 
maximum practical sweep width in high-frequency systems.

Design of the Deuteron Series Q-Meter
The deuteron has the spin I = 1 and a sizable quadrupole moment, which broadens the high 
field NMR spectrum to about 280 kHz in butanol and other glassy hydrocarbons, with a 
characteristic shape featuring two resolved peaks and broad minimum in between, and rel-
atively flat pedestals outside. The peaks are associated with the two magnetic transitions; 
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the intensity ratio of these transitions, in principle, gives the spin temperature and therefore 
polarization, if the thermal distribution of level populations is valid, and if the polarization 
is homogeneous. Because of its large width and because of the small magnetic moment of 
the deuteron, the accurate measurement of the DMR absorption spectrum shape, however, 
is difficult.

At 2.5 T field the deuterons in glassy butanol thus have a total line breadth of about 
2 × 10–2 relative to the center frequency of 16.35 MHz; this can be contrasted with protons 
in the undeuterated butanol, where dipolar interactions give a FWHM of about 4 × 10–4 at 
106.5 MHz.

As a consequence, the frequency dependence of the coefficient of the term A1(x) cannot 
be ignored, and the real part of the experimental signal becomes distorted. On the other 
hand, the RF susceptibility of highly polarized deuterons remains very small, so that the 
terms which are of second or higher order in the RF susceptibility will remain negligible. 
We may therefore focus the discussion only on Eqs. 6.26 and 6.27.

The linear distortion in a practical circuit can be so large that it is not recommendable to 
use the experimental NMR line peak asymmetry as a way of determining the polarization, 
because the heights and shapes of the two superimposed signals do not accurately reflect 
the transition intensities. The distortion also makes it unreliable to fit the Q-curve drift 
during recording of the dynamic nuclear polarization, because the admixture of the dis-
torted dispersion signal extends far beyond the edges of the absorption signal.

Provided that the distortions are small or can be sufficiently well corrected, however, 
the asymmetry of the DMR signal in a large target gives a unique means of estimating 
the spatial variation of the polarization in the target volume, if the average polarization is 
known accurately on the basis of the integrated signal calibrated in TE at 1 K, for example. 
The inhomogeneity of the polarization in a large target leads to a systematically higher 
asymmetry than that determined from the measured average polarization; this difference, 
although not highly sensitive to the polarization variation, gives a reasonable estimate of 
the RMS variation of polarization in the volume sampled by the probe coil.

As an example, if the average polarization P*(D) = 0.4 can be determined to 3% relative 
accuracy and asymmetry within 5%, the variation of polarization

 ( ) ( )= ±P x P P x* δ  (6.82)

is limited to |δP| ≤ 0.15 in the volume sampled by the probe This limit can be made sub-
stantially lower with better accuracy in the polarization measurement, distortion control 
and asymmetry determination.

As the deuteron NMR signal is very small, the Q-meter design should aim at a good 
sensitivity, which implies high filling factor, high inductance L and a relatively high overall 
Q of the circuit. A low admittance Y is desirable for optimum signal-to-noise performance. 
The control of the linear distortion, on the other hand, requires that Qc be as high as possi-
ble and L be low, ρQx ≪ 1, 2YωLx ≪ 1, and 2ρYωLx ≪ 1. These clearly set the limit for a 
maximum Q and indicate that the coupling admittance Y should be as small as is practically 
possible from the noise performance point of view. Practical design values are L = 0.4 µH, 
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Y = 0.01 Ω–1 and R’ = 15 Ω, with damping resistor placed between the coil and the coaxial 
line.

6.3.4 Probe Coil Design

Above it was found repeatedly that low L and Q are desirable for the probe coil. The induc-
tance is controlled by the length and diameter of the wire used for the coil; it is therefore 
preferable to use a short and thick wire of high resistivity material. Practical coils are made 
of thin-walled CuNi tubes of 1–4 mm diameter and 10–40 cm length, bent to a suitable 
shape around or inside the target.

For proton probe coils the filling factor should be minimized, which can be achieved 
by placing the coil outside the target, or by surrounding the wire by a PTFE tube which 
excludes the material from the area of the highest RF field near the wire. Another way 
of reducing the effective filling factor is to orient the coil (usually one loop) so that the 
uniform part of the RF field is parallel to the main field; this is made by keeping the wire 
always perpendicular to the main field. This design concentrates the sampling to the vicin-
ity of the wire, which can be sometimes interesting if localized measurements are desired. 
A dipole loop made of a tube with length of 15 cm and diameter of 4 mm gives an induc-
tance of about 100 nH. Such a loop, made of CuNi, gives a high Q-factor, which can be 
reduced by placing a suitable series resistor between the coil and the coaxial line.

In the case of deuteron probe coils, one wishes to maximize the effective filling factor by 
using a bare large-diameter embedded wire, predominantly aligned along the main field. A 
50 cm long tube of 2 mm diameter gives an inductance of about 450 nH, which can be easily 
reduced by selecting a shorter length and a larger diameter. The filling factor can be varied 
between 0.2 and 0.3 by varying the diameter of a possible PTFE tube around the wire.

An alternative for lowering the Q of the coil is to make the probe conductor out of a thin 
film of high-resistivity non-magnetic material deposited on a suitable flexible substrate. If 
a series resistor is used at low temperature, it is very important that its resistance value has 
low temperature and field coefficients.

6.3.5 Linearity of the Integrated NMR Signal

Linearity of the relationship between the integral of the absorption signal and the spin 
polarization is better than the distortions in the lineshape, because many of the distorted 
terms either tend to be linear or to be antisymmetric and therefore integrate to zero. The 
linearity is harder to achieve in NMR probe systems for protons and other spins ½ with a 
narrow line, with a high magnetic moment and with a high spin density.

One must have maximum | ηχ″(ω)ωL | < 0.3 R′ to preserve good linearity of the inte-
grated absorption signal with respect to the polarization, and also to avoid superradiant 
oscillations at large negative polarization. With embedded coils this requires special pre-
cautions for obtaining a low enough effective filling factor (to be discussed below).
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One must satisfy maximum η | χ (ω)| ωLY ≪ 1 to avoid non-linear distortions of the line-
shape; this condition is difficult to achieve in sizable polarized proton targets, and sat-
isfactory results can be obtained with the less stringent condition above. The less strict 
condition is often sufficient because the non-linear signal distortions tend to integrate to 
zero, thus producing little error in the measurement of polarization.

6.3.6 Superradiance

Superradiance occurs when the real part of the impedance of the tuned probe coil gets 
negative because of the large negative real part of the transverse spin susceptibility. This 
manifests itself as a limit in the negative polarization that one may achieve by DNP, or as 
a sudden loss of polarization when the superradiance conditions are met accidentally. The 
sudden loss may also be associated with a partly reversed polarization, because the probe 
coil current may ‘ring’ sufficiently long to cause adiabatic demagnetization in those parts 
of the target that are close to the probe wire.

Superradiance never occurs at positive polarization, and it is not a major problem for any 
other spin system than that of protons. At negative polarization it happens when the height 
of the NMR signal is equal to the height of the Q-curve of the resonant circuit. Before 
reaching this point, the proton NMR signal becomes abnormally narrow because of the 
term –ηχ″(ω)ωL that becomes comparable with R′ .

One must have maximum | ηχ″(ω)ωL | < 0.3 R′ to preserve good linearity of the integrated 
absorption signal with respect to the polarization (as was discussed in Section 6.3.5), and 
to be sure to avoid superradiant oscillations at large negative polarization. With embedded 
coils this requires special precautions for obtaining a low enough effective filling factor.

The conditions for superradiance may also occur when disconnecting the coaxial line 
between the Q-meter box and the probe coil at high negative polarization, or when ramp-
ing the magnetic field so that one of the spin species in the target gets in resonance with 
a probe coil system. The latter can be avoided by making the magnetic field suitably less 
homogeneous during the field ramp.

6.4 Improved NMR Circuits

6.4.1 Series Q-Meter Improvements

The receiver selectivity can be greatly enhanced by changing from the present homodyne 
receiver technique [6] into a heterodyne or superheterodyne technology. These enable good 
control of the noise sidebands by the appropriate design of filters and frequency manage-
ment. As the final amplifier stages operate at constant frequency, the filter design can be 
focused on off-band rejection ratio and time response rather than on flatness in the fre-
quency domain.

The main benefit of heterodyne receiver technique lies in the better elimination of off-
band and low-frequency parasitic signals. This, however, can be also accomplished by 
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improved control of the EMIs in all parts of the circuitry, and therefore the use of a highly 
selective receiver is not necessary. This is due to the fact that the leading source of noise is 
the oscillator, whose output noise power spectrum is concentrated close to the carrier fre-
quency and cannot therefore be eliminated if a reasonable frequency scan speed is desired.

The damping resistor of the Q-meter circuit is best placed between the coil and the coax-
ial line, if minimum circuit distortions are desired. This removes the Johnson noise of the 
resistor and improves the linearity and flatness of the circuit [7].

More fundamental improvements involve changes in the circuit which necessitate differ-
ent circuit theoretical treatment; some of these are briefly discussed below.

6.4.2 Capacitively Coupled Series Q-meter

In high-frequency systems a major problem is to obtain a low real value of the coupling 
admittance Y. By examining the circuit of Figure 6.1 we note that the absorption part of the 
RF susceptibility can also be detected if purely capacitive coupling is used. The expression 
for the signal is then
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where C = Co + Ci with Co and Ci replacing the oscillator feed and amplifier input resistors 
Ro and Ri, respectively. The absorption thus appears predominantly in the imaginary part 
of the output signal, which necessitates a 90° hybrid in the reference arm of the RF circuit.

With the low values of |Y | available using small capacitors, an excellent linearity entails, 
and low distortions could become possible in wide-sweep systems. A potential problem 
is the stability of the capacitors, which certainly requires temperature stabilization of the 
circuitry. Furthermore, the preamplifier must be designed so that its input impedance is as 
purely capacitive as possible.

The coupling capacitors also eliminate the Johnson (thermal) noise of the coupling resis-
tors. The preamplifier should be specially optimized for best noise performance in the 
resulting circuit.

6.4.3 Crossed-Coil NMR Circuit

One way of reducing the oscillator noise is to use the crossed-coil principle for NMR. 
Although there exists no adequate circuit-theoretical model for such a system, it is easy to 
show that the NMR signal is no more distorted by the crossed-coil circuit than by the series 
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Q-meter circuit. However, the benefit of measuring the oscillator strength simultaneously 
is lost. Furthermore, as the orthogonality of the coils enables rarely better than 30 dB rejec-
tion of the fundamental oscillator signal in the pickup coil, the wide-band noise rejection 
may be much less good than might seem at first. However, as the two coils can be designed 
and optimized individually, important system benefits might entail from the new degrees 
of freedom in the optimization process.

In discussing the crossed-coil NMR circuit we shall call the primary coil connected 
to the oscillator (RF source) the transmitter coil, and the one connected to the preampli-
fier the receiver coil. These coils are mounted so that their axes are perpendicular and 
the capacitive coupling of the wires of the coils is also minimized. Fine adjustment at 
room temperature helps in reducing the coupling between the transmitter and receiver 
coils.

One of the obvious benefits is that the transmitter coil can be designed so that the RF 
field is rather uniform in the volume probed by the receiver coil. This requires a transmit-
ter coil that is substantially larger than the receiver coil, a feature which also facilitates in 
reducing the (capacitive) coupling between the coils.

Because H1 is almost constant in the volume probed by the receiver coil, the signal size 
will be larger compared with the series-tuned Q-meter, with identical saturation produced 
by an embedded or tightly enclosing coil.

If the transmitter coil is outside the target, its filling factor can be made small. This 
reduces the influence of the RF susceptibility on the transmitter coil current and results in 
improved linearity of the circuit. In the first approximation, the RF field H1 in the target 
can then be assumed independent of the susceptibility at resonance, which facilitates the 
circuit-theoretical analysis. This is not, however, a strict requirement for the best measure-
ment of small signals.

The crossed-coil NMR circuit requires one additional coaxial line for feeding the trans-
mitter coil. Because all receiver probes can share a common transmitter coil, multicoil 
systems will not require doubling the number of coaxial lines.

The tuning of the crossed-coil circuit is more difficult than that of the series Q-meter, 
because there are now two or more hybrid resonant circuits with a loose mutual coupling. 
The series or parallel capacitor of the transmitter circuit is tuned first using a vector voltme-
ter or a Q-meter amplifier connected to the transmitter resonant impedance Zt. The series or 
parallel capacitor of the receiver circuit is tuned either using the residual RF signal coupled 
via the coil pair, or the NMR signal itself. Alternatively, the receiver circuit can be tuned 
using a small signal injected to the receiver resonant impedance Zr. A further alternative 
consists of matched rather than tuned receiver circuit; this might provide the best wideband 
performance, with some cost in noise performance.

A large transmitter coil requires a larger amount of RF power for getting the oscillating 
transverse field H1 equal to that of the embedded probe of a series Q-meter.

If the transmitter coil covers the entire target volume, it might be interesting to use it 
also for the manipulation of the spin systems in the target. The reversal of polarization by 
adiabatic passage might thus be performed using the transmitter part of the crossed-coil 
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circuit, with much increased RF power. The cooling of the transmitter coil then needs to be 
separated from the refrigeration circuit of the target material.

Because the Q-curve is eliminated in first order, a wider dynamic range becomes avail-
able and a higher RF gain can be used. Furthermore, this circuit may be designed so that 
it is well adopted to the measurement of very wide NMR signals, such as that of 14N spins 
in solid ammonia.

6.4.4 Measurement of Complex RF Susceptibility Using Quadrature Mixer

Quadrature mixer detector will allow to measure simultaneously the real and imaginary 
parts of the RF signal Gui, enabling the reconstruction of the real and imaginary parts of the 
RF susceptibility without theoretical modelling and fitting of the NMR signal, from [13]:
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is a complex function involving only the circuit parameters.
This procedure avoids any complications resulting from circuit distortions and non- 

linearity, and thus enables one to focus on the noise performance in the Q-meter. The tun-
ing of the input circuit will also be greatly facilitated by quadrature detection, because the 
system operates effectively as a vector network analyzer.

Reconstruction of the NMR susceptibility from the Q-meter output signal, however, 
requires the precise knowledge of the circuit parameters. These are best obtained by a fit of 
the complex Q-curve to the theoretical description of Eqs. 6.16 and 6.17 [13].

6.4.5 Series-Tuned Q-meter Using an RF Hybrid Bridge

The 180° RF hybrid bridges resemble the Wheatstone bridge in that when the bridge is 
balanced in two of its arms, the input signal is isolated from the output port. This is shown 
schematically in Figure 6.4: when the signal of the RF source is applied to port A and 
two identical series-tuned resonators are connected to ports C and D, the port B becomes 
isolated from port A. If one of the Q-meters has its inductance (coil) in contact with the 
target material and the other is tuned so that signal in port B is zero, then the oscillator and 
its noise, in the absence of the signal due to the RF susceptibility, are decoupled from the 
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preamplifier and mixer detector. The circuit is therefore suitable when the noise of the RF 
oscillator dominates other sources of noise. Another application is in the measurement of 
very broad NMR lines, where the depth of the Q-curve prevents the use of adequate gain 
in the preamplifier.

The alternative to 180° hybrid is its variant called the impedance bridge. This uses a 
balanced transformer to combine the signals reflected from the reference and measurement 
arms.

The circuit theoretical analysis of the 180° hybrid bridge with two Q-meters depends on 
the way the bridge is constructed, and its analysis is beyond the scope of the present book.

6.5 Calibration of NMR Signal for the Measurement of Polarization

6.5.1 Calibration Based on NMR Signal Measurement

Calibration in Thermal Equilibrium with the Lattice
At a temperature in the vicinity of 1 K, the nuclear spin-lattice relaxation time in polarized 
target materials is in the range of minutes, so that thermal equilibrium (TE) with the lat-
tice and the surrounding helium bath is reached quickly. The temperature close to 1 K is 

Oscillator

Z0

Resonant
circuit

Z

Reference
circuit

Zr

Zi

Amplifier

0°

180°0°

0°

Figure 6.4 Hybrid bridge NMR circuit. The 180° RF hybrid is a wideband four-port device that 
resembles a Wheatstone bridge in its principle. When the bridge is well balanced, the RF source noise 
and parasites have a strongly reduced coupling to the preamplifier
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reached and stabilized easily if the cooling system is filled with pure 4He. At this tempera-
ture 4He is in superfluid state and has a high thermal conductivity, which ensures a rapid 
equilibrium and uniform spatial distribution of the temperature of the target lattice.

The TE calibration requires the knowledge of the helium bath temperature. In principle, 
the vapor pressure of 4He can be used as a practical temperature scale down to 1.25 K, but 
its accuracy becomes poor at 1 K because of the low pressure and, above all, because of 
the creep of the superfluid film along the cryostat structures towards the higher temperature 
regions of the cryostat.

The temperature of the helium bath can be determined more accurately from the vapor 
pressure of 3He, which can be accomplished by installing a small 3He-filled cell in the 
helium bath close to the target volume. The ITS-90 vapor pressure scale [14] used pre-
viously is now improved around and below 1 K so that its uncertainty does not exceed 
0.6 mK down to 0.65 K [15].

Calibration of Small NMR Signal Based on Another Spin Species
Assuming that the NMR signal is small and that the ratio
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is a symmetric function about x = 0, Eq. 6.37 can be rewritten in the form
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which takes into account the frequency response of the Q-meter circuit. The neglect of the 
correction due to the dispersion signal can be easily justified for relatively narrow signals 
even if the ratio 6.87 has a small deviation from exact symmetry, provided that A1′ is made 
small by circuit design and tuning.

The polarization P(N) of the spin species N can then be obtained from its NMR signal by 
comparing with the signal of another nucleus H with known polarization P(H), measured 
at the same center frequency and with the same circuit:
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 (6.89)

This provides a convenient and accurate calibration for the measurement of the polar-
ization of rare spin species and with such a wide NMR lines that TE calibration becomes 
impossible. The method requires that the spin density ratio be known from chemistry or 
from other measurements, for example, those made in liquid state so that all NMR lines 
are narrow.
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A special application of the method is in the measurement and monitoring of the 14N polar-
ization in NH3 and ND3 targets at 2.5 T field. The Larmor frequency of 14N is 7.694 MHz 
and the spectrum features a peak separation of 2.37 MHz and total width of 4.74 MHz, 
requiring a minimum of 5.3 MHz frequency scan from 5 to 10.3 MHz. Although the tuned 
coaxial line of the series Q-meter becomes a major problem with such a wide sweep, the 
use of a quadrature mixer and extraction of the absorption part of the RF susceptibility 
would enable one to overcome the problem related with the dispersion part in Eq. 6.89. 
Inserting the numeric values for the ratios of the gyromagnetic factors (2.79268/0.40347), 
of the spin densities (3/1) and of the spins (1/2), yields

 P N P H

d

d
71.86 ,

N

H

14 1 N

N

H

H

,min

,max

,min

,max

∫

∫

χ ω ω
ω

χ ω ω
ω

( ) ( )
( )

( )
≅

′′

′′

ω

ω

ω

ω
 (6.90)

where the absorption parts of the RF susceptibilities are obtained from the complex exper-
imental signals using Eq. 6.85.

The measurement of 14N NMR signal requires the measurement of the Q-curve at the 
nominal field value, which is best performed at zero polarization before DNP. It is clear that 
the stability of the Q-curve is a major concern here.

Equation (6.89) can also be used for finding the ratio of spin densities if the polarizations 
are known from other measurements or arguments such as that based on equal spin tem-
peratures. The special case of TE polarizations at equal lattice temperatures gives
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 (6.91)

where the signal gain was assumed flat in the narrow frequency scan range where TE signal 
measurement is possible, and where the integrated signals are the TE signals measured at 
constant temperature and same center frequency.

In a deuterated target, usually the degree of deuteration and the chemical sites and com-
position are known to a relatively high accuracy. The exact amount of residual protons can 
then be obtained using Eqs. 6.89 or 6.91.

6.5.2 Improvement of the International Temperature Scale around 1 K

The provisional low temperature scale PLTS-2000 below 1 K is now based on the melting 
pressure of 3He. Because the melting pressure thermometer is too complicated to materi-
alize in a polarized target, the practical temperature scale of ITS-90 was commonly used 
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to determine accurately the calibration temperature during the acquisition of the TE NMR 
signal [14]. This ITS-90 scale is based on the vapor pressure of pure 3He liquid between 3.2  
and 0.65 K; the scale was recently improved by PTB3 to the new scale with the acronym 
PTB-2006 [15]. The low-temperature scales have been determined and extrapolated below 
1 K using the Curie law dependence of the susceptibility of the paramagnetic salt CMN. 
While the melting pressure scale has the known uncertainty (with regard to the thermody-
namic temperature) of about 0.5 mK down to 500 mK, the uncertainty of the new vapor 
pressure scale is 0.6 mK, which suggests finding an independent method to verify and 
reduce the uncertainty of the vapor pressure scale.

The TE calibration accuracy depends mainly on the accuracy of the determination of the 
target temperature during NMR signal measurement. If the calibration of the polarization 
measurement could be obtained more accurately from another method, the measurement of 
the integrated NMR signal around 1 K temperature would provide determination of the tem-
perature with similar accuracy, which we shall evaluate below. This other method is based 
on the knowledge that the common spin temperature of nuclear spins can be accurately mea-
sured when it is so low so that the deviation of proton polarization from 100% is very small.

As an example, we may take partly deuterated propanediol C3D6(OH)2 with reacted 
Cr(V) compounds which yields very high DNP and excellent agreement with the equal 
spin temperature hypothesis between all nuclear spin species [16]. A statistical accuracy of 
0.1% was above shown to be possible for the deuteron TE calibration; this is roughly equal 
to the precision δT ≈ 1 mK of the temperature scale ITS-90 [14] around T = 1 K. Assuming 
that in a dedicated apparatus the systematic accuracy can be even better, deuteron polariza-
tion after DNP can hence be measured to the precision in the range of 0.1%.

A value of P(D) = 0.5 (and even higher) can be reached in a dilution refrigerator at 2.5 T 
homogeneous field using microwave frequency modulation. This corresponds to a spin 
temperature around 1 mK, which can also be now determined to about 0.1% accuracy. 
Because the proton polarization is nearly complete and is known from the deuteron spin 
temperature, its precision is roughly given by
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The calibration of the proton polarization measurement is thus improved by a numeric fac-
tor over that of the deuteron calibration accuracy and over the ITS-90 scale. Using the pro-
ton NMR signal now as a thermometer, the temperature scale can be improved over ITS-90 
by a similar factor, which is 8 or 20 for deuteron polarizations of 0.4 or 0.5, respectively.

3 Physikalisch-technische Bundesanstalt, Berlin.
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The improved temperature scale can be now used for the improvement of the calibra-
tion of the deuteron polarization measurement, and the same factor of improvement in the 
temperature scale will result after repeating the above procedure. The practical limitations 
for the precision which can be obtained will arise from the statistical accuracy to which 
the integrated NMR signals can be determined at 1 K, from the homogeneity of the spin 
temperature and from the validity of the assumption that the two spin systems are in good 
TE with unique temperature after DNP.

Estimates based on the ab initio calculation of the NMR signal-to-noise ratio indicate 
that the integrated proton TE signal can be measured to a relative accuracy of 10–5 in partly 
deuterated propanediol. A relative accuracy 10–4 of the thermodynamic temperature scale at 
1 K would therefore seem possible. Many systematic errors can be controlled by perform-
ing the transfer of the calibration at both positive and negative ultimate spin temperatures.

The nuclear spin temperature measured using the above method is the thermodynamic 
temperature, and its fundamental limit of uncertainty is determined by that of the NMR 
frequency, because the Planck and Boltzmann constants are defined to have exact values 
as of 2019.

6.5.3 Electromagnetic Interference (EMI) Control

In Section 6.2.4 we discussed the signal-to-noise ratio in the NMR circuit and showed how 
the signals completely buried in noise can be accurately measured by signal averaging. The 
main sources of noise are:

• thermal noise of the preamplifier and other front-end circuitry;
• amplitude and phase noise of the RF source oscillator;
• EMIs with spurious signals in the environment.

The first two can be optimized by careful design and by the choice of low-noise compo-
nents. The oscillator noise of direct digital synthesizers, both in amplitude and in phase, 
is very good in comparison with the more traditional phase-locked loop oscillators. The 
noise of the DAC produced at large frequency offsets in the RF signal is not harmful for the 
NMR circuitry, and it can be reduced by the circuit design and analog filtering.

The leading item then remains the control of EMIs, a problem that has become a science 
in its own right since the 1970s; this is called electromagnetic compatibility (EMC). The 
acronym is a coincidence with that of European Muon Collaboration, but confusion is 
hardly possible.

EMC is concerned with the electromagnetic energy that is

• generated unintentionally,
• propagated undesirably,
• received harmfully.

These may cause unwanted effects such as EMI or even physical damage in equipment. 
One example from high-energy physics equipment in the past is the optical spark chamber 
that caused damage of sensitive circuitry connected to the same electrical power net in 
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CERN experiment S137. The goal of EMC is the correct operation of different equipment 
in a common electromagnetic environment.

EMC pursues the three above classes of issue first by reducing the unwanted emissions 
and by taking countermeasures, many of which are legally required in modern equipment. 
Secondly, the RF interference is reduced by the design of signal paths, by shielding the 
sensitive parts of the circuitry and by absorbing unwanted emissions before they reach the 
‘victim’. Thirdly, immunity is improved by ‘hardening’ the equipment. This involves care-
ful circuit design that also takes into account the harmonic generation of signals from the 
unwanted ones far from the frequency spectrum of interest. The hardening often involves 
the introduction of broadband filters in the power supply lines, for example.

The engineering techniques called ‘grounding and shielding’ apply to all three issues. 
However, the discipline of EMC nowadays includes circuit design techniques at all levels: 
enclosures, power supplies, cables and connectors, filters and isolating devices, printed 
circuit boards, hybrids and semiconductor microcircuits.

Here are some measures that led to substantial improvements in NMR polarization mea-
surement accuracy:

• The flexible coaxial cables and BNC connectors were replaced by semi-rigid coaxial 
cables and SMA connectors in all RF signal paths between the RF source and the Q-meter 
boxes. The BNC connectors were found to be microphonic and they also leaked RF 
signals from the environment. The sections of the tuned cable inside the cryostat were 
also replaced by semi-rigid coaxial lines; in these cables the conductors are now made 
of Be-Cu alloy that has a reasonably low thermal conductivity in comparison with pure 
Cu used in CuJack cables. The inner conductor was silvered for reducing attenuation.

• RF filters were introduced in all mains power feeds of the power supplies of all equip-
ment connected to the vacuum chamber of the polarized target.

• The power supplies of the digital and analog parts were separated from each other elec-
trically in all instrumentation of the NMR equipment; this was particularly important for 
the RF source.

• It was found that RF filtering of the instrumentation lines for the thermometry, heat-
ers, level gauges, etc. should not be done at the connectors to the vacuum chamber, 
because these lines inside the cryostat couple with the RF signals of the NMR probes. 
This became apparent as a tune change of the DMR probes in the SMC PT after placing 
RF filters in the instrumentation lines. Instead, the cryogenic instrumentation cables out-
side the cryostat were then double shielded, and the instrument enclosures were provided 
with RF filtered mains feeds.

• In several digital signal paths, galvanic lines were replaced by fibre-optic links.

6.5.4 Control of NMR Circuit Drift

Once the sources of noise and spurious signals are minimized, signal averaging was shown 
to improve the accuracy of the calibration process based on the measurement of the TE 
signals at an accurately known stable temperature, commonly around 1 K. Because the 
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averaging in a multi-coil system of a large target may take of order 100 h, the drift of the 
circuitry becomes an important concern. Such drifts ultimately limit the improvement of 
the statistical accuracy that can be reached by signal averaging [10, 17, 18].

The parts of particular concern are the resonant circuits inside and outside the cryostat, 
the Q-meter boxes containing many temperature-sensitive components, and the RF source. 
Inside the cryostat the stabilization can be achieved, during the measurement of very small 
signals and during TE calibration, by controlling all flow rates and by waiting for thermal 
transients to decay after initial cooldown. Copper and other metals, plastics and also the 
polarized target materials exhibit slowly relaxing stored heat that takes several days to 
decay after cooldown. It is particularly important that the tuned coaxial lines inside the 
cryostat are thermalized onto stable heat sinks.

Outside the cryostat the semi-rigid coaxial lines must be thermally isolated and stabi-
lized at a temperature above the 19 °C phase transition temperature of the PTFE isolation 
[17]. The transition changes the propagation constant so much that the electrical length is 
modified by 0.1% when increasing the cable temperature from 13 °C to 19 °C [12].

The Liverpool Q-meter circuit enclosures are made of massive copper and they are 
designed so that they can be cooled by a stabilized supply of water. The RF source and 
other possible signal handling electronics are best placed in EMI-shielded racks that are 
also cooled by stabilized water.

6.5.5 Summary for Series Q-Meter Circuits

We conclude that although the series Q-meter technique has reached the status of mature 
technology, it can still be improved and developed for specific applications. Some new 
applications, however, may require more substantially improved circuits. The accurate 
measurement of the polarization of 14N in ammonia might be one of these.

Apart from the development of improved circuits, it is important to avoid saturation of 
the spins in the target material close to the probe coil wire. Because the RF field at 2 mm 
radius from the wire of the classic Liverpool Q-meter causes a measurable error at 0.3 mA 
probe coil current, it is suggested here that the current should be reduced to 0.1 or 0.03 mA, 
unless the deuteron polarization is measured with a strongly reduced duty cycle.

For proton target NMR probes, the non-linearity is the main cause of error. In the clas-
sical series Q-meter, this can be mitigated by the appropriate choice of resonator circuit 
parameters and, most importantly, by reducing the filling factor of the probe coil.

References
[1] V. Petricek, M. Odehnal, Analyse du Q-metre utilise pour des mesures de polarisation 

nucleaire elevée, Nucl. Instr. and Meth. 52 (1967) 197–201.
[2] V. Petricek, A linearized Q-meter circuit for measurement of high proton polarization 

in a target, Nucl. Instr. and Meth. 58 (1968) 111–116.
[3] F. Udo, Some new features in a nuclear magnetic resonance detection system for 

measuring polarization of highly polarized substances, in: G. Shapiro (ed.) Proc. 

                     

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108567435.007
https://www.cambridge.org/core


282 NMR Polarization Measurement

2nd Int. Conf. on Polarized Targets, LBL, University of California, Berkeley, 1971, 
397–401.

 [4] E. Boyes, G. R. Court, B. J. Craven, R. Gamet, P. J. Hayman, An on-line computer 
polarization measuring system using R. F. phase lock techniques, in: G. Shapiro (ed.) 
Proc. 2nd Int. Conf. on Polarized Targets, LBL, University of California, Berkeley, 
1971, 407–410.

 [5] D. Gifford, A Q-meter with RF phase sensitive detector, in: G. R. Court, et al. (eds.) 
Proc. 2nd Workshop on Polarized Target Materials, SRC, Rutherford Laboratory, 
Chilton, Didcot, 1980, 85–90.

 [6] G. R. Court, D. W. Gifford, P. Harrison, W. G. Heyes, M. A. Houlden, A high precision 
Q-meter for the measurement of proton polarization in polarized targets, Nucl. Instr. 
and Methods A324 (1993) 433–440.

 [7] T. O. Niinikoski, Mathematical treatment of the series Q-meter, in: G. R. Court, et al. 
(eds.) Proc. of the 2nd Workshop on Polarized Target Materials, SRC, Rutherford 
Laboratory, Chilton, Didcot, Oxon, UK, 1980, 80–85.

 [8] T. O. Niinikoski, Topics in NMR polarization measurement, in: H. Dutz, W. Meyer 
(Eds.) Proc. 7th Int. Workshop on Polarized Target Materials and Techniques, 
Elsevier, Amsterdam, 1995, 62–73.

 [9] T. O. Niinikoski, A. Rijllart, An MC68000 microprocessor CAMAC system for NMR 
measurement of polarization, Nucl. Instrum. Methods 199 (1982) 485–489.

[10] Spin Muon Collaboration (SMC), B. Adeva, S. Ahmad, et al., Measurement of the 
deuteron polarization in a large target, Nucl. Instr. and Meth. in Phys. Res. A349 
(1994) 334–344.

[11] A. Abragam, M. Goldman, Nuclear Magnetism: Order and Disorder, Clarendon 
Press, Oxford, 1982.

[12] S. K. Dhawan, Understanding effect of teflon room temperature phase transition on 
cax cable delay in order to improve the measurement of TE signals of deuterated 
polarized targets, IEEE Trans. Nucl. Sci. 39 (1992) 1331–1335.

[13] Y. F. Kisselev, C. M. Dulya, T. O. Niinikoski, Measurement of complex RF 
susceptibility using a series Q-meter, Nucl. Instr. and Meth. in Phys. Res. A354 (1994) 
249–261.

[14] H. Preston-Thomas, The international temperature scale of 1990 (ITS-90), Metrologia 
27 (1990) 3–10.

[15] J. Engert, B. Fellmuth, K. Jousten, A new 3He vapour-pressure based temperature 
scale from 0.65 K to 3.2 K consistent with the PLTS-2000, Metrologia 44 (2007) 
40–53.

[16] T. O. Niinikoski, Polarized targets at CERN, in: M. L. Marshak (ed.) Int. Symp. 
on High Energy Physics with Polarized Beams and Targets, American Institute of 
Physics, Argonne, 1976, 458–484.

[17] D. Crabb, S. Dhawan, N. Hayashi, A. Rijllart, Noise and stability improvements in the 
DMR system for SMC, in: T. Hasegawa, et al. (eds.) Proc. 10th Int. Symp. on High-
Energy Spin Physics, Universal Academy Press, Inc., Tokyo, 1993, 375–379.

[18] Spin Muon Collaboration (SMC), B. Adeva, E. Arik, et al., Large enhancement of 
deuteron polarization with frequency modulated microwaves, Nucl. Instrum. and 
Methods A372 (1996) 339–343.

                     

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108567435.007
https://www.cambridge.org/core


283

7
Polarized Target Materials

7.1 Criteria for Material Optimization

An ideal polarized target is made of a pure isotope, the nucleus of which is of interest in 
the reaction under study. This is feasible in the case of optical pumping of noble gases and 
other gases which can be dissociated into atoms at low pressure. In solid form few pure 
elemental substances of interest can be dynamically polarized – the only exception is solid 
deuterium, but so far only rather low polarization has been obtained in it. We shall there-
fore discuss here the choice of the solid compounds and materials which best suit various 
types of applications.

The leading application of DNP up till now has been the scattering experiments in high- 
energy and nuclear physics. Other applications include measurements of slow neutron 
cross sections, molecular physics using slow neutrons, nuclear magnetism and other sol-
id-state physics experiments and spin filters. The use of polarized solids in magnetic con-
finement fusion and in magnetic resonance imaging has also been discussed. The material 
choice evidently depends strongly not only on the application but also on the goal of the 
experiment or process which is considered. We shall begin by material optimization for 
scattering experiments that use modern counting methods.

More recently DNP has been used for the signal enhancement in NMR studies of com-
plex chemical and biochemical molecules. In this context DNP and other enhancement 
techniques are called by the term ‘hyperpolarization’.

In this chapter we shall focus mainly on the polarized target applications.

7.1.1 Scattering Experiments

Assuming that systematic errors can be controlled or are independent of the target, the opti-
mization of the target material consists of maximizing the statistical accuracy to which the 
desired polarization asymmetry can be determined during the experiment. The asymmetry 
is determined in each kinematical bin from the number of counts with target polarization 
along or opposite to the magnetic field (field itself being oriented with respect to the beam 
in a way which depends on the reaction under study):
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 DN an f P P .t b0σ σ( )= Φ +± ± ±  (7.1)

Here Φ± are the integrated beam fluxes through the target with polarizations P± and N± are 
the corresponding number of counts, a is the acceptance of the detector in the kinematical 
bin, σ0 is the unpolarized cross section, Δσ is the cross-section difference with opposite ori-
entations of the target nuclear spins, nt is the target thickness (number of nucleons or nuclei 
per cm2) and f is the target dilution factor:

 f
n

n

n

n n
,

p p

t

p p

p p
i

i i0 ∑
σ

σ

σ

σ σ
= =

+
 (7.2)

where the indexes p refer to the polarizable nucleons (or nuclei) and i to unpolarizable 
background nucleons (or nuclei). Some reactions have an asymmetry only when the beam 
is also polarized; otherwise, the beam polarization Pb can be omitted.

Supposing that the beam intensity is limited by factors such as the accelerator or the 
detector, the radiation resistance of the target may not enter in the material optimization. 
The target asymmetry
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is obtained directly from the difference of counts in Eq. 7.1 by normalizing to equal beam 
fluxes so that Φ± = Φ and writing

 
N N

N N
f P A

P P

f P A P P2
,b

b ( )
−

+
=

−

+ +
+ −

+ −

+ −

+ −

 (7.4)

which can be simplified by taking the polarizations to be approximately equal but opposite 
so that P P++ − = 0; this yields
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which defines the average absolute value of the target polarization. The experimental target 
asymmetry is now

 A
f P P

N N

N N

1

b

≅
−

+
+ −

+ −

 (7.6)

and it has a statistical error due to the finite number of counts
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Here we have separated in the last form all factors related with the polarized target under 
the figure of merit of the target
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 f P n ,t t=M  (7.8)

which can be determined for each target material and length. Sometimes the target figure 
of merit is defined as the square of Eq. 7.8.

If the target length is determined by the space available or by the detector requirements, 
rather than by beam attenuation or multiple scattering of the beam or the secondary par-
ticles, the choice of the material can be further simplified by writing the target nucleon 
thickness in the terms of its average density, length and the nucleon mass
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where the liquid helium coolant filling the voids between the target beads must also be 
taken into account. The figure of merit now reads

 M f P
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ρ=  (7.10)

and the material-dependent part can be determined for a substance once its filling factor 
and average polarization are known.

The polarization may evolve during the data taking, because its frequent reversal is often 
required for reducing systematic errors due to the slow drift of the beam or the detector 
acceptance, and possibly because of the radiation damage of the target material. The aver-
age polarization in Eqs. 7.5–7.10 is then obtained from the square roots of the averages 
of the squared polarizations, which can be determined when the time evolution of the 
polarization during DNP, and the dose dependence of the reduction of the polarization are 
known.

In a high-intensity beam the polarization of the target may be reduced by the direct heat-
ing of the material by the beam, and by the radiation damage, which gradually accumulates 
during the experiment. In this case the figure of merit of the experiment also follows from 
the minimization of the statistical uncertainty of the target asymmetry of Eq. 7.7, which 
requires the maximization of

 M t I f P .t exp
2 2Φ =  (7.11)

Here texp is the effective duration of the data taking excluding time needed for target anneal-
ing or change, I is the beam intensity and the time-average of the polarization needs the 
knowledge of the polarization build-up during reversal and the reduction of polarization 
due to the accumulated dose and due to the material heating which depends on the intensity 
I. It is clear that these parameters can only be obtained by direct measurement, and that 
also the cooling system will strongly influence the maximization of expression 7.11. These 
factors will be discussed in Section 7.5.

If multiple scattering limits the length of the target, the best material is one which has 
the highest material-dependent figure of merit and has a low relative number of heavier 
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nuclei so that the length can be increased. The criteria related with multiple scattering 
unfortunately cannot be written in simple analytic form and the judgement between mate-
rials of roughly equal and high figure of merit must be based on their relative heavy- 
element contents. The parameter relevant for multiple scattering is the radiation length X0, 
which is defined as the mean distance over which a high-energy electron loses all but 1/e 
of its energy by bremsstrahlung, and which is the appropriate scale length for describing 
high-energy electromagnetic cascades. This parameter has been calculated and tabulated in 
Ref. [1] and a practical introduction to its use is given in Ref. [2]. The radiation length for 
a chemical compound or mixture of compounds is given by
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where wi and Xi are the weight fraction and radiation length of element or substance i, and
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for an element with atomic number A and charge Z.
If some of the heavy nuclei become also polarized, their contribution to the scattering 

asymmetry must be estimated. This requires the estimation or measurement of their polar-
ization. The errors related with these procedures are usually taken into account in the sys-
tematic error analysis, because they are usually dominated by the incomplete knowledge of 
the nuclear structure of the heavy nuclei.

In high-energy physics, polarized proton and neutron targets are of main interest. As free 
neutrons cannot be confined in solids, polarized neutron targets must contain deuterium 
or other light nuclei such as 3He or 6Li where the nuclear structure is well understood. A 
simplified way of guiding the research of polarizable materials is based on the fact that in 
materials where DNP is successful, the proton polarization is almost complete and deu-
teron polarization near 0.5. The initial choice of materials can therefore be based only on 
the hydrogen content, if scattering off all nucleons is indistinguishable with similar cross 
sections. A convenient approximation for the dilution factor then is obtained by assuming 
the cross sections of all nucleons in Eq. 7.2 equal, which yields

 f
n

n n
,p

p

p
i

i∑
=

+
 (7.14)

where np is the number of polarizable nucleons and ni is the number of nucleons in unpo-
larized background nuclei. This dilution factor, however, cannot be used for extracting 
the experimental asymmetry from the data, because the cross-section ratios for scattering 
off free and bound nucleons can deviate markedly from unity, and the ratio furthermore 
depends on the kinematic bin.

If the material consists of a pure chemical substance, the dilution factor can be further 
simplified by assuming all nucleon masses equal so that
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 f
n

M
,p

p=  (7.15)

where M is the molecular weight of the substance. This allows to compare various chemi-
cal substances with each other, as shown in Table 7.1.

Table 7.1 Simplified dilution factors and radiation lengths for hydrogen-rich materials. For carbon, 
boron, nitrogen and oxygen nuclei natural isotopic abundance is assumed for simplicity, whereas 
hydrogen and lithium are assumed to be pure isotopes.

M fp X0

Compound Chemical formula (g/mol) (g/cm2)

Lithium-6 hydride 6LiH 7.02 0.1424 54.87
Lithium-7 hydride 7LiH 8.02 0.2493 62.69
Ammonia NH3 17.03 0.1762 40.74
Water H2O 18.02 0.1110 23.05
Alkanes
Methane CH4 16.04 0.2494 46.21
Ethane C2H6 30.07 0.1995 45.47
Propane C3H8 44.10 0.1814 45.21
Butane C4H10 58.12 0.1721 45.07
Pentane C5H12 72.15 0.1663 44.99
Simple heavy hydrocarbons ≈(CH2)n ≈n·14.01 0.1427 44.59
Alcohols
Methanol CH3OH 32.04 0.1248 39.34
Ethanol C2H5OH 46.07 0.1302 40.82
Propanol C3H7OH 60.10 0.1331 41.66
Butanol C4H9OH 74.12 0.1349 42.19
Pentanol C5H11OH 88.15 0.1361 42.56
Diols
Ethanediol CH2(OH)CH2OH 62.07 0.0967 38.90
1,2-Propanediol CH3CH(OH)CH2OH 76.10 0.1051 39.84
1,2-Butanediol C2H5CH(OH)CH2OH 90.12 0.1110 40.52
1,2-Pentanediol C3H7CH(OH)CH2OH 104.15 0.1152 41.03
Other hydrocarbons
Glycerol CH2(OH)CH(OH)CH2OH 92.09 0.0869 38.74
Glucose C6H12O6 180.16 0.0666 38.42
Sorbitol HOCH2(CHOH)4CH2OH 182.17 0.0769 38.58
Amines
Methyl amine CH3NH2 31.06 0.1610 42.42
Dimethyl amine (CH3)2NH 45.08 0.1553 43.08
Ethyl amine C2H5NH2 45.08 0.1553 43.08
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In Table 7.1 two materials have outstanding dilution factor: ammonium borohydride and 
methane. Almost complete polarization by DNP has been achieved in irradiated 7LiH and 
6LiH, which also have the highest radiation lengths of all the materials listed. Complications 
with the nuclear structure of lithium nuclei, however, were initially the main limiting rea-
son for the use of these materials in polarized proton targets in high-energy physics experi-
ments. More recently irradiated 6LiD has been used as a polarized deuteron target.

Ammonium borohydride [3] is an exotic material which is stable below 0 °C and where only a 
small polarization has been obtained when mixed with ammonia. Methane has the melting point 
slightly below LN2 temperature, which precludes easy doping with paramagnetic molecules. 
Heat transfer out of irradiated solid methane during DNP limits its potential use to small targets 
or samples; furthermore, only low paramagnetic center concentrations have been obtained.

Alkanes with straight carbon chain have limited or no capability of dissolving paramagnetic 
molecules. They are included because some of their paraffin isomers are glass formers where 
free radicals might be diffused in or created by irradiation. Up till now their use is precluded 
by the low polarizations obtained in irradiated samples. This leaves the reference position to 
ammonia, where almost complete DNP has been routinely obtained in large irradiated targets.

The alcohols and diols have been included in Table 7.1 because high polarization can be 
obtained in nearly all of them, particularly in butanol, pentanol, ethanediol and propane-
diol, by introducing in their glassy matrix various Cr(V) complexes or free radicals by 
different techniques, which will be discussed below. These materials, as well as glycerol, 
glycol and sorbitol, have presented potential new uses in biology and MRI and they are 
therefore included in the list.

Amines have better dilution factors compared with alcohols. They are also glass formers 
and are therefore interesting additives to other materials.

The boron compounds have a high dilution factor and radiation length. Some of them 
can be dissolved in amines: unfortunately, high polarizations have been obtained only in 
mixtures which have a dilution factor inferior to ammonia [4].

The lighter and more hydrogen-rich materials also tend to have a larger radiation length, 
which strengthens their position as potential target materials in scattering experiments.

In the case of the deuterated materials of Table 7.2, two materials stand out because 
of their dilution factors and radiation lengths: irradiated 6LiD and irradiated ND3. Also, 

M fp X0

Compound Chemical formula (g/mol) (g/cm2)

Boron compounds
Ammonium borohydride NH4BH4 32.88 0.2433 46.73
Diborane B2H6 27.67 0.2168 54.76
Borane ammonia BH3NH3 30.87 0.1944 46.03
Borobutane B4H10 53.32 0.1875 54.54
Lithium borohydride LiBH4 21.78 0.1837 57.22

Table 7.1 (cont.)
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Table 7.2 Simplified dilution factors and radiation lengths for the deuterated compounds. For carbon, 
boron, nitrogen and oxygen nuclei natural isotopic abundance is assumed, whereas deuterium and 
lithium are assumed to be pure isotopes. Furthermore, as 6Li and D nuclei reach practically same 
polarizations carried also by the quasi-free deuteron of 6Li, it is assumed that there are two polarized 
deuterium nuclei per 6LiD unit cell.

M fd X0

Deuterated compound Chemical formula (g/mol) (g/cm2)

Lithium deuteride 6LiD 8.03 0.4982 62.75
Ammonium borodeuteride ND4BD4 40.93 0.3909 58.19
Ammonia ND3 20.05 0.2993 47.97
Water D2O 20.03 0.1997 25.63
Alkanes
Methane CD4 20.06 0.3987 57.82
Ethane C2D6 36.11 0.3323 54.61
Propane C3D8 52.15 0.3068 53.47
Butane C4D10 68.18 0.2933 52.88
Pentane C5D12 84.22 0.2850 52.52
Simple heavy hydrocarbons (CD2)n ≈ n·16.02 0.2496 51.01
Alcohols
Methanol CD3OD 36.06 0.2218 44.29
Ethanol C2D5OD 52.11 0.2303 46.18
Propanol C3D7OD 68.15 0.2348 47.24
Butanol C4D9OD 84.18 0.2376 47.92
Pentanol C5D11OD 100.22 0.2395 48.40
Diols
Ethanediol CD2(OD)CD2OD 68.11 0.1762 42.68
1,2-Propanediol CD3CD(OD)CD2OD 84.15 0.1901 44.06
1,2-Butanediol C2D5CD(OD)CD2OD 100.18 0.1996 45.05
1,2-Pentanediol C3D7CD(OD)CD2OD 116.22 0.2065 45.79
Other hydrocarbons
Glycerol CD2(OD)CD(OD)CD2OD 100.14 0.1598 42.13
Glucose C6D12O6 192.23 0.1248 41.00
Sorbitol DOCD2(CDOD)4CD2OD 196.26 0.1427 41.57

Cr(V)-doped butanol has been widely and successfully used in scattering experiments. 
Biological and other experiments based on contrast variation use deuterated ethanediol, 
propanediol, butanol and glycerol, where the dilution factor is not important.

In elastic and quasi-elastic scattering, the kinematics of the events can be completely 
determined. This enables one to separate events originating from protons of hydrogen 
atoms from those due to heavy nuclei, and even from events due to nucleons bound to 
heavy nuclei, because of their Fermi momentum which broadens the distribution of scat-
tering angles and therefore enables to separate the narrow elastic peak due to protons from 
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the underlying broad background due to heavy nuclei. The same is true for nucleons in 
deuterium and 6Li nucleus, because their Fermi momentum is significantly smaller than 
that of heavier nuclei. In such cases the dilution factor does not enter in the statistical figure 
of merit of Eq. 7.10, but the contributions of the heavy nuclei must be analyzed from the 
point of view of systematic errors arising from multiple scattering, which limits the usable 
target thickness to a fraction of the scattering length.

Most of the hydrogen-rich target materials are liquids or gases at room temperature, 
which facilitates the introduction of the paramagnetic centers, but makes the later han-
dling, loading into the refrigerator and storing under LN2 more complicated. Despite of 
great efforts to develop materials which can be stored and handled at room temperature, no 
practical solution has been found yet. The handling and loading techniques at LN2 tempera-
ture, on the other hand, have been substantially improved and therefore the need of solid 
materials has become restricted only to a few specific applications.

In nuclear experiments the scattering off polarized nuclei of interest can often be dis-
tinguished from background. In this case the high polarization of these nuclei will guide 
the material choice. In inclusive nuclear experiments with electron and gamma beams, 
however, this may not be the case, and then the dilution factor of Eq. 7.2 has to be included 
in the figure of merit.

7.1.2 Other Types of Applications

In beam transmission type of experiments and in spin filtering, unpolarized background 
nuclei are usually not too harmful and therefore the dilution factor plays a minor role in the 
choice of target material. The main requirement is then that only the nucleus of interest has 
non-zero spin. Sometimes this is difficult to achieve, and one tries to find a substance where 
the background nuclei with spin have a low density or a much lower magnetic moment, 
which leads to a low polarization in comparison with the nuclei of interest.

A special beam transmission application is spin filtering of a beam using a polarized 
target, such as fast neutron polarization using polarized protons. Here the large difference 
of cross sections between the two spin states of the beam and target particles is important 
for effective filtering, and obviously a high target polarization is beneficial as well. The 
dilution factor plays a minor role unless the background nuclei have a large cross section.

Fusion with polarized fuel [5] may have the advantages that a lower ignition temperature 
can be achieved due to larger fusion cross section, and that the emission of neutrons may 
be controlled by the direction of the polarization vector which enables to design efficient 
absorbers and to protect structural materials. The materials should only contain polarizable 
light nuclei such as deuterons and tritons, and possibly selected isotopes of lithium, beryl-
lium or boron.

The coherent scattering of polarized slow neutrons off spin polarized macromolecules 
allows one to study their size and shape using the method which is called spin contrast 
variation. Selective deuteration is used for adjusting the contrast in macromolecules under 
study, and in the matrix material for minimizing its contrast [6]. The matrix material must 

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108567435.008
https://www.cambridge.org/core


 7.2 Chemically Doped Glassy Materials 291

be a partly deuterated glass, which can dissolve in liquid state both the molecule under 
study and the paramagnetic molecules needed for DNP. It is an advantage in many cases 
if the paramagnetic molecule can also be deuterated. The dilution factor in this case is of 
minor importance, whereas strongly absorbing nuclei must be avoided in the ingredients. 
The material has to be a good glass former where no microcrystals are grown when solid-
ifying the matrix.

The use of polarized contrast media in magnetic resonance imaging (MRI) has been 
demonstrated by inhaled optically pumped 3He, which has a slow enough relaxation time 
so that human lungs could be imaged. It may be possible in the future to develop injectable 
spin-polarized liquids which might offer new possibilities to study metabolic reactions and 
arteries with improved contrast and resolution. Such fluids must contain large amounts 
of polarized nuclei, be free of toxic substances at the moment of injection and have slow 
enough relaxation time in order to permit the clinical studies of interest. The dilution factor 
plays a minor role here.

The design of materials for the studies of nuclear magnetism itself belongs to the realm 
of solid-state physics. These studies presently are limited to crystalline materials, and it is 
clear that isotopic purity, low paramagnetic center concentration and low contamination by 
background nuclei with spin is an advantage. The dilution factor here plays no role, unless 
the magnetic phase transitions are observed using polarized neutron scattering, which 
requires that neutron absorption be sufficiently low in the sample.

7.2 Chemically Doped Glassy Materials

The first breakthrough of DNP in organic materials was in 1966 when Borghini et al. [7] 
succeeded in obtaining 35% polarizations at 1 K temperature and 2.5 T field in ethanol- 
water, ethanol-methanol and ethanol-propanol mixtures doped with about 3% by weight of 
the free radical porphyrexide (PX). A few years later (1969) they reached 40% polarization 
[8] in 1-butanol with 5% water doped with the same radical under the same conditions. 
Glättli et al. [9] obtained 50% polarization in the same year in ethylene glycol (= ethane-
1,2-diol) doped by reacting with potassium dichromate which yields paramagnetic Cr(V) 
complexes soluble in the liquid and solid phases, at 1 K and 2.5 T. Still in the same year Hill 
et al. [10] reached 67% polarization in butanol-water-PX at 0.5 K and 2.5 T, and Masaike 
et al. [11] obtained 80% in ethylene glycol-Cr(V).

In 1971 Gorn and Robrish [12] reported 50% polarization at 1 K and 2.5 T in 1,2-pro-
panediol reacted with potassium dichromate. One year later, De Boer [13] obtained 92% 
polarization in a similarly prepared material at 0.5 K and 2.5 T. In the following year, de 
Boer and Niinikoski [14] polarized 1,2-propanediol-Cr(V) to values very close to 100% in 
a dilution refrigerator.

In the course of the above development, a large number of solvents and paramagnetic 
compounds were tried with results mostly only somewhat inferior to those quoted above, 
but sometimes clearly unsuccessful. Glättli [15] reviewed the methods of preparation by 
dissolving a stable radical and by reacting with Cr compound and concluded: ‘unfortunately 
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the description of preparation is limited to the “know-how” rather than the “know why” ’. 
Despite this, butanol and the two diols were extensively and successfully used in a wide 
range of experiments.

The development of hydrogen-rich organic materials for polarized targets continued to 
be based on trial-and-error methods until 1979 when it was recognized [16, 17] that the suc-
cess or failure of DNP was controlled by the glass-forming ability of the solvent in which 
paramagnetic centers thus became uniformly distributed upon rapid vitrification. This was 
clearly evidenced by viscometric studies [16] of 1-butanol-water, 1-pentanol- water and 
1-pentanol-pinacol solutions and results of DNP studies when stable Cr(V) complexes were 
dissolved in these solutions [18]. Very soon after this microcalorimetric studies by Hill [19] 
of these and several other compounds revealed clear features of glass transition and devit-
rification. These findings also immediately explained why well-polarizing  materials lose 
their characteristics when annealed close or above the devitrification temperature.

In the following sections we shall first briefly outline the physics of the glassy matrix 
materials, secondly how suitable paramagnetic molecules are introduced and thirdly dis-
cuss the fabrication and handling of beads or granules of the material.

7.2.1 Properties of Glassy Matrix Materials

The term ‘glass’ has been used to describe a state of matter which has properties intermedi-
ate between a liquid and a solid, with mechanical characteristics close to crystalline mate-
rials but microscopic properties resembling those of liquid state. The glassy state is not 
stable and not even metastable, and it is not the lowest free-energy state, so that equilibrium 
thermodynamics cannot be always applied. The liquid-glass transition, in particular, is a 
non-equilibrium phenomenon in which the time scale of relaxation phenomena becomes 
comparable with experimental times [20]. The glass formation therefore depends on the 
quenching rate, i.e. the rate at which the liquid is cooled to such low temperature below the 
melting point that the liquid disorder becomes frozen-in and nucleation of crystallization 
becomes hindered or extremely slow.

The transition from supercooled liquid to glass takes place at the temperature Tg, which 
is called glass transition temperature. It is phenomenologically defined as a temperature 
where the viscosity reaches 1013 P (P = poise = g/(cm·s)), or as a point where the specific 
heat has an anomalously steep increase when the temperature is increased. Microscopically 
the glass transition is explained by invoking a rapid change of the degrees of freedom in 
the supercooled liquid, in various theoretical schemes which are beyond our present scope.

The speed required for the supercooling of the liquid depends on the viscosity and its 
temperature dependence at the crystal melting point of the substance. Good glass formers 
are characterized by a high viscosity, which steeply increases when the temperature 
decreases in the vicinity of and below the melting point. Glass-forming liquid solutions 
stay clear and transparent near the melting point, thus indicating that no phase separation 
and no crystal growth takes place. The microscopic origin of the specific heat anomaly at 
the temperature Tg is thought to be the loss of configurational degrees of freedom, which 
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cannot be understood from first principles but can be related and correlated with several 
other physical parameters such as the heat capacity, viscosity, diffusion constant and vol-
ume expansion. The correlations can be understood in the terms of phenomenological 
models such as the free-volume model [20], the entropy theory [21] and models explaining 
transport properties based on the temperature dependencies of the specific heat and volume 
expansion near the liquid-glass transition temperature.

The viscosity in glass formers (including the organic ones) which is 1013 P at Tg follows 
the law [20]

 b
T T

exp ,0η η=
−











η

 (7.16)

where 0η  and b are constants and Tη  is constant when the viscosity is below 104 P and then 
Tη  decreases to zero so that in the high-viscosity region the Arrhenius law is obeyed. The 
free-volume percolation model [20] successfully explains this functional behavior, which 
was first established empirically by Vogel [22] and Fulcher [23].

The entropy in supercooled liquid and crystalline phases can be determined from the 
measured specific heats. The experimental difference between the liquid and crystal entro-
pies, called excess entropy, extrapolates to zero at a temperature Ts, which has been found 
to be about 20 K to 50 K below Tg for most substances. The entropy theory of the glass 

Table 7.3 The crystal melting point Tm, the glass transition temperature Tg , Tη and Ts for some 
hydrogen-rich hydrocarbons which are easy glass formers. The asterisk for water indicates that the 
value for glass transition temperature is obtained by extrapolating measurements in ethanediol-water 
mixtures to zero concentration.

Tm Tg Tη Ts

Substance Formula (K) (K) (K) (K) Ref.

2-Methylbutane (isopentane) (CH3)2CH(CH2)2 113.3 68.2 [24]
2-Methylpentane C3H7CH(CH3)2 119.5 79.5 59 58 [20]
2,2-Dimethylpropane (neopentane) (CH3)4C 256.5 ? [24]
3-Methylhexane (d) C3H7CH(CH3)C2H5 156.3 88 [24]
Methanol CH3OH 175.2 103 60 63 [20]
Ethanol CH3CH2OH 155.7 98.55 62.39 [25]
1-Propanol CH3(CH2)2OH 146.6 102.35 70.20 [25]
1-Butanol CH3(CH2)3OH 183.6 112.85 79.39 [25]
Ethylene glycol (ethane-1,2-diol) OH(CH2)2OH 255.6 152 107 112 [20]
Propylene glycol (propane-1,2-diol) OH(CH2)3OH 160 112 [21]
Glycerol C3H5(OH)3 291.2 180 138 134 [20]
Sorbitol C6H14O6 383 266 236 236 [20]
Glucose (dextrose) C6H12O6 419 305 242 [21]
Water H2O 273.15 136* [26]
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transition [21] leads to an expression for viscosity almost identical to Eq. 7.16, with Tη in 
the exponential replaced by Ts. This gives confidence for the two models to describe many 
features of the glassy materials.

Table 7.3 lists the crystal melting point Tm, the glass transition temperature Tg, Tη and Ts 
for some pure organic glasses of interest in polarized targets. It can be noted that Tη and Ts 
are quite similar in those substances for which they are known.

As Tg depends on the heating rate during the measurement in a microcalorimeter and 
also on the thermal history of the sample, it has been argued that in the limit of extremely 
slow heating the temperatures Tg, Tη and Ts could all merge towards a common intermediate 
value, which could be defined as a phase transition temperature in the sense of equilibrium 
thermodynamics. The discrepancy, however, is too large and it has been suggested that 
the phase transition could take place at an intermediate temperature between Tg and Ts at a 
point where the excess entropy has not reached zero but some critical value.

The glass transition temperature in binary mixtures of glass formers with transition tem-
peratures Tg1 and Tg2 can be obtained from [25]

 T x
xT x T C

x x C

1

1
,g

g g1 2( ) ( )
( )

=
+ −

+ −
 (7.17)

where x is the mole fraction of the component 1 and C is a constant, which can be deter-
mined from the entropies for the components of the mixture and is not an adjustable param-
eter. The entropy can be determined from experimental data on the specific heat. Data on 
alcohol mixtures [25, 27] very well obey this relation.

Glass transition studies [28] in mixtures between normal alcohols and various Lewis 
bases such as triethylamine, diethyl ether, acetone and toluene show that these mixtures 
exhibit a somewhat similar behavior.

7.2.2 Viscosity of Binary Mixtures of Alcohols, Diols and Water

Viscosity in the vicinity of the melting point for pure substances is usually in the range of 
10–2 P.1 In this range it can be determined with a rotating viscometer; measurements [16] in 
an apparatus modified for reduced temperature operation were performed for several sub-
stances and mixtures of interest in polarized targets. The sample cup was equipped with a 
thermometer in the fluid and with a cooling tube mounted outside, through which nitrogen 
vapor was pumped from an LN2 bath in a wide glass dewar. The cup was also equipped 
with a heater, which allowed to control the cooling speed of the sample in the course of the 
measurements. The speed was usually a few K/min.

Figures 7.1–7.3 from Ref. [16] show the temperature dependence of the viscosity of 
1-butanol and 1-pentanol mixtures with water, and of 1-pentanol mixtures with pinacol. 
In one 1-butanol sample with 5% water, 1.5 g of polyethylene glycol 4000 (PEG4000) 
was added in 21.2 g of solution. The pentanol-pinacol solutions are clearly good glass 
formers and exhibit better devitrification characteristics. When using the stable Cr(V) 

1 Here we are using the cgs unit poise (1 P = 1 g/(cm·s)) for the viscosity; the SI unit of viscosity is Pa·s, with 1 Pa·s = 10 P).
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Figure 7.2 Viscosity of pentanol with 2 water concentrations around the melting point of pure 
pentanol (194 K)

Figure 7.1 Viscosity of 1-butanol with various water concentrations around the melting point of pure 
1-butanol (183.6 K)
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complexes, however, solubility in 1-pentanol remains rather low in absence of water. The 
1- pentanol-pinacol mixtures might be interesting materials with the diol-Cr(V) complexes 
which can now be prepared with high concentration [29].
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A slow cooling speed during measurements in a rotating viscometer caused alcohol- 
water mixtures to turn milky indicating the nucleation of crystal growth. The crystals are 
likely to be water. Pentanol-pinacol solutions did not exhibit such behavior.

7.2.3  Microcalorimetric Studies of Glass Transition and Devitrification

The anomaly of the specific heat in the vicinity of the glass transition can be seen in a 
microcalorimetric scan of the sample temperature. Other anomalies are also revealed, such 
as devitrification and melting of the sample. A typical temperature scan from Ref. [30] is 
shown in Figure 7.4 for 1-butanol sample quenched in LN2. The device consists of two 
identical cups supported by constantan wires which are part of a differential thermocouple. 
When the cups are slowly warmed together with their enclosure, their temperature lags 
behind that of the surrounding gas by an amount which depends on the heat capacity of 
the cup and the sample; exothermic/endothermic reactions reduce/add to this lag and show 
up as peaks up/down. The temperature difference between the cups is thus sensitive to the 
specific heat of the sample.

The minor step feature G in Figure 7.4 is due to the specific heat anomaly of the liq-
uid-glass transition. The position of this anomaly depends on the thermal history of the sam-
ple and on the warming rate, so that slower warming gives a lower transition temperature. 

Figure 7.3 Viscosity of pentanol with various concentrations of pinacol
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The midpoint of the step is usually taken as Tg. Above this temperature the material devit-
rifies, which is seen as a strong exothermic peak at D, which is due to the heat of crystal-
lization of the whole sample or of a fraction thereof. Further warming results ultimately in 
the melting of the crystallized material at point M. Sometimes the melting of water frost 
contamination may be seen close to 273 K temperature (the scan of Figure 7.4 does not 
extend to this point).

The sample is loaded into the cup in the form of liquid; the subsequent quenching speed 
is not necessarily the same as is obtained when droplets of the substance are rapidly frozen 
by letting them solidify on the meniscus of an LN2 bath. An apparatus suitable for such 
target material beads [30] consists of thermocouple wire loops symmetrically mounted in 
a small cylindrical housing and connected to give the differential temperature of the loops, 
as in the above apparatus. A sample bead is mounted in one of the loops and the other is left 
empty. The sensitivity and reproducibility of such a device is perhaps not as good as that of 
a differential calorimeter using closed cups, but it is sufficient to see the features G, D and 
M when they are pronounced.

In stable glasses the devitrification does not take place at a reasonable sample heating 
rate, and consequently also the melting anomaly is absent. The lack of D and M features of 
the differential microcalorimeter scan is thus susceptible to reveal materials which have a 
potential as a good matrix for accepting a uniform distribution of paramagnetic molecules. 
For this it is essential that the paramagnetic substance is soluble to the matrix in liquid 
form, and that the crystallization of the paramagnetic substance does not take place upon 
rapid cooling of the matrix. Normally the solubility is very limited at reduced temperatures 
between the melting and devitrification, and the material is far from thermodynamic equi-
librium during the quenching. A high viscosity of the substance leads to a slow diffusion of 
impurity molecules and therefore to a slow (or no) nucleation of crystal growth.

The nucleation and crystal growth, however, also depend on other factors such as trace 
impurities which may have either promoting or demoting influence on nucleation. It is 

Figure 7.4 Differential microcalorimeter temperature scan of a single bead of pure 1-butanol
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therefore important to have a diagnostic tool which may reveal the adverse effects of trace 
impurities in a batch of material to be processed.

Figure 7.5 shows a series of microcalorimeter scans for 1-butanol with various water 
concentrations. The glass transition is at Tg = 117 K for pure butanol and it increases to 
about 120 K by the addition of water. Pure butanol shows an onset for devitrification at 
about 160 K, which is not always reproducible, probably due to introduction of impurities 
in handling or bead preparation. The melting anomaly starts reproducibly at (182 ± 1) K 
for all scans and agrees well with the handbook value of 183 K. The addition of 0.5% H2O 
causes the devitrification to start at 173 K, whereas at 1% the devitrification and melting 
anomalies are almost absent. At 2% concentration nothing can be distinguished with the 
sensitivity of the simple device, and it can be concluded that butanol-water mixtures are 
particularly good glass formers. This and the solubility are undoubtedly among the main 
reasons why DNP works so well with many paramagnetic molecules in butanol-water 
matrix.

Microcalorimetric scans with various concentrations of water in 1-pentanol reveal the 
glass transition at 133 K for all water concentrations including zero. Devitrification starts 
at 160 K at concentrations of 5% and below, but then becomes sharper and starts already 
at 145 K for 7% concentration. Melting starts always at about 194 K in agreement with the 

Figure 7.5 Differential microcalorimeter temperature scans of sample beads containing 1-butanol, 
2-butanol, water and EHBA-Cr(V)
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handbook value and is well resolved from the devitrification at 6% and higher concentra-
tions, unlike for butanol-water.

1,2-Propanediol and propanediol-Cr(V) show a glass transition at 180 K and no devitri-
fication, whereas 1,2-butanediol has a glass transition at about 200 K and shows no devit-
rification nor melting.

As an attempt to identify hydrogen-rich materials with improved stability against devit-
rification between the glass transition and melting point, and better capability of dissolving 
the stable Cr(V) complexes, a series of microcalorimetric investigations [30] was per-
formed on solutions of butanol isomers, water, pinacol and propanediol. Unlike 1-butanol, 
pure 2-butanol and isobutanol (2-methyl propanol) show no devitrification and melting; 
2-butanol has Tg = 125 K, whereas isobutanol has such a small and gradual anomaly in 
specific heat that the apparatus was not able to resolve it. The viscosity of the pure solvent, 
however, is lower than that of materials with water added, because the bead softens and 
drops through the thermocouple wire loop around the melting point. Solutions containing 
1-butanol and 2-butanol exhibit devitrification and melting up to 10% 2-butanol in solu-
tion, but at higher concentration no devitrification takes place. Solutions of 1-butanol with 
isobutanol behave in the same way.

Solutions of 1-butanol with 2.5% to 6.5% water by weight do not devitrify but show a 
reduced melting anomaly at 183 K. Additions of 9.2% and 12.7% of 2-butanol result in a 
similar scan but with no melting anomaly. The solution has a saturation point of 8% water 
at room temperature.

With EHBA-Cr(V) complex in solutions containing 1-butanol with 5% to 16.2% 2- butanol 
and 4.7% to 59% water, no devitrification nor melting is detected, as shown by the scan 4 of 
Figure 7.5. The viscosity of the solutions is higher than that of the solutions with no complex 
compound. Re-cooling the bead from 180  to 77 K resulted in no change in the microcalori-
metric scan, unlike in beads prepared using pentanol-water and EHBA-Cr(V) [30].

Pinacol (2,3-dimethyl-2,3-butanediol) and 1,2-propanediol solutions with 1- and 2-buta-
nol exhibit no devitrification nor melting anomalies.

Deuterated 1-butanediol with 5% heavy water, without and with 6.4 × 1019 spins/g 
EHBA-Cr(V), has a glass transition at the same temperature as normal 1-butanediol. These 
solutions show no devitrification, but a small melting anomaly is found at 185 K in all of 
them.

Devitrified and re-cooled materials often exhibit microcalorimetric scan features differ-
ent from the materials quenched from room temperature. Devitrified beads cooled back 
to 77 K may appear opaque, which indicates that microcrystals have grown in the high- 
viscosity liquid and are frozen in the glass. The opacity is particularly pronounced when 
the target beads are colored by the paramagnetic compound. Glassy beads are translucid 
and clear with deep color, whereas devitrified beads show a lighter greyish color and are 
perfectly opaque. The results of DNP in such materials are always dramatically deterio-
rated and the spin-lattice relaxation time is reduced.

Glassy materials cooled rapidly to helium temperatures or below feature a delayed heat 
release, which is understood as a relaxation phenomenon of two-level systems present in 
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the glass. Measurements in pure 1-pentanol and 2-pentanol [31] cooled slowly (1–3 K/min) 
to 77 K indicated that 1-pentanol is crystalline, whereas 2-pentanol is glassy. The specific 
heat of both vary roughly proportional to the square of temperature between 12  and 2 K, 
but 2-pentanol has a substantially higher specific heat of

 c T0.05
K

mJ
gK
.2 PeOH

2

=








−  (7.18)

In a sample of 70 g, the heat release is about 10  nW to 100  nW at 3.1 K to 12 K anneal tem-
perature during 20 min after quenching and varies subsequently proportional to 1/(t/min)a   
where a = 0.69. A similar time dependence has been found in epoxy resin [32] with a = 
0.76, whereas glasses other than organic tend to have a = 1.

Other organic glasses are likely to have a delayed heat release similar to the measured 
value of 2-pentanol [31]. Such heat leaks have been observed in large targets cooled with 
dilution refrigerator rapidly (< 1 h) to below 50 mK, where nW heat leaks become compa-
rable with the available cooling power.

Table 7.4 summarizes the experimental values for Tg and Tη in the binary solutions of 
Figures 7.1–7.3. The glass transition temperatures have been obtained from microcalori-
metric studies which were described above, whereas Tη is obtained from fits of Eq. 7.16 to 
the data of the figures. The viscosities of the pure substances are several orders of magni-
tude below those of the solutions above the melting point and are rather constant down to 
the melting point where a sudden increase takes place due to solidification.

Table 7.4 Glass transition temperatures, Tη of Eq. 7.13, devitrification temperatures and melting 
temperatures for binary solutions of water in 1-butanol and 1-pentanol, and of pinacol in 1-pentanol. 
Numbers in parentheses indicate that the microcalorimetric anomalies are not observed in all samples, 
or that they are irreproducible. ‘None’ means that no anomaly is observed, and no entry in table means 
that no measured data was known of.

Solute conc. Tg Tη TD TM

(% by wt.) (K) (K) (K) (K) Ref.

Water in 1-butanol
0 117 150 182 [19]
2 120 118 None None [16]
5 120 137 None None [16]
10 120 163 None None [16]
15 (121) (164) (177; 254) [19]
Water in 1-pentanol
0 133 160 194
2 133 174 160 194 [16]
5 133 172 160 194 [16]
7 133 150 194
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7.2.4 Miscellaneous Materials of Interest

Ammonium borohydride NH4BH4 is soluble in ammonia and compatible with the stable 
Cr(V) complexes. Krumpolc [3] describes his method of preparation which is slightly mod-
ified from the one previously published, starting from sodium borohydride (NaBH4, 2.0 g), 
anhydrous ammonia and finely powdered and vacuum-dried ammonium fluoride (NH4 F, 
2.0 g). The powders were placed with a magnetic stirrer in a glass vessel with separate reac-
tor and receiver flasks mounted so that reacted liquid can be poured from the reactor to the 
receiver through a filter. The apparatus was purged with dry nitrogen and the reactor arm 
was immersed in ethanol/dry ice bath (–80 °C), and about 8 ml of ammonia was condensed. 
The reaction vessel was then warmed to –45 °C in a beaker with ethanol/dry ice and the 
mixture was vigorously stirred for 6 h, as ammonium fluoride is only slightly soluble in 
ammonia. At the end (6–8) ml more ammonia was condensed in the reactor and the whole 
apparatus was immersed to the large bath at –80 °C. Ammonium borohydride was sepa-
rated from the insoluble sodium fluoride by passing the solution through a filter separating 
the two arms of the vessel, slowly applying vacuum to the receiver flask. Ammonia was 
then partially or totally evaporated at –60 °C under vacuum and 1.4–1.6 g of white crystal-
line ammonium borohydride was collected from the receiver flask; the corresponding yield 
is 80–92%. The product is stored under dry nitrogen at −80 °C or in liquid nitrogen.

Ammonium borohydride can spontaneously ignite upon contact with traces of water or 
in prolonged contact with humid air [4].

Other boron compounds of possible interest are diborane B2H6 (called also boroethane), 
dihydrotetraborane B4H10 (called also borobutane), borane ammonia (NH3:BH3) and lithium 
borohydride LiBH4. The two first are gases at room temperature; the second is poisonous.

Toluene is a good glass former [19] and is known to have a low yield of radiolytic para-
magnetic centers [33, 34]. The dilution factor, however, is so low that toluene has never 
been used as a polarized target material and therefore the real radiation resistance is not 
known. Proton polarization of about 62% has been reached at 0.5 K and 2.5 T using di-ter-
tiary-butylnitroxide (DTBN) as a dopant [33]. Using 1,2-bis-diphenylene-1- phenylallyl 
(BDPA) as a dopant 41% proton polarization was reached in partly deuterated toluol at 
0.7 K sample temperature and 2.5 T field [35].

Solute conc. Tg Tη TD TM

(% by wt.) (K) (K) (K) (K) Ref.

Pinacol in 1-pentanol
2 181 [16]
6.2 116 [16]
10 146 [16]
20 21 [16]

Table 7.4 (cont.)
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Using BDPA as a dopant at a low concentration of 0.6 × 1019 spins/cm3 in partly deuterated 
m-xylene-d6, proton polarization of 25% and deuteron polarization of 10% were obtained, 
but at different microwave frequencies [35]. The experiment demonstrated, rather than high 
polarizations, the distinct mechanisms of DNP which is possible at low concentration, but also 
demonstrated the ‘ill’ effects of the low concentration of the paramagnetic centers to DNP.

7.2.5 Preparation of Cr(V) Complexes with Diols

Ethanediol (called also ethylene glycol) reacts with some hexavalent chromium compounds 
producing a relatively stable metallo-organic complex called here in short ED-Cr(V). 
Among the dichromates used originally by Garif’yanov et al. [36] were K2Cr2O7, Na2Cr2O7 
and (NH4 )2Cr2O7. The reaction of potassium dichromate was studied by Glättli [15] by ESR 
techniques. The procedure consists of mixing finely ground dichromate with ethanediol 
(more than the solubility of 20 mmol for 1 mol of ED) and reacting the mixture at 70 °C for 
15 min under magnetic stirring. This gives a concentration of 5 × 1019 Cr(V) spins/ml. The 
reaction speed plotted against inverse temperature shows Arrhenius relation with an activa-
tion energy of 20 kcal/mol. It was noted that the reaction water causes the Cr(V) complex 
to react yielding Cr(III), which has a broad resonance line, and which does not contribute 
to DNP, but is very effective in relaxing the nuclear spins. Removal of water by evacuation 
helped reaching higher Cr(V) yield and a better Cr(V)/Cr(III) ratio of about 5. The proton 
polarization of 85% in a 7 g sample was reached at 2.5 T using a 3He refrigerator for cool-
ing. This was clearly a breakthrough which stimulated interest in Cr(V)-diol complexes.

Bontchev et al. [37] found that the reactions described above were sensitive to light in 
addition to the presence of water.

Hill [38] describes a slightly refined process where 40 ml of ethanediol (spectroscopic 
grade) is reacted with 3.75 mg of potassium dichromate (reagent grade) in a 150 ml flask. 
The flask is equipped with a water-cooled reflux condenser, which prevents significant loss 
of the diol but lets water to be removed by a vacuum pump. Ethanediol is pre-heated to 
66 °C and stirred under vacuum to remove air. The flask is then backfilled with inert gas 
(helium) and potassium dichromate is added. The mixture is stirred for 40 min at 66 °C, 
after which the flask is backfilled with inert gas and cooled rapidly to room temperature.

A similar reaction takes place in 1,2-propanediol, glycerol and 2,3-butanediol. De Boer 
[13] describes the preparation of 1,2-propanediol-Cr(V) complex (called PD-Cr(V) for 
brevity) as follows: 250 ml of vacuum-distilled PD and 20% by weight of vacuum-dried 
K2Cr2O7 were mixed and magnetically stirred at 55 °C for 80 min under a few torr pressure 
obtained by pumping via a water-cooled distillation column. The flask was illuminated by 
a 250 W incandescent lamp. It is believed that the formation of Cr(III) due to light was 
prevented because high speed of magnetic stirring was used, which forced the undissolved 
dichromate to form a layer of solid particles along the glass wall; the outside of the flask 
was covered by black tape in areas which were uncovered by solid residues. The forma-
tion of Cr(V) was thought to be more due to the light than to the thermal activation at 
the reduced reaction temperature of 55 °C. Trying even lower reaction temperatures and 
longer reaction times resulted in higher Cr(III) concentration, probably due to less efficient 
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distillation of the reaction water. The described recipe gives about 3 × 1019 C(V) spins/cm3 
with a very low concentration of Cr(III).

The concentration of Cr(V) was then increased to the desired value by quickly (10–
20 min) evaporating the diol at 1 Torr pressure in the absence of light. The optimum concen-
tration for DNP at 2.5 T field in a 3He refrigerator was found to be around 16 × 1019 Cr(V) 
spins/cm3, with a rather flat maximum of about 83%. The maximum polarization increased 
to 92% when increasing the pumping speed of 3He from 170 m3/h to 250 m3/h. The initial 
polarization build-up was 2 min to 0.7·Pmax ; this fast time could be expected from the large 
electron spin concentration. The spin lattice relaxation time, however, remained 170 min at 
0.5 K, suggesting that the concentration of Cr(III) was indeed quite low.

Krumpolc, Hill and Stuhrmann [29] further refined the procedure for preparing the diol-
Cr(V) complexes. They observed that the photosensitivity for Cr(III) formation was actu-
ally higher than previously reported [37], and therefore performed the reaction in total 
darkness. By using a nearly stoichiometric ratio between the diols and sodium dichro-
mate, a considerable increase in the amount of Cr(V) complex was achieved. Furthermore, 
because the decomposition of Cr(V) into Cr(III) is accelerated by the presence of water 
formed in the course of the oxidation, water was continuously removed by anhydrous mag-
nesium sulphate which is a common dehydrating agent. The absence of the absorption 
line of Cr(III) at 600 nm wavelength showed that the decomposition of Cr(V) was indeed 
stopped, and this was confirmed by column chromatography using silica gel.

The diol-Cr(V) complexes have not yet been isolated in pure form, but the above simple 
procedure allows one to obtain high concentrations of the complexes without Cr(III) for 
dissolving in suitable solvents forming a hydrogen-rich glass matrix.

In the original work of Garif’yanov [36] Cr(V) complexes were observed in dimethyl-
formamide (DMFA), acetone and acetonitrile in addition to diols and glycerol. Svoboda 
[39] has prepared Cr(V) complexes in dimethylformamide HCON(CH3)2 solution using 
pyrocatechol as a ligand. The EPR linewidth is 2.4 mT in 0.89 T field and 4.2 K tem-
perature, comparing favorably with that of the diol complexes which have linewidths of 
3.2 mT to 3.8 mT under the same conditions. The material, however, reaches rather low 
DNP at this field and 1.4 K temperature. Svoboda reports also that the same technique 
can be used to produce Cr(V) complexes in alcohols and other solvents provided that it 
is able to dissolve the dichromate or other chromium salt. Among other reducing agents 
than pyrocatechol, alizarin or 2,3-naftalenediol can be used.

Bunyatova [40] has succeeded in observing a photochemical reaction of ammonium 
dichromate in pentanol, which results in a paramagnetic complex with the g-factor of 1.973, a 
value typical of Cr(V). Laser light with 441 nm wavelength was obtained from a helium-cad-
mium laser. The intensity-width relationship of the hyperfine components as well as the g-an-
isotropy estimated from the EPR line in solid at 77 K confirms that the leading paramagnetic 
substance is a Cr(V) complex belonging to the same family as the diol-Cr(V) complexes.

The preparation of Cr(V) complexes by reaction with deuterated diols was first believed 
to require that hydrogen atoms should remain at least in the hydroxyl groups, and therefore 
deuterated targets were prepared by mixing perdeuterated propanediol (DPD-8) with con-
centrated solution of partly deuterated propanediol-Cr(V) obtained by reacting potassium 
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dichromate with C3D6(OH)2 (abbreviated DPD-6) [41]. Bunyatova has shown [40] that the 
reduction of potassium dichromate proceeds also in perdeuterated propanediol, and that the 
resulting perdeuterated complex has a line width due to g-anisotropy slightly narrower than 
that in normal (undeuterated) propanediol.

7.2.6 Preparation of Cr(V) Complexes in Stable Pure Form

In 1976 Krumpolc and Rocek [42] discovered that a Cr(V) complex formed in water solu-
tion by reacting 2-hydroxy-2-methylbutyric acid with chromic acid. The Cr(V) absorption 
line at 750 nm indicated that a complex with exceptional stability at room temperature was 
formed. The reaction kinetics and structure of the complex were studied [43] and it was 
obtained in crystalline form when the reaction was made with CrO3 [44]. Further refine-
ments to the reaction led to much simpler procedure [45] with a yield of 60% to 90% based 
on the sodium dichromate, which was used as a starting material. This procedure takes 
about two days and can be performed without sophisticated equipment.

Krumpolc and Rocek describe the process for EHBA-Cr(V)2 as follows [45]: To a solu-
tion of 19.8 g (0.150 mol) of 2-ethyl-2-hydroxybutyric acid3 in a 300 ml Erlenmayer flask 
is added 6.5 g (0.025 mol) of anhydrous sodium dichromate (the dihydrate dried in vacuo at 
100 °C for about 30 min to 40 min and finely pulverized), and the heterogeneous mixture 
is magnetically stirred until the dichromate is completely dissolved (about 10 min). The 
formation of dark red brown solution of the Cr(V) complex can be observed instantaneously. 
The flask is fitted with a glass stopper and immersed in a water bath controlled at 25.0 °C 
temperature for a period of 23 h to 24 h. The solution is then poured into 375 ml of hexane, 
upon which the Cr(V) complex precipitates out in the form of dark red violet solid. The crude 
product is collected, dried in vacuo at room temperature for about 30 min to remove water 
and volatile materials (solvents, diethyl ketone), dissolved in 125 ml of acetone and repre-
cipitated in 375 ml of hexane. The crystalline product is washed with 20 ml of hexane and 
dried in vacuo at room temperature to constant weight (about 30 min) giving 14.8 g to 16.5 g 
(0.040 mol to 0.045 mol) of sodium bis(2-ethyl-2-hydroxybutyrato)oxochromate(V) mono-
hydrate. The yield is between 80% and 90% based on sodium dichromate. The analysis for 
the product with the chemical formula Na[((C2H5)2COCO2)2CrO]·H2O is given in Table 7.5.

2 Abbreviation for sodium bis(2-ethyl-2-hydroxybutyrato)oxochromate monohydrate.
3 Aldrich.

Table 7.5: Analysis of EHBA-Cr(V) complex monohydrate [46].

Substance Calculated Found

C 39.0 39.4
H 6.01 6.00
Cr 14.1 14.1
Na 6.23 6.6
H2O 4.88 5.3
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The presence of one molecule of water in the crystal was established by deuterium 
exchange technique and was determined by NMR.

The product EHBA-Cr(V) is a dark red violet crystalline solid. It is very stable at room 
temperature: after exposure to air and light for several weeks no visible decomposition 
was observed. It does not show a melting point but slowly decomposes at 170 °C. It is 
readily soluble in polar solvents (water, acetone pyridine, dimethylformamide, dimethyl 
sulphoxide, acetic acid, liquid ammonia), but insoluble in hydrocarbons, carbon tetrachlo-
ride, chloroform and diethyl ether. The compound is relatively stable to hydrolysis: only 
about 20% of 0.01 M solution of the complex is decomposed over a period of 24 h at 
25 °C. The stability can be substantially enhanced by the addition of a small amount of 
2-hydroxy-2-methylbutyric acid. Upon acidification the complex undergoes fast dispropor-
tionation to chromium(VI) and chromium(III); the addition of sodium hydroxide results 
in instantaneous disproportionation. The infrared and visible spectra feature several lines 
given in Ref. [45].

The complex is paramagnetic with d1 electron configuration giving the spin 1/2; the 
hyperfine spectrum and g-factor were discussed in Chapter 3.

The same process was extended by Krumpolc and Rocek [45] to other tertiary hydroxy 
acids including 2-hydroxy-2-methylpropionic acid (HMPA), 2-butyl-2-hydroxyhexanoic 
acid (BHHA), 1-hydroxycyclopentanecarboxylic acid (HCpCA), 1-hydroxycyclohexane-
carboxylic acid (HChCA) and 2-hydroxy-2-phenylpropionic acid (HPPA). The molecu-
lar structure is shown in Figure 7.6, where the radicals R1and R2 are given in Table 7.6 
together with data on the solubility and stability of the complexes.

Two of the stable Cr(V) complexes, HMPA-Cr(V) and EHBA-Cr(V), have also been 
prepared in perdeuterated form [29]. The latter, called by the acronym EDBA-Cr(V), has 
now gained wide use in deuterated polarized targets for high-energy scattering experiments 
and in molecular biology experiments using spin contrast variation. Deuteration seems to 
promote the stability of the complex even further. Unfortunately, the starting material per-
deuterated EHBA is not available commercially and its synthesis [29] requires chemistry 
skills and a well-equipped laboratory.

The effect of deuteration has also been studied in a broader class of similar Cr(V) com-
plexes by the same team [47].

Bunyatova reported that HMBA-Cr(V) is unstable when dissolved in diols and in  ethanol 
[40].

Figure 7.6 Chemical formula of the stable Cr(V) complexes of tertiary hydroxy acids synthetized by 
Krumpolc and Rocek [45]
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7.2.7 Preparation of Glassy Beads

Polarized target material must be relatively finely divided to provide good heat transfer 
from the solid to the dilute 3He/4He solution of a dilution refrigerator, or to the two-phase 
flow of 4He or 3He in the case of evaporation refrigerators. In the first case the heat transfer 
is predominantly limited by the thermal boundary resistance (Kapitza resistance); in the 
second it is determined by the two-phase boiling heat transfer coefficient in series with the 
Kapitza resistance. In both cases there is an optimum size of the target grains, because very 
small grains size will cause obstruction to the convectional heat transfer in dilute solution 
and will limit the flow in the case of two-phase boiling heat transfer. This optimum size 
appears to be about 2 mm in both cases, although there have been no systematic studies so 
far. Clearly the optimum grain size depends also on the filling factor and grain shape, but 
in polarized targets one wishes to have the closest possible packing of the material, and 
the grain shapes are limited by practical fabrication techniques. The heat transfer will be 
discussed in greater detail in Chapter 8; we shall discuss here first how the target material 
is prepared in liquid form, and then how regular grains can be prepared by quenching the 
liquid in droplets into liquid nitrogen.

The preparation of chemically doped target materials involves dissolving the matrix 
material ingredients into a homogeneous solution, dissolving in it the free radical or metal-
lo-organic complex and solidifying the material by rapid cooling. In the case that the 
paramagnetic compound does not support the temperature at which the matrix material is 

Table 7.6 Composition, solubility and stability of stable Cr(V) complexes with tertiary hydroxy 
acids, from Ref. [45].

Solubilitya Decompb (%) Thermal
Water Acetone In H2O In 0.1 M decomp.

Complex R1 R2 (g/l) (g/l) of HA (°C)

HMBA-Cr(V) CH3 C2H5 290 103 58 13 180
HMPA-Cr(V) CH3 CH3 270 4.1 81 64 180
EHBA-Cr(V) C2H5 C2H5 190 203 28 2 180
BHHA-Cr(V) C4H 9 C4H 9 16 87 27 –c 180
HCpCA-Cr(V) (CH2)4 (CH2) 4 204 730 100 53 170
HCxCA-Cr(V) (CH2)5 (CH2)5 340 710 100 13 170
HPPA-Cr(V) C6 H5 C6 H5 170 810 100d 100d 140

a  At 25 °C.
b  About 0.01 M solutions of Cr(V) complexes in water and in aqueous solutions of corresponding 

hydroxy acids (HA), followed over a period of 24 h at 25 °C.
c  2-Butyl-2-hydroxyhexanoic acid is insoluble in water.
d  Decomposed in about 1 h.
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liquid, two other methods might be tried: The paramagnetic compound is diffused in the 
solid matrix material, or the matrix material is dissolved to another solvent, which is vac-
uum evaporated after dissolving the paramagnetic compound.

Dissolved air and in particular oxygen in the matrix material has a strong influence in the 
proton spin lattice relaxation time, for example, in toluene and in OTP [6].

The solubilities of the various substances have to be tried out in most cases, because 
it may take more time to find data in the literature (unless a chemistry department is 
within easy reach). The ingredients are deoxygenated by bubbling dry nitrogen and, if 
they are not anhydrous, they are dried before weighing the right proportions. The han-
dling of deuterated solvents is best made in a glove box with dry nitrogen atmosphere; 
otherwise, they become contaminated by the protons of the ordinary water from the 
humidity of air.

After dissolving all ingredients, the liquid is once more deoxygenated by briefly bub-
bling dry nitrogen, usually directly in the vessel from which the liquid is dropped onto LN2 
or injected in a mould at 77 K temperature.

If one of the ingredients is a gas or is highly volatile at room temperature, the handling 
must be done at a lower temperature. Hill [4] has described a simple apparatus which can 
be easily modified for including the feeds for condensable gases, for example.

A simple method of preparing round glassy beads from a liquid solution consists of 
placing it in a syringe with a thin hypodermic needle. The needle size and shape control 
the drop size, and the dropping rate can be controlled manually such that only a few beads 
float on the meniscus of the LN2 bath during the process. The beads made in this way have 
a diameter between 1.5 mm and 2.0 mm and the larger ones tend to be slightly flattened. 
Sometimes the bead begins to spin while floating; this leads to flattened shapes. It can also 
be noted sometimes that the top surface of the bead is concave, and it is not rare to find a 
bead which has a gas-filled bubble totally enclosed by the glassy material. Such beads usu-
ally disintegrate when warmed rapidly from liquid helium temperature, because superfluid 
helium may fill the void gradually during target operation, but cannot escape when warmed 
above 2.17 K.

The droplet size can be also controlled by applying a high voltage between the needle and 
an annular electrode mounted about five millimeters below the tip of the needle; in this case 
the droplets also become so much charged that they repel each other, thus avoiding collisions 
while floating on LN2. The charge may, however, make them stick to the wall of the dewar 
before solidifying. A discharging gun is practical for neutralizing the charges in the various 
dielectric materials of the apparatus and the beads. Discharging facilitates also the handling 
of beads fabricated without high voltage.

The beads are collected into storage bottles using an attached funnel, the rim of which is 
a few millimeters above the liquid surface.

The manual method works well for quantities of a few mL. Quantities of normal (2.3 kg) 
and deuterated (1.8 kg) butanol-5% water beads, doped with stable EHBA-Cr(V) and 
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EDBA-Cr(V) complexes, respectively, were prepared [48, 49] for the large polarized tar-
get of the Spin Muon Collaboration experiment NA47 at CERN. We shall describe here the 
preparation of the deuterated beads [49], which was slightly more elaborate. The apparatus, 
mounted inside a glove box, consisted of a rotating foam-isolated large vessel subdivided 
into 24 compartments by 12 radial walls and one circumferential wall. The target material 
solution was poured into two syringes with a hypodermic needle; the syringes were tem-
perature and pressure controlled. The pressure was adjusted so as to get a drop rate of 1/s 
from each, and the LN2 vessel was rotated at a speed controlled so that at most one bead 
was floating in each compartment. Helium gas was blown onto the surface of the bath to 
depress the partial pressure of nitrogen, thus preventing boiling inside the bath and making 
the beads sink sooner (about 4 s to 5 s) as they were cooled faster below the critical tem-
perature of film boiling. In this way the quantity of about half million beads with a diameter 
of 1.8 mm were produced in batches of 60 mL of solution, each of which took about 90 min 
to process.

Casting in a mould at 77 K temperature is the technique which was first used for organic 
materials. The mould was often the microwave cavity itself, precooled close to 77 K before 
quickly filling with liquid, and then quenched into the LN2 bath. This works for small 
samples, and the heat transfer is likely to be rather limited already for targets of less than 
1 cm3 volume.

The mould casting technique is needed in applications which require a thin target, and in 
small-angle neutron scattering experiments which are sensitive to the background caused 
by the small-angle magnetic scattering (specular mirror reflections) by the surfaces of the 
round beads. In the first case thin flat pieces with parallel surfaces are needed, and in the 
second case pieces about 3 × 17 × 17 mm3 are made [50]. In both cases a demountable cop-
per mould is prepared with right size and shape. The mould is cooled in an LN2 bath but not 
filled with LN2. The cavity is rapidly filled with the target liquid by injecting a measured 
dose from a syringe. The mould is then dismounted under LN2. The blocks thus made are 
not always as transparent as the beads, but results of DNP seem to confirm that the cooling 
speed is sufficient for most materials, at least for good glass formers such as ethanediol, 
propanediol, glycerol-water and butanol-water.

7.2.8 Recent Research and Future Developments with Glassy Materials

DNP in Scintillating Plastics
In the nitroxyl radicals TEMPO, DTBN and oxo-TEMPO (see Chapter 3) the unpaired 
electron is localized predominantly in the N–O bond and is surrounded and shielded by 
four methyl groups [51]. These molecules can therefore combine and react with many other 
molecules without first losing the free electron. This opens many possibilities to dissolve or 
diffuse the paramagnetic substances thus generated into substances that contain the desired 
nuclei to be dynamically polarized. Among these are solids such as polyethylene (PE), 
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polymethyl methacrylate (PMMA) and polystyrene; the two latter can be used also as 
scintillating detectors. This gives perspectives to many experiments that require a polarized 
target combined with particle detection very close to the polarized target nucleus [51, 52]. 
The applications are notably in reactions where the kinetic energy is so low that the recoil 
particle is stopped very close to the vertex of the event.

Magic Angle Spinning (MAS) NMR Enhanced by DNP
The use of DNP for the sensitivity enhancement of NMR has led to the systematic devel-
opment of new radicals, bi-radicals and tri-radicals that can be dissolved, together with the 
molecules under study, in solid form inside a MAS NMR probe [53]. The sample prepa-
ration involves dissolving the paramagnetic polarizing agent (PA) at RT in a glass-form-
ing solution, often glycerol-water, together with the molecules under study (analyte). The 
solvent matrix may be deuterated or partially deuterated. Alternative sample preparation 
techniques aim at reducing or eliminating the glassy matrix which dilutes the analyte mol-
ecules or structures to be studied; matrix-free approaches involve chemical binding of the 
paramagnetic molecule to the analyte structure, by introducing a ‘gluing’ intermediate mol-
ecule or by suitably modifying the paramagnetic or analyte molecule [53].

In the MAS DNP the sample is rotated by a small turbine driven by nitrogen or helium 
that is also cooling the sample. Operating around LN2 temperatures (down to 30 K with 
helium) and at very high magnetic fields up to 9 T and even above, the sample inside a rotor 
within a simple resonator cavity is fed from an EIO or gyrotron microwave source.

The MAS DNP based on solid effect uses narrow-line radicals of BDPA-type and of tri-
tyl-type. BDPA is soluble in polystyrene and it could, in principle, be used for the DNP of 
scintillation detectors. Its solubility in water is poor, but its derivatives sulphonated BDPA 
and sulphonamide BDPA are water soluble and they are used for DNP MAS spectroscopy 
[54]. Among the trityl-type radicals the OX063 and CT-03 were originally developed for 
EPR oximetry MRI based on Overhauser effect [55] at RT and in a low field. They are 
water soluble and are also successfully applied for the DNP at a high field ≥ 5 T.

In MAS DNP the nitroxide-based radicals and biradicals have been found to have EPR 
line widths and relaxation times suitable for cross-effect DNP. Here the biradicals in par-
ticular are highly efficient [53] and over hundred new radicals of the TEMPO family have 
been developed for these applications.

Dissolution DNP NMR Spectroscopy
The trityl family of triphenylmethyl-based radicals has been shown to work well also at 
5 T magnetic field, which has been applied for dissolution DNP [56]. Dissolution NMR 
uses DNP of glassy solid samples at low temperature (1 K) and in a very high magnetic 
field. The polarized sample is then rapidly transferred and warmed up in order to melt it 
before placing into the probe of an NMR spectrometer [57, 58]. The nuclear spin relaxation 
time remains sufficiently long to permit fairly long acquisition time of signals that may be 
enhanced by a factor of 104 over the equilibrium signal at RT.
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7.3 Irradiated Materials

There are two main motivations for preparing polarized target materials by generating 
radiolytic paramagnetic centers by irradiation:

(1) The method is likely to work with pure and hydrogen-rich materials that cannot dis-
solve paramagnetic dopants in liquid state.

(2) The target thus produced is likely to be radiation resistant, or at least can be regener-
ated by annealing at an elevated temperature in situ.

The generation of paramagnetic radicals by irradiation of solids was discovered by 
Zavoiskii in 1945 and this marked a breakthrough in radiation chemistry because detailed 
studies of the products with extended lifetime could be undertaken using EPR in organic 
materials. These have been reviewed in Ref. [59].

Two types of materials are susceptible to yield useful irradiated polarized targets: sim-
ple cubic crystalline solids and glassy solids consisting of simple molecules. The cubic 
structure is of interest because this may lead to a small anisotropy of the g-tensor and of 
the hyperfine tensor so that the resultant EPR linewidth in the solid is suitable for DNP. 
This is particularly important in the case of polycrystalline materials, because otherwise 
only a fraction of the crystallites would absorb microwave power and polarize. Ammonia 
and lithium hydrides belong to this category of materials, and they are used successfully 
in scattering experiments. Organic glasses belong to the second category, and recently 
UV-irradiated butanol containing ≤ 1% phenol was polarized to 1.4% at 1.5 K and 1.2 T; it 
was shown that the butyl free radicals generated in situ disappeared rapidly upon warming 
up of the sample [60]. This is likely to open up the UV photolysis for dissolution DNP 
enhanced NMR spectroscopy.

Irradiated single crystals do not need to cubic, although LiF and CaF2 which are best 
studied have a cubic structure.

All types of radiation can be used for producing radicals, although the yield of different 
types depends on the particle and energy used. Electrons and energetic photons lose their 
energy in an electromagnetic cascade which ionizes the material and causes some displace-
ments of atoms. Massive charged particles also give rise to electromagnetic cascades but 
are more effective in displacing atoms. Fast neutrons are particularly effective in displacing 
atoms and only give rise to electromagnetic cascades and ionization via charged secondary 
particles; their effectiveness in creating free charge is 10 to 100 times lower than that of 
protons. One may thus control the types and relative yields of paramagnetic centers by the 
choice of the particle and its kinetic energy.

In the following subsections, we shall discuss the preparation, irradiation, handling, DNP 
and other important properties of ammonia, lithium hydrides, other crystalline materials 
and organic materials. Materials with triplet-state paramagnetic molecules excited from 
the diamagnetic ground state by optical transitions are discussed also here, before con-
cluding with safety aspects related specifically with the chemical instability of  irradiated 
materials.
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7.3.1 Preparation of Ammonia Beads

Ammonia is a gas at room temperature and normal pressure and has normal boiling and 
melting temperatures of –33.35 °C and –77.7 °C. Two methods have been used for pro-
ducing beads of solid ammonia before irradiation: letting small droplets of liquid ammonia 
solidify on the meniscus of LN2 and slowly freezing liquid ammonia in a glass before 
crushing and selecting the size of the fragments.

The first method [61, 62] is similar to what is used for preparing solid beads of organic 
liquids doped with dissolved paramagnetic molecules. Ammonia gas from a pressurized 
cylinder is led to a condenser which terminates with a hypodermic needle. The condenser 
is cooled by flow of methanol from a bath with ‘dry ice’ (solid carbon dioxide, sublimation 
point −78.5 °C) or by flow of a coolant from a bath of a refrigerator. Suitable coolants in the 
latter case include methanol, ethanol, fluorinated hydrocarbons or silicone oil. By adjust-
ing the condensation pressure slightly above atmospheric pressure, droplets of 1.5 mm to 
2.0 mm diameter detach from the tip of the needle with intervals of several seconds to a LN2 
bath. The beads float on the meniscus of LN2 for several seconds until they solidify and cool 
below the film boiling temperature, at which point they may sink into the liquid. The drop-
ping rate must be adjusted so that only a few beads float at any time, in order to minimize 
the collision of a liquid droplet with a solid bead which results in the fusing of both together.

The resulting white polycrystalline beads are not perfectly round and some of them may 
shatter during manipulation. Shattered pieces can be separated by a suitable size sieve, 
after the possible large fused beads are separated by a larger size sieve. These operations 
are performed under LN2.

The density of the polycrystalline NH3 at liquid nitrogen temperature is 0.836 g/cm3, 
just above that of LN2 which is 0.8081 g/cm3. The polycrystalline beads have an effective 
density slightly lower than the single crystal density quoted. Convectional currents of the 
liquid N2 easily carry the ammonia beads; this does not facilitate their collection in a recip-
ient. A further difficulty is that the method of dropping results in electrically charged beads 
which repel each other and stick to the walls of the dewar and containers. The charge can be 
neutralized sufficiently, however, by using a source of negative ions close to the apparatus. 
Commercial dust removers and discharging devices work well; their effectiveness is easily 
tested by pointing the device to the bath where charged beads stick to the wall.

The above method of preparing ammonia is suitable for the production of large quanti-
ties of beads and, because little is lost in the process, it is also suitable for isotope labelled 
ND3, 

15NH3 and 15ND3.
The slow freezing method results in a transparent solid where the crystal size depends on 

the speed of solidification. Small samples can be prepared by the method of Cameron [63] 
in a test tube, immersed in a methanol dry ice bath, where ammonia gas from a cylinder is 
first condensed and then solidified after shutting off the flow of gas. The test tube is then 
transferred to a liquid nitrogen bath and broken. After separating the block of solid ammo-
nia from debris of glass, the sample is broken into smaller pieces by crushing through a 
metal screen with drilled holes and captured in a slightly finer mesh screen. The advantages 
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of this method are a slightly higher density and solidity of the pieces produced, and a higher 
thermal conductivity. Because of the irregular shape of the pieces, the surface-to-volume 
ratio is also higher than for spherical beads; this improves the heat transfer to the helium 
both in the case of evaporative cooling and in the case of cooling by a dilution refrigerator.

The slow freezing method has also been used for producing large quantities of solid 
ammonia target material [64] by liquefying 150 cm3 batches in an ethanol bath at –85 
°C, cooled by the flow of nitrogen gas passing through an LN2 bath. When shutting off 
the ammonia gas inlet, the liquid begins to solidify on the glass tube wall and its pressure 
drops. After reaching the triple point pressure of about 60 mbar, the tube is pressurized to 
500 mbar by argon gas. The resulting clear and transparent block of solid ammonia is then 
shock cooled to LN2 temperature by filling the tube directly with LN2, which causes the 
material to crack. Crushing and sifting to desired size is made under LN2, and the material 
is stored in LN2 until irradiation. The process yields 125 cm3 of 2 mm to 3 mm fragments 
from the 150 cm3 initial block and takes about 6 h for each batch. The material has a density 
of 0.853 g/cm3 at LN2 temperature; this can be compared with that derived from the lattice 
parameter a = 5.084 ± 0.001 Å, which yields the density 0.8619 g/cm3. The material is 
therefore likely to have a relatively large fraction of vacancies or voids, which are smaller 
than the wavelength of visible light.

7.3.2 Irradiation of Ammonia

Irradiation of solid ammonia at 77 K yields only ·NH2 radicals which result from the fol-
lowing reactions taking place fairly easily [34]:

NH NH e

NH NH NH NH

NH e NH H

NH H NH H .

3 3
–

3 3 2 4

4
–

3

3 2 2

→ ⋅ +

⋅ + → ⋅ +

+ → + ⋅

+ ⋅ → ⋅ +

+

+ +

+

Irradiation at 4 K or below may yield also ·H, NH3
+ and pairs of radicals which are stable 

up to a limit of concentration. The EPR lines of the NH2 radical with various nitrogen and 
hydrogen isotopes were discussed in Chapter 3.

The first DNP results [61] were obtained in a sample irradiated under LN2 by 580 MeV 
protons to an accumulated flux of 0.95.1015 protons/cm2, which is equivalent to a depos-
ited dose of 40 Mrad in the material. The initially white beads had after irradiation a pale 
violet color, which slightly faded under a prolonged storage of 6 months in LN2. The para-
magnetic spin density was estimated to be about 5 × 1018 cm–3 from the measured proton 
relaxation and polarization time constants, under the assumption that electron spin lattice 
time is similar to that in PD-Cr(V). The EPR line was centered at gav = 2.0090 (which is 
slightly higher than presently known, probably due to the calibration of the cavity wave-
meter which was used for frequency measurement) and had FWHM linewidth of about  
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5 mT, estimated from a bolometric spectrum at 0.15 K temperature and 2.5 T field. This 
sample yielded maximum polarizations of +90.5% and –93.6%, which immediately trig-
gered vivid interest among users of polarized targets in high-energy physics experiments.

The polarization build-up time increased 30% after 6 months storage, indicating a simi-
lar drop in the paramagnetic center concentration [65]. Polarization tests at 5 T in a dilution 
refrigerator indicated slow growth of polarization. The EPR spectrum at 5 T had an FWHM 
linewidth of 6 mT, suggesting that the main cause of broadening was hyperfine interactions 
with the nuclei of the ·NH2 radical.

The results were soon confirmed with samples irradiated at 77 K by neutrons in a reactor 
[66], at 1 K in 22.6 GeV electron beam [67], at 90 K in 70 MeV electron beam [68], at 90 K 
in 20 MeV electron beam [69, 70] and at 90 K using a 60Co source [63].

The irradiations at 90 K were performed in liquid argon because explosions of LN2 had 
occurred in some of the previous irradiations. This and other safety aspects of irradiations 
will be discussed in Section 7.5.

Irradiation in situ at 1 K [67] resulted in the disintegration of the target beads, prepared 
by dropping into LN2, into a white powder after an accumulated electron beam exposure 
of about 1.6 × 1015 e–. It was soon observed that beads prepared by the slow freezing 
method were more resistant against disintegration, and that irradiation at temperatures 
above 20 K does not cause the material to break up [71] while higher and faster polariza-
tion is obtained.

Härtel et al. [72] irradiated NH3 at 90 K using 20 MeV electrons with accumulated elec-
tron flux of 1017 cm–2. DNP at 0.5 K and 2.5 T yielded +66% and –64% polarizations, with a 
build-up time of 9 min to 70% of the maximum value. A first test in a beam also confirmed 
the hypothesis that the material is about three times more resistant to radiation damage than 
butanol doped with porphyrexide; furthermore, annealing at 120 K recovered the polariza-
tion completely.

The optimum radical concentration in NH3 was studied by the Bonn group [70] by 
performing DNP at 1 K and 2.5 T. Three samples were irradiated in the 20 MeV electron 
LINAC beam current of 2 × 1014 e–/s for 3 h, 6 h and 10 h and polarization build-up and 
relaxation times were measured. Comparison with PD-Cr(V) with known paramagnetic 
center concentration yielded the radical densities of 4.8 × 1019 cm–3, 6.1 × 1019 cm–3 and 
6.9 × 1019 cm–3 indicating that the density does not grow linearly with the dose at 90 K, 
in contrast with the finding that proton relaxation rate increases linearly with the dose 
received in situ at 1 K [73, 74].

The decay of the radicals in ammonia stored at 77 K also appears to be non-exponential 
[70]; an NH3 sample had a spin density of 12 × 1019 cm–3 1 day after irradiation, which 
decayed to 9.6 × 1019 cm–3 in 5 weeks and to 4.2 × 1019 cm–3 in 1.5 years. The decay of radi-
cals in ND3 appears to be slower, judging again from the polarization growth time constant 
which increased by a factor of only 2 after 2.5 years of storage in LN2 [70].

Irradiation with 250 MeV electrons [75] was carefully optimized for operation at 0.5 K 
and 2.5 T, on the one hand, and for 1 K and 5 T on the other. In both cases the optimum 
appears to be 1017 e– with a beam spot of about 1.5 cm diameter. Dose rate estimates were 
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not made, but uniformity of the irradiation was improved by returning the sample holder 
regularly. It was noticed that irradiation at a high current of 2 µA resulted in lower rad-
ical concentration than one at 1 µA, and 1.5 µA produced intermediate results; this was 
explained by the heating and annealing due to the higher currents [76].

The highly irradiated ammonia samples yielded 96% proton polarization at 5 T and 
1 K [77] which, combined with the significantly improved radiation resistance, meant an 
improvement of about 10 in the squared figure of merit P2I of polarized targets operated 
in high-intensity beams, when compared with operation at 0.5 K and 2.5 T. This is due 
to the higher tolerance to the beam heating at 1 K temperature, and will be discussed in 
Section 7.5.

First tests [72] of DNP in ND3 irradiated with electron fluence of 1017 cm–2 yielded 11% 
deuteron polarization at 0.5 K and 2.5 T; the same sample at 1 K and 2.5 T polarized only to 
1%. This interesting temperature dependence suggested using a dilution refrigerator, where 
+32% and –29% deuteron polarizations were obtained in the same field [69]. Furthermore, 
it was discovered that additional irradiation in situ at low temperature during the experi-
ment improved the material so that +40% and –44% polarizations were reached, and with a 
faster build-up. Radiation damage could be annealed, and further irradiation improved the 
material up to a photon fluence of 6 × 1014 cm–2.

Post-irradiation of ND3 was later found [78] to increase the deuteron polarization at 
least by a factor of 2 at 0.2 K and 2.5 T, with substantially decreased build-up time, so that 
values of 49% can be achieved. The same effect was observed at 1 K and 5 T even more 
dramatically: the deuteron polarization increased by a factor of at least 3 from 12% to 13% 
after pre-irradiation to over 40% after post-irradiation during operation in a high-energy 
electron beam [79].

Isotopic substitution of 14N by 15N does not substantially affect the DNP results of 
ammonia or deuterated ammonia [70, 79], although the hyperfine structure of the EPR 
line, discussed in Chapter 3, changes somewhat. The mechanisms of DNP in ammonia 
with different isotopic compositions, however, have been given several controversial inter-
pretations, which were discussed in Chapter 4. It is likely that the concentration of the 
paramagnetic centers and the radiation damage obtained in situ have a strong influence on 
the electron spin-lattice relaxation as well as cross-relaxation rates between the different 
spin species, probably due to lattice stress generated by interstitial radiolytic centers that 
are diamagnetic. The stress controls the electron spin dipolar relaxation and flip-flop rate, 
which, in turn, control the thermal contact with the nuclear spins and therefore the thermal-
ization of the nuclear spin species towards a common temperature.

7.3.3 Irradiated Lithium Hydrides

Lithium hydride has face-centered cubic lattice structure very similar to sodium chloride. 
It has a melting point of 680 °C and decomposes in contact with water. It has very slight 
solubility in alcohols. Its handling is not particularly difficult if humidity is well controlled. 
The density of lithium hydride with natural content of 7.42% of 6Li is 0.82 g/cm3.
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In 1966 Borghini [80] suggested that 6LiD might be a material where a high DNP of 
deuterons could be achieved, based on the relatively small EPR linewidth obtained in irra-
diated material. He listed the then known linewidths [81] for all isotopic compounds of 
lithium hydrides, as shown by Table 7.7:

It appears clearly that the linewidth is associated with the hyperfine coupling of the para-
magnetic electron with the lithium nucleus. This is due to a free electron trapped in a vacant 
site of a hydrogen ion, surrounded by lithium ions the nuclei of which have hyperfine inter-
action with the electron; such a paramagnetic impurity is called the F-center. Irradiation at 
low temperatures below 20 K produces these and the X2-centers [82], both of which have 
spin 1/2. The F-center has an isotropic g-factor close to that of the free electron, but a rather 
complex hyperfine structure due to the overlap of the wave function with nearest lithium 
nuclei and also with the hydrogen nuclei of the second shell. The spin-lattice relaxation 
time is obviously very long because of little coupling with the lattice owing to the absence 
of a g-shift and related anisotropy.

The X2-centers [82] (called also H-center) are interstitial H2- or D2-ions and have rela-
tively simple EPR spectra with some g-tensor anisotropy and hyperfine structure. The ion 
is also covalently bonded to the two H– ions at the ends of its bond axis.

Pairs of separated F- and H-centers are effectively produced by UV photons; typically, 
5 eV to 10 eV is required for this process. High-energy electrons and protons also produce 
such pairs due to the electromagnetic cascade, which is the main cause of energy deposit 
in the material. Energetic particles also produce damage to the cation sub-lattice which 
leads to complicated recombination and annealing effects due to overlapping cascades. 
Metallic clusters of lithium atoms can be seen in the EPR spectrum at high doses of ener-
getic particles.

Roinel and Bouffard [83] succeeded in 1977 in polarizing irradiated 7LiH at 0.6 K and 
6.5 T to such high values that Abragam et al. could observe first time the nuclear antifer-
romagnetic phase by the characteristic Bragg reflection in slow neutron scattering [84]. 
Polarizations P(H) = 95% and P(7Li) = 80% were reached after 2 d to 3 d of DNP, in a sin-
gle crystal of 5 × 5 × 0.5 mm3 size, irradiated at 77 K by an electron fluence of 1018 cm–2 of 
3 MeV electrons. The paramagnetic electron concentration was estimated at 2 × 1019 cm–3 
and they were identified as 7Li F-centers.

Subsequently Bouffard and coworkers [85] irradiated with 3 MeV electron fluence of 
2.25 ×1017 cm–2 sintered polycrystalline 6LiD platelets of 5 × 5 × 0.5 mm3 size using liquid 
argon as coolant, in view of improving the material performance in polarized targets. The 
EPR line was measured using the NEDOR technique, and the DNP tests were performed 

Table 7.7 Square roots of the second moments for the EPR linewidth  
in lithium hydrides [81].

Compound 7
 LiH 6LiH 7LiD 6LiD

EPR linewidth (mT) 3.06 1.43 2.85 1.01
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in 2.5 T, 5 T and 6.5 T fields using a dilution refrigerator operating at 0.2 K temperature. 
The free electron concentration of the F-centers was found to be 1.3 × 1019 cm–3 and the 
electron spin-lattice relaxation time was 1 s at 5 T and 6.5 T, and 2.5 s at 2.5 T; these are 
the initial NEDOR pulse recovery times, the final recovery being slower probably due to 
a distribution of different types of relaxing centers in addition to the pure F-centers. The 
nuclear spin-lattice relaxation results point in the same direction.

The NEDOR linewidths (FWHM) of 6LiD were 3.8 mT at 2.5 T, 5 T and 6.5 T, while in a 
sample of pure 7LiH it was 9 mT, as can be expected because the hyperfine splitting due to 
6Li must be about 2/5 times that due to 7Li as nearest neighbors of the F-center.

Roinel [86] continued to refine the sample preparation and DNP of 7LiF, 7LiH and 6LiD. 
It was observed that there was a difference in irradiating LiH and LiD samples submerged 
in liquid argon or just above the surface. In the first case the samples had red color, while in 
the second one they came out blue. The blue samples had relatively much faster polarization 
build-up, and the red ones were so slow that maximum polarization was not determined. 
The difference was believed to originate from the sample temperature during irradiation 
due to the different cooling conditions; samples cooled in the vapor phase clearly have a 
much lower heat transfer coefficient and therefore a higher temperature.

It was also noted that F-centers in LiF are stable at room temperature, whereas in LiH 
and LiD they were unstable at temperatures above 130 K. A fluence of 1017–1018 cm–2 of  
3 MeV electrons yielded a paramagnetic spin density of (0.5–2.5)·1019 cm–3, and it was 
noted that the DNP time constant scaled linearly with the electron spin-lattice relaxation 
time and inversely proportional to the electron spin density. The DNP results are summa-
rized in Table 7.8 from where the potential of lithium hydride as a polarized target material 
appears very clearly.

In lithium hydride the electron spin-lattice relaxation time varied between 1 s and 20 s 
and was found not to be an intrinsic property of the material. For lithium deuteride electron 
spin density 2 × 1019 cm–3 the electron spin-lattice relaxation time was 1.2 s and the nuclear 

Table 7.8 Results [86] of electron spin-lattice relaxation, DNP build-up time and maximum DNP 
for irradiated lithium fluoride and hydride samples of size 5 × 5 × 0.5 mm3. Only positive maximum 
polarization was determined. The values are typical for different samples, except for lithium hydride 
for which the best values are quoted. The 0.7 K sample temperature during DNP was obtained in a 
3He evaporation refrigerator, whereas 0.2 K was obtained in a dilution refrigerator. The 6LiD samples 
were polycrystalline, while all others were single crystals.

T1e TDNP Pmax(Li) Pmax(H/F) B T
Substance (s) (h) (%) (%) (T) (K)

7LiF 0.1 4 60 80 5.5 0.7
7LiH 1 40 94 99 6.5 0.2
6LiD 1 40 70 70 6.5 0.2
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spin-lattice relaxation time at 4.2 K was 120 min, both values unusually large in polarized 
target materials. Clearly the long nuclear spin-lattice relaxation time shows that the para-
magnetic centers were its main cause, a condition that leads to high nuclear polarization. 
Although the polarizing time in lithium deuteride was 40 h to 70%, a polarization of 68% 
was reached after 20 h of DNP.

Attempts to produce larger quantities of well-polarizing lithium hydrides by irradiation 
at higher temperature and with high-energy electrons [87, 88] met with problems such as 
metallic lithium, which showed up in the EPR signals, until a special argon cryostat was 
fabricated which allowed to perform irradiations at 180 K temperature. With a total flux of 
2 × 1017 cm–2, Durand et al. [89] succeeded in obtaining 6Li and D polarizations of 37% and 
43%, respectively, after 8 h of DNP at 2.5 T field in a dilution refrigerator, in a sizable sample. 
A 1.6 cm3 sample of irradiated 6LiD produced in this way was used by van den Brandt et al. 
[90] in a first experiment of medium-energy pion scattering with excellent results of +54% 
and –49% polarizations for both spin species. The polarization of the residual 7Li nuclear 
spins was also determined, with maximum values of +89% and –91%, in thermal equilib-
rium with the low-moment species within experimental accuracy. Two other experiments 
[91] used a 7LiH target of the same size, irradiated to electron fluence of ≈ 2 × 1017 cm–2  
at 180 K with 4He gas cooling [92]; the polarization of 7Li of +50% and –30% was reached 
using phase-locked Impatt diode microwave source adjusted in sequence to proton, 7Li and 
6Li solid-effect frequencies. Using the source in free-running mode, carefully temperature 
stabilized, the polarization growth was faster and P(7Li) of +49% and –38% was reached. 
The gain was particularly important in negative polarization speed and value.

The setup consisted of a dilution refrigerator and a 2.5 T magnet of a homogeneity not 
better than 3 × 10–4 over the sample volume. The polarizing time was 2 d to 3 d, but 2/3 of 
the final value was reached in 16 h.

Similar values were reported by Jarmer and Penttilä [93] for 7LiH samples irradiated to 
integrated fluences of (0.5–2.1)·1017 cm–2 with 30 MeV electrons at temperatures between 
180  and 200 K. In all cases polarization growth was rather slow and compatible with ear-
lier results in similar conditions.

Goertz et al. [94] studied the EPR spectra and DNP in samples irradiated using 20 MeV 
electrons to (1–4)·1017 cm–2 fluence at 90 K to 200 K temperatures (pre-irradiation) and 
post-irradiated in situ during DNP at 1 K temperature. Some samples were also annealed 
at room temperature after pre-irradiation. Samples irradiated at the best temperature of 
180 K with electron fluence of 1017 cm–2 show the following features in their EPR line: 
7LiH has 5.6 mT FWHM line consisting of a main line at g = 2.00 and a smaller satellite at 
g = 2.05, probably due to impurities. 6LiD and 6LiH show FWHM of 3.0 mT and 3.3 mT, 
respectively, with a superposition of a broader main line due to F-centers and a narrower 
(0.5 mT) line due to metallic clusters, both centered at g = 2.00. These numbers are in fair 
agreement with the second moments given in Table 7.7 and agree with the interpretation 
that they are due to F-centers.

Goertz et al. [94] also observed that samples irradiated at a temperature of 160 K could 
be polarized twice faster and yielded a higher polarization if they were annealed at room 
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temperature for 5 min. The EPR line also became more intense and narrower, both by a 
factor of about two. This was interpreted as a change in the atomic structure of the F-centers. 
Studies of the saturation of the EPR spectrum indicated that it must originate from several 
different types of F-centers with superposed lines but different relaxation times. Annealing 
at room temperature would then cause the F-centers to migrate and to form clusters, which 
is  favorable for DNP. Irradiation at high enough temperature enables this to happen already 
during the process, but if temperature is increased above 190 K, recombination of the 
F-centers may reduce their yield. This explains plausibly the rather narrow optimum of the 
irradiation temperature, and also the gain in the speed of DNP, which is most likely due to 
the faster spin-lattice relaxation time of electron spins in clusters with exchange narrowing.

The EPR spectra of 6LiD F-centers at 2.5 T field was measured by Heckmann et al. using 
their EPR spectrometer with a tuned Fabry–Perot resonator (see Chapter 3); their result for 
the FWHM linewidth is 1.8 mT [95], which agrees with that measured at 0.3 T and shows 
clearly the hyperfine structure with 2NI + 1 =13 equally spaced lines with the right inten-
sity ratios. This is also in better agreement with the width of 1.5 mT reported in Ref. [85].

Post-irradiation in situ was performed in 1.2 GeV electron beam at 1 K and 2.5 T. A 7LiH 
sample was pre-irradiated in standard conditions and yielded 11.5% proton polarization 
with 50 min build-up time to 63% of the ultimate polarization value [94]. At a fluence 
of 1014 e–/cm2 the maximum polarization increased to 14.5% and the build-up time was 
reduced to 8 min. These remained the same until the run was stopped at an accumulated flux 
of 5 × 1015 cm–2. Deuteron polarization in 6LiD showed a similar reduction in DNP build-up, 
but the maximum polarization remained constant at about 12% under the same conditions.

Clearly the low-temperature irradiation speeds up the electron spin-lattice relaxation, 
which is reflected directly in the speed of DNP and is theoretically easily understood by 
the models of Chapter 4. Due to the symmetry of the surroundings of the F-center and con-
sequently the absence of a g-anisotropy and shift, the spin-lattice coupling remains very 
small. Lattice stress, due to damage which does not anneal at 1 K, may lift the symmetry 
entailing improved coupling with the lattice phonons and faster spin-lattice relaxation. This 
happens because the lattice stress directly affects the lattice potential terms of Eq. 3.72 and 
therefore the electron spin-lattice relaxation time due to the direct process.

Goertz et al. [94] succeeded in obtaining in 6LiD deuteron polarizations exceeding 50% 
at 0.2 K and 5 T, and in 6LiH at 0.2 K and 2.5 T proton polarizations exceeding 40%, both 
with reasonable build-up times of 4.4  and 1.4 h, respectively. These two materials have 
been used in many high-energy physics experiments by this writing.

The lithium hydrides are also useful in high-intensity beams when operated at 1 K and 
5 T, where –32% deuteron polarization was obtained in 6LiD [96]. This target, prepared by 
crushing and sieving the sintered polycrystalline starting material, was operated in SLAC 
E155 experiment in high-intensity electron beam. The targets were pre-irradiated at 183 K 
using 30 MeV electrons with a total fluence of 3.7 × 1017 cm–2 on the sample container 
of 20 mm diameter. Such a target was exposed to the 50 GeV/c beam with 80 nA cur-
rent during E155. The maximum polarization increases and the DNP speed improves up 
to an electron fluence of 5.0 × 1015 cm–2, similar to the results with deuterated ammonia 
in the course of the experiment E143 using the same target set-up, but with the usable 
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fluence about five times higher for 6LiD [96]. During the beam exposure the optimum fre-
quency for negative polarization was 140.310 GHz in the beginning, constantly increasing 
to 140.320 GHz at the end, suggesting that the in situ irradiation at 1 K caused permanent 
material damage that increases the lattice stress, which, in turn, increases the g-shift and 
therefore shortens the spin-lattice relaxation time, similar to ammonia targets.

The disadvantage of the 6LiD in comparison with ND3 is its slower DNP speed, probably 
due to the small g-shift of the F-center used for DNP. The modulation of the microwave fre-
quency was not tried during E155; it would be interesting to know if it could help with the 
EPR line the main broadening of which is due to the hyperfine interactions of the F-center 
with the surrounding six nearest Li nuclear spins.

6LiD was also used by the COMPASS collaboration in their large target set-up with two 
or three target cells operated in 2.5 T field and cooled by a dilution refrigerator [97–100]. 
Using DNP with frequency modulation, maximum deuteron polarizations of +57% and 
–53% were reached during the run of 2003, as averaged over the target cell volumes. The 
two- to three-cell upgrade was made in 2006 [101].

The 6LiD target material of COMPASS was prepared by reacting enriched 6Li with pure 
deuterium gas in a furnace operated between 700 K and 1100 K temperature. The sintered 
polycrystalline material was cut into pieces passing through a sieve of 2 mm, with a den-
sity of 0.84 g/cm3. These were irradiated by 20 MeV electrons of the Bonn synchrotron 
injector linac with total electron fluence of 2 × 1017 cm–2 at 190 K temperature [97]. The 
EPR spectra of the produced F-centers were recorded using the V-band Fabry–Perot inter-
ferometer showing the 13-line hyperfine spectra that yield the density of 2 × 1019 g–1 for 
the centers. The low density, combined with the narrow EPR line, result in a slow growth 
of DNP. However, by using microwave power and frequency optimization combined with 
microwave frequency modulation, the high final polarizations were reached in all target 
cells in less than two weeks [97]. Clearly this makes the use of field rotation techniques 
vitally important in order to suppress false asymmetries in the experiment.

7.3.4 Other Crystalline Inorganic Materials

Early work on DNP with inorganic crystals was reported on LiF containing F-centers. 
Subsequently irradiated 6LiD, CaF2 and Ca(OH)2 were studied; this work was briefly 
reviewed by Henderson in [82]. In these simple cubic ionic crystals, ionizing radiation below 
20 K produces only F-centers and X2

–-centers (also called H-center); the former is an anion 
vacancy trapping a free electron, whereas the latter is an interstitial molecular ion occupying 
a single anion site. In LiF the ion is F2

–, for example. They are produced in F-center/H-center 
pairs at rather low radiation energy, for example, by UV radiation. The wave function of the 
trapped electron extends out over the neighboring nuclei, generating hyperfine structure. 
The X2

–-ion is also covalently bonded to the other two X–-ions at the ends of the bond axis.
The F-center ESR spectrum is quite complex, even though S = ½ and the g-value is 

isotropic and very close to the value of free electron. The complexity arises from the dif-
fuseness of the electron wave function which spreads over many shells of nuclei. In 7LiH, 
for example, the first shell contains N = 6 equivalent Li+ ions, and since 7Li has I = 3/2, 
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there are 2NI + 1 = 19 lines with intensity variation (at high temperature) 1:18: … :18:1 
determined by the number of ways compounding the total nuclear spin. The sequence is 
that of the binomial coefficients obtained from Pascal’s triangle, which was described in 
Section 3.2.2 and in Ref. [102].

The second shell interaction with 12 H nuclei with I = ½ gives a 13-line splitting of each 
of the lithium hyperfine lines. The net result is an inhomogeneously broadened line, with 
some resolved structure, which is strongly anisotropic. The spin-lattice relaxation time 
around 1 K is in the range of 10–100 ms.

The X2
− -centers have relatively simple ESR spectra, which show g-tensor anisotropy 

and hyperfine structure. There are discrete hyperfine splitting lines due to the dominant 
interaction from the two nuclei of the X2

− radical. Each of these lines is however inhomo-
geneously broadened by weaker interactions with the neighboring ions. The spin-lattice 
relaxation time is shorter than that of the F-centers: it is in the range of  0.1 ms to 1 ms. 
Thus, the saturation phenomena may be very different.

The F-center/H-center pairs can be produced by low-energy radiolysis, for example, by 
UV radiation; only 5 eV to 10 eV may be required for a pair. X-rays are also efficient for 
producing such pairs. Electrons and protons also produce these pairs, because each electro-
magnetic cascade involves numerous X-rays. Energetic protons and neutrons may damage 
the lattice more substantially and yield more complex paramagnetic defects.

Beyond the lithium hydrides, high DNP has been reported in calcium fluoride CaF2 and 
lithium fluoride LiF containing F- and H-centers, and in calcium hydroxide Ca(OH)2 con-
taining molecular O2

− -centers (S = ½) [82].
The results of DNP in irradiated lithium hydrides were reviewed in Section 7.3.3. The 

DNP of hyperfine nuclei was discussed in Section 4.3.

7.3.5 Organic Glassy Materials

The first test with irradiated butanol were made in University of Liverpool4 with the pur-
pose of better understanding the radiation damage mechanisms due to radiolytic paramag-
netic centers. An undoped butanol sample was placed in a 4 GeV bremsstrahlung beam, 
and DNP was made at 1 K and 2.5 T while the material was irradiated in situ. It was found 
that the polarization increases linearly with dose, reaching values of +7% and –6% after a 
dose equivalent of the dose, which would reduce the polarization to 0.75 times its initial 
maximum value in a material normally doped with porphyrexide. The proton relaxation 
time was 1,500 s before irradiation and 550 s at the end. The material was then annealed in 
the same way as the doped material. The proton relaxation time was found to have returned 
to its initial value while the DNP did not appreciably change.

A further small irradiation was possible, and it was found that polarization continued to 
increase with dose until the test had to be stopped; the polarization reached at that time was 
8% and appeared to continue rising with dose.

A plot of polarization against microwave frequency after the anneal showed a shape and 
width similar to that for an undamaged sample with porphyrexide but shifted 0.2% lower 
4 B. Craven, Thesis, University of Liverpool (1973).
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in frequency, suggesting that the non-annealable centers have a g-value of approximately 
2.001. When the plot was added to that of an undamaged doped sample, the result was in 
excellent agreement with that obtained for damaged normally doped samples, both with 
respect to shape and absolute size.

Butanol samples were subsequently irradiated with different methods, but the results 
were hardly encouraging [67, 103] because 12% proton polarization at 0.5 K and 2.5 T was 
the best result, and the evidence for continued growth of the polarization with dose was 
less clear. It was concluded, however, that it is about seven times more efficient to irradiate 
at 4 K than at 77 K.

Normal and deuterated 1-butanol beads cooled by liquid argon at 87 K were irradiated 
with 20 MeV electrons of the Bonn injection Linac to an electron fluence of 1015 cm–2. It 
was observed that the yield of paramagnetic centers was about twice higher when compared 
with inorganic materials [104]. Two samples of deuterated 1-butanol reached 1 × 1019 g–1 
and 2 × 1019 g–1 electron spin densities. DNP at 1 K and 2.5 T confirmed earlier findings, but 
subsequent DNP tests in 2.5  and 5 T fields, cooled by a dilution refrigerator at about 0.2 K 
temperature, yielded –55.1% and –70.8% maximum deuteron polarizations, respectively 
[104]. The higher polarization was reached in the sample with higher spin density, as can 
be expected.

Borghini [80] reviewed ESR tests with irradiated polyethylene samples displaying three 
types of radicals, with different annealing temperatures, all above room temperature. At 
that time no irradiation tests were known at lower temperatures, and the sample character-
istics may not have been studied well enough.

7.4 Materials with Optically Excited Triplet-State Paramagnetic Molecules

Ultraviolet irradiation can excite some molecules in triplet states which exhibit paramag-
netism. Borghini [80] noted that naphthalene (C10H8) dissolved in 1,2,4,5-tetramethyl 
benzene ((CH3)4C6H2 or durene) has in the triplet state a spin Hamiltonian [105], which 
might be suitable for DNP. He also noted that if nuclear spin relaxation is mainly caused 
by the excited paramagnetic centers, relatively low concentrations of the excited mol-
ecules can be used because they appear and disappear randomly everywhere in the 
material. Deuteration of the naphthalene molecule would reduce the 1.2 mT line-
width further; this also extends the lifetime of the excited molecule by a factor of 10. 
van Kesteren, Wenkebach and Schmidt [106] have obtained 42% proton polarization in flu-
orene C13H10 single crystals doped with deuterated phenanthrene C14D10, which was photo-
excited in triplet state using ultraviolet light from a 100 W mercury arc lamp, filtered using 
nickel and cobalt sulphate solution and Schott UG-5 glass filter. The experiments were 
performed at 1.4 K temperature and 2.7 T field; the resonance frequencies of the excited 
paramagnetic triplet coincide at 75 GHz when the crystal is suitably oriented. Single crys-
tals were grown from the doped melt of fluorene. The high polarization is reached in about 
3 h when using magnetic field modulation.

Optically induced paramagnetic triplet state in phenantrene-d10 molecules [107] was 
used for DNP with 75 GHz microwaves at 2.7 T field. Using this method, deuterons in 
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single crystal fluorene-d10 were polarized to 3.7 × 10–3 and then aligned to –3.8 × 10–3 
using adiabatic fast passage [107].

7.5 Safety Aspects of Irradiated Materials

In the course of irradiations of target materials, several incidents have taken place. It is 
believed that these are due to liquid nitrogen which was used for cooling the material, or 
was introduced in the argon cryostat when moving samples from storage dewars to the 
irradiation cryostat.

In the first case, an ammonia sample was irradiated in the CERN Synchrocyclotron 
behind an absorber block of a 580 MeV proton beam in an open glass dewar filled initially 
with LN2. The dewar exploded when about two-third of the liquid had boiled off due to 
the beam heat load. The dose deposited to LN2 was much larger than that received by the 
sample because of the unfocused beam. A previous irradiation with a focused primary 
beam had been carried out without incidents. It was suggested by some specialists that the 
explosion was due to oxygen-nitrogen compounds formed in the radiation field, and that it 
could be avoided by using liquid nitrogen of very high purity.

The next irradiation was carried out using 99.999 pure nitrogen in a closed dewar with 
extreme precautions to avoid oxygen contamination. The irradiation was completed with-
out incidents, but when the ammonia sample cup was extracted from the dewar, the cup 
filled with ammonia and LN2 exploded immediately after entering in contact with air. This 
led to the conclusion that LN2 alone developed unstable molecular forms during irradia-
tion, and to the ban of LN2 in the subsequent irradiations.

After irradiation of ammonia beads submerged in liquid Ar by 20 MeV electrons from 
the Bonn synchrotron injector, flames have been observed when removing the irradiated 
material batch from the cryostat. No explosions were reported in such cases. It is thought 
that this is due to residual N2 on the beads introduced upon the transfer of the target batch 
from LN2 storage vessel into the irradiation cryostat.

Beyond the chemical risks due to irradiation, it is also important to observe all radio-
protection precautions if the irradiated material, coolant and irradiation equipment contain 
heavy elements that may be activated by their interaction with the beam particles.

7.6 Crystalline Materials with Substitutional Paramagnetic Ions

The first successful polarized target material was lanthanum magnesium double nitrate 
La2Mg3(NO3)12·24H2O (LMN) doped with Nd3+ ions [108]. Earlier work [109, 110] 
at lower fields clearly indicated that at high field and low temperature the ‘solid effect’ 
method should produce nearly complete proton polarization, and indeed Schmugge and 
Jeffries [108] succeeded in obtaining 72% proton polarization in a sizable crystal in 1.95 T 
field and 1.5 K temperature.
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The LMN crystal was grown [108] from saturated aqueous solution in a desiccator at 
0 °C temperature, using La(NO3)3·6H2O and Mg(NO3)2·6H2O in stoichiometric amounts, 
and Nd2O3 to yield Nd3+ ions 1% relative to La3+ ions. The crystals grow in flat hexagonal 
plates. The high polarization was obtained using Nd enriched to 98.5% in even-even Nd 
isotopes.

Borghini [80] lists diamagnetic salts in which similar paramagnetic ions can be intro-
duced by the crystal growth method. We reproduce the list in Table 7.9.

Borghini [80] also lists g-values of some suitable ions, reproduced here in Table 7.10. He 
points out that all but the LMN are difficult to prepare because only small crystals can be 
obtained or because of widely different solubilities. On the other hand, only special appli-
cations may require such crystals, because of their poor hydrogen content.

One such application is in ‘spin refrigerator’ polarized targets, which will be discussed 
in Chapter 10. A particularly suitable material is yttrium ethylsulphate doped with Yb3+ 
ions [111].

Nuclear physics experiments with polarized nuclei heavier than the hydrogens have, in 
principle, a wide choice of crystalline materials available. Among first DNP materials was 
ruby Al2O3 with Cr3+ ions replacing some of the Al3+ ions [112, 113]. The EPR line has 
four resolved components in high field due to the spin 3/2 of the Cr3+ ion; consequently 
the understanding and analysis of the results is complicated. Polarization enhancements of 
27Al nuclei by a factor of 31 were reached at 1.7 K and 0.9 T field [114]. A simpler system 
of Ce3+ ions with spin 1/2 appears in CaWO4 [115], as well as Er3+ ions in BaF3 [116]. The 
Er3+ ion with spin 1/2 in BaF3 was found mostly (90%) with trigonal symmetry with four 
main lines at g|| = 5.94 and g⊥= 7.13, but also 10% in cubic symmetry. Weak hyperfine lines 
due to 23% of 167Er were also observed.

139La target with 20% polarization has been prepared using LaAlO3 crystals doped with 
Nd3+ [117, 118].

Table 7.9 Hydrogen-rich diamagnetic salts in which magnetic rare-earth ions may replace non-
magnetic ions. The last column gives the simplified free-proton dilution factor of Eq. 7.11.

Substance Chemical formula fp

Methylammonium aluminium sulphate (CH3NH3)Al(SO4)2·12H2O 0.064
Ammonium aluminium sulphate (NH4)Al(SO4)2·12H2O 0.062
Yttrium ethylsulphate Y(C2H5SO4)3·9H2O 0.056
Lanthanum ethylsulphate La(C2H5SO4)3·9H2O 0.051
Yttrium acetate Y(CH3COO)3·4H2O 0.050
Potassium aluminium sulphate KAl(SO4)2·12H2O 0.048
Cesium aluminium sulphate CsAl(SO4)2·12H2O 0.042
Lanthanum magnesium nitrate La2Mg3(NO3)12·24H2O 0.031
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Abragam et al. [119] have polarized 19F nuclei in CaF2 single crystals doped with U3+ 
and Tm2+ ions to 90%. Such a material has been used in the studies of nuclear magnetism 
at ultralow temperatures, but could also be useful for nuclear physics experiments.

7.7 Radiation Resistance of Polarized Targets

The main effects of in situ irradiation of a polarized target upon the DNP arise from the 
creation of paramagnetic free radicals, and from the build-up of lattice stress, which modi-
fies the g-factor of paramagnetic centers and shortens their spin-lattice relaxation time. The 
created paramagnetic centers usually deteriorate DNP, whereas the shortened relaxation 
time sometimes improves DNP.

Other effects of radiation include the creation vacancies and radiolytic impurities which 
are not paramagnetic. Among these, H2 is the most common, with a yield of several mol-
ecules for each 100 eV of deposited energy in alcohols and diols. As 75% of the H2 mol-
ecules are ortho-hydrogen with J = 1 and their conversion to the ground state is slow, 
substantial leakage relaxation may result because of the rapid spin-lattice relaxation due 
to the coupling of the rotational and spin degrees of freedom. Also CH4, CO2 and CO are 
formed with yields around 1 molecule per 100 eV. Such impurities cause important stress 
in the lattice, which improves the coupling of the paramagnetic centers with the lattice pho-
nons, and which may ultimately lead to the mechanical destruction of the lattice or matrix.

Table 7.10 The g-factors of some magnetic rare-earth ions in selected diamagnetic crystals. The 
 g-tensor is axially symmetric in trigonal crystals and can therefore be characterized by g-values with 
field parallel and perpendicular to the crystal symmetry axis, whereas in triclinic crystals the three 
diagonal values can be different.

Diamagnetic substance; crystal symmetry Ion g|| g⊥
Lanthanum ethylsulphate; trigonal Nd3+ 3.53 2.07

Er3+ 1.47 8.8
Dy3+ 10 0

Yttrium ethylsulphate; trigonal Ce3+ 3.81 0.20
Nd3+ 3.66 1.98
Er3+ 1.50 8.77
Yb3+ 3.328 0.003

Lanthanum magnesium nitrate; trigonal Nd3+ 0.36 2.70
Dy3+ 4.28 8.92
Er3+ 4.21 7.99

Ion gx gy gz

Yttrium acetate; triclinic, Dy3+ 13.60 3 4
Yb3+ 4.57
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The decay of maximum polarization during DNP in a beam is assumed to follow

 P Pe ,0
/ A( )Φ = −Φ Φ  (7.19)

where P (Φ) is the polarization after irradiation with particle flux Φ, P0 is the maximum 
polarization before the beam exposure starts and ΦA is the characteristic flux for the polar-
ization to decrease by 1/e. The subscript A refers to the fact that most of the damage created 
can be repaired by annealing the material at a suitable higher temperature. The irradiation 
is usually carried out only to the particle flux of some 1014 cm–2 before the anneal; tests 
with higher fluxes on butanol, for example, indicate that the decay of polarization slows 
down after about 4 × 1014/cm2 in the case of protons [120]. Within errors ΦA is constant 
up to an accumulated fluence of 2 × 1014 cm–2 and is independent of the beam intensity up 
to 3 × 109 cm–2 · s–1. At higher beam intensities the beam heating begins to influence the 
polarization and requires turning off the beam for the study of the influence of the radiation 
damage alone.

Repeated annealing of the target between beam exposures recovers the polarization 
immediately after annealing to a value, which is lower than P0 and is parametrized by

 P P P P e ,A A0
/ NA( ) ( )Φ = + − −Φ Φ  (7.20)

where PA is the asymptotic value of the polarization after annealing at very large flux Φ, and 
ΦNA is the characteristic flux for the non-annealing damage to reach 1/e of its asymptotic 
value. The characteristic fluxes ΦA and ΦNA depend on the particle and its energy, on the 
material itself and on the sign of the polarization.

The studies of radiation damage are often difficult to interpret because the beam profile 
may be such that the dose is not homogeneous on the target. Rastered small beams are 
better in this respect than larger beams which usually expose the central part of the target 
much more heavily than the sides. If the NMR coil is wrapped around the target, it mea-
sures the polarization predominantly from the outer layer, which is less exposed. Therefore, 
the quoted polarization values must be taken with some precautions, although mostly the 
conclusions are not significantly changed qualitatively. The spin-lattice relaxation will 
exhibit a clear non-exponential decay if the material is not homogeneously exposed; this 
can sometimes be used for estimating the dose homogeneity and the error made in the 
measurement of the polarization.

Chemically Doped Hydrocarbons

A systematic study by Fernow [120] with ethanediol-Cr(V) and propanediol-Cr(V) in a 
10 GeV proton beam is summarized in Table 7.11. The ethanediol sample reached 81% 
polarization, and propanediol yielded 76% polarization before damage.

As can be seen from the data, positive polarization is less sensitive for radiation damage 
in all diol samples, but it suffers a larger asymptotic damage at high fluxes. Ethanediol 
seems to degrade slightly more slowly than propanediol, but the effect might be masked by 
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different concentrations of the paramagnetic Cr(V) centers. The annealing was performed 
by heating the target to 160 K to 180 K temperature in 8 min to 13 min and then rapidly 
cooling back to the operating temperature. The diol targets are exceptional compared with 
other glassy hydrocarbons in that the material does not devitrify when heated up to this 
high temperature.

The annealing is known to deplete the trapped electrons completely, and most other 
paramagnetic centers are also believed to be reduced to a rather low concentration. The 
non-annealable damage would appear to be due to such radical species that are stable upon 
annealing; this is supported by the measurement of the optimum microwave frequency in 
an ethanediol sample before and after radiation damage, and immediately after annealing 
at 143 K temperature [120]. The maximum positive polarization was found at the same 
frequency for all three cases within experimental error, but the maximum negative polar-
ization after annealing was obtained at a frequency about 25 MHz higher than the optimum 
frequency before irradiation. The optimum negative frequency of the radiation damaged 
sample was about 75 MHz higher than that before damage.

Fernow also studied the radiation damage of various isomers of butanol with water and 
porphyrexide [120]. The characteristic flux ΦA is larger than that for the diols, and the neg-
ative polarization resists better radiation than positive, in contrast with the diols. The dam-
age remaining after annealing was not investigated. Annealing of butanol must be made 
at a temperature below 140 K in order to avoid the crystallization of the paramagnetic 
impurity, and this may leave more of the radiolytic paramagnetic centers in the materials 
after annealing.

The radiolytic paramagnetic centers in butanol can also be ‘bleached’ by light which 
removes most of the visible coloring [123]. It has been observed that this can be made by 
shining light via a light guide or waveguide. Some of the centers, however, may be stable 
against this and require thermal annealing.

Table 7.11 Characteristic proton fluxes ΦA and ΦNA for the annealing and non-annealing radiation 
damage, and the asymptotic polarization degradation for large fluxes, from Ref. [120]. The target 
was operated at 0.5 K and 2.5 T, cooled by a 3He refrigerator. ED = ethanediol with 8 × 1019 spins/cm3 
Cr(V); PD = propanediol with 11 × 1019 spins/cm3 Cr(V); BuOH-PX = 1-butanol with 5% water and 
1% of porphyrexide. Other data are also shown for comparison: 1 from Ref. [121], temperature 1 K; 
2 from Ref. [122], proton energy 24 GeV.

ΦA (+) ΦA (–) ΦNA (+) ΦNA (–)
Material (1014/cm2) (1014/cm2) (1014/cm2) (1014/cm2) P 

+
A/P 

–
0 P –

A/P –
0

ED-Cr(V) 2.33±0.20 1.75±0.15 0.76±0.16 0.80±0.15 0.69±0.03 0.89±0.02
ED-Cr(V)1 1.64±0.10 1.82±0.17
PD-Cr(V) 1.24±0.27 0.94±0.10 0.80±0.25 1.00±0.30 0.73±0.04 0.90±0.04
PD-Cr(V)2 2.00±0.25 1.60±0.20
BuOH-PX 2.2±0.5 4.5±1.0
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The nuclear spin-lattice relaxation time is shortened by radiation damage; in the samples 
studied in [120] this amounted to about 25% in ethanediol and 15% in propanediol before 
annealing. This can be partly recovered; in butanol, for example, the relaxation time is 
some 5% longer after an anneal at 120 K [123]. The working life of the target, however, 
cannot be infinitely extended because of the non-annealing damage, which requires chang-
ing the material after about 10 anneals.

Irradiated Ammonia

Irradiated ammonia is the preferred material for polarized targets in high-intensity beams, 
because the radiation damage followed by anneal results in the same radical NH2·, which 
is formed during the primary irradiation. It has also turned out that the characteristic flux 
ΦA is very much higher for ammonia than for chemically doped hydrocarbons, and that 
annealing after irradiation not only restores the original polarization, but in many cases 
improves it.

The first systematic damage studies were made at 2.5 T with protons by Crabb et al. [68] 
and with electrons by Althoff et al. [124]. In the first case a 3He evaporation refrigerator 
was used, but 4He was added because it was found that much higher heat loads could be 
tolerated and therefore higher microwave power could be used. In the electron beam stud-
ies, the samples were cooled with a 4He evaporation refrigerator.

The resistance against proton beam damage turned out to be some two to three times 
better for ammonia than for butanol-porphyrexide [68], and annealing at 90 K temperature 
recovered totally the polarization up to the total number of 2.5 × 1016 protons through 
the target of 2.9 cm diameter. The accuracy of the damage constant was limited by the 
rather small exposure, poor knowledge of the beam profile and lack of optimization of the 
microwave frequency. Later experience at 1 K and 5 T shows that the polarization can be 
recovered by anneal up to a total flux of about 1017 protons through the target; beyond this 
value the polarization continues to decay despite annealing [76].

The electron beam studies revealed that the loss of maximum polarization is non- 
exponential both in butanol and in ammonia. The most interesting findings, however, were 
that the ammonia polarization did not converge towards zero but towards a reasonably high 
value at very high doses [124]. The characteristic fluxes are given in Table 7.12, where it 
appears clearly that the initial decay agrees with the measurements using protons, but the 
subsequent decay is very much slower. In these measurements the microwave frequency 
was optimized during the run.

The polarization, microwave frequency, polarization time constant and relaxation time 
were determined for positive polarization at several doses; these are shown in Table 7.13. 
It is evident that the electron spin resonance line broadens substantially due to the radicals 
created by the electron beam irradiation, and that the electron spin-lattice relaxation time 
becomes at the same time shorter. The non-exponential relaxation of the proton polariza-
tion is probably due to spin diffusion, which becomes visible at these short time constants 

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108567435.008
https://www.cambridge.org/core


328 Polarized Target Materials

at 1 K temperature and at the electron spin concentration, which was initially of the order 
of 1019 cm–3 based on the spin-lattice relaxation time.

The best annealing temperature of NH3 turned out to be 75 K to 80 K [124]. In a sample 
irradiated in situ without pre-irradiation, annealing at 75 K to 80 K yielded proton polariza-
tions around 45%, clearly in excess of the values obtained with the samples with pre-irra-
diation only at high temperature (90 K).

The radiation damage characteristics of deuterated ammonia ND3 are qualitatively sim-
ilar to that of NH3 at 1 K, with the main difference that the ESR line broadening is more 
dramatic because the width only after pre-irradiation is much smaller in comparison with 
NH3 [124]. The behavior at 2.5 T and 0.2 K, however, revealed another interesting feature. 
The sample which yielded initial polarizations of +31% and –29% after pre-irradiation 
polarized up to +40% and –44% after in situ photon irradiation to about 15 × 1014 cm–2 [69]. 
Subsequent irradiation showed a resistance against damage about 10 times higher than that 
of deuterated butanol in the same conditions. The polarizing time to 0.7·Pmax was 40 min 
for ND3, which was slower than the value ≈15 min for butanol-d10 in the same conditions.

The characteristic flux for the loss of polarization in NH3 at 1 K and 5 T is even better than 
at 0.5 K and 2.5 T. Proton beam irradiation yielded the initial value ΦA = 40 × 1014 cm–2 up to 
1015 cm–2 total flux [76]; the subsequent decay is slower with ΦA = 130 × 1014 cm–2. These 

Table 7.13 Maximum proton polarization Pmax, optimum microwave frequency fopt, polarization 
growth time to 0.7·Pmax and proton spin-lattice relaxation time T1 initially (i) and after decay to 1/e of 
the initial polarization (f), for irradiated NH3 [124].

Dose Pmax fopt T0.7 T1(i) T1(f )
(1014 e/cm2) (%) (GHz) (min) (min) (min)

0 36 70.004 5.8 18.5 39.0
7 28 69.975 – 9.8 22.0
20 25 69.945 2.5 7.5 16.5
33 25 69.935 1.5 6.3 13.3

Table 7.12 Characteristic electron flux for the decay of maximum 
proton polarization to 1/e during electron beam irradiation at 1 K and 
2.5 T [124]; comparison with ammonia and butanol.

Material Total flux (1014 cm–2) ΦA (1014 cm–2)

NH3 0–2 10
2–9 41
9–32 300

BuOH-PX 0–2 3.8
2–6 6.6
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are in agreement with the earlier results [73] and with the electron beam damage results 
ΦA = 70 × 1014 cm–2 initially and ΦA = 130 × 1014 cm–2 after a dose of about 1015 cm–2 [79]. 
These characteristic fluxes are same for both polarizations in NH3, whereas in ND3 in the 
same conditions the decay is much slower and asymmetric, with ΦA(+) = 140 × 1014 cm–2  
and ΦA(–) = 250 × 1014 cm–2 [79]. Similar to 2.5 T and 0.2 K, the deuteron polarization in 
ND3 increases with in situ dose after each anneal, whereas the proton polarization in NH3 
returns to the same level as without irradiation in situ.

The difference between the optimum frequencies for positive and negative proton polar-
ization in NH3 at 5 T and 1 K is 250 MHz initially and increases to 375 MHz when radiation 
damage accumulates [76]. This increase is the same at 2.5 T field, which allows to conclude 
that the dominant ESR broadening mechanism is hyperfine interactions. Some of the addi-
tional broadening after in situ irradiation, however, must be due to increased g-anisotropy, 
because the relaxation times appear to be significantly shorter. Furthermore, the frequency 
separation at 5 T suggests that the main mechanism for DNP is not the solid effect nor any 
of its variants.

The beam heating at 1 K and 5 T causes the proton polarization to fall from 87% to 85% 
at a proton beam current of 7 × 1010 s–1, which is about 10 times higher beam flux than is 
possible when operating the same target at 2.5 T and 0.5 K [76]. The difference stems from 
the much higher heat transfer coefficient and burnout heat flux from the target to the boiling 
liquid 4He, in comparison with the boiling liquid 3He. With rastered high-energy electron 
beam, ammonia targets have been operated at 5 × 1011 s–1 with a loss of polarization of 15% 
relative to the value obtained at the beam current of 2 × 1011 s–1 [79].

Irradiated Lithium Hydrides

Lithium hydrides have a face-centered cubic structure and therefore a potential for DNP 
in polycrystalline or powder form. As with ammonia, however, the cubic structure leads 
to small g-factor anisotropy and therefore slow electron spin lattice relaxation time, which 
slows down DNP. Additional irradiation at low temperature is likely to create a high stress 
in the lattice, which increases the g-anisotropy and the spin lattice coupling. It can there-
fore be expected that the behavior of high-temperature irradiated lithium hydrides is qual-
itatively similar to ammonia, i.e. that additional irradiation in situ will speed up DNP and 
shorten all relaxation times, and possibly also increase the maximum DNP.

Systematic investigations of irradiated lithium hydrides were made at Bonn with sam-
ples pre-irradiated at 180 K with electron fluence of 1017 cm–2 using the Bonn 20 MeV 
pre-accelerator LINAC.

An irradiated 7LiH sample was polarized to the maximum value 11.5% at 1 K and 2.5 T 
and was exposed to a 1.2 GeV electron beam. The build-up time for protons was initially 
50 min and was reduced to 8 min at a dose of 1014 e/cm2, and the maximum polarization 
increased to 14.5% [94]. These characteristics remained unchanged up to the maximum 
electron fluence of 5 × 1015 cm–2 at which the test was stopped.
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Deuterons in a sample of 6LiD were polarized under similar conditions initially to 12% 
and the sample was exposed to the same beam 1.2 GeV electron beam. The polarization 
growth time was shortened from 50 min to 8 min after about 2 × 1014 cm–2, but the maxi-
mum polarization was slightly reduced to 10.5%. The polarization then increased back to 
12% by the dose of 1016 cm–2 [94].

The radiation resistance of pre-irradiated 6LiD in the SLAC E155 experiment was 
described already in Section 7.3.3. The set-up operated in a 5 T field at 1 K temperature 
which yields higher and faster polarization in comparison with the tests at Bonn. The radi-
ation resistance was better by a substantial factor of five in comparison with deuterated 
ammonia targets in similar beam conditions [96].

7.8 Storage and Handling of Targets

The polarized target materials are most conveniently stored in liquid nitrogen using vac-
uum-insulated dewars designed for biological applications. These come equipped with 
numbered holders which allow a practical organization of the samples. Dewars made with 
a low-conduction glass-epoxy composite neck and vacuum superisolation have a liquid N2 
holding time in excess of one month.

To avoid accumulation of water and oxygen in the storage dewar, it is a good practice to 
always use the original stopper of the access port of the dewar. This also reduces the heat 
leak and therefore liquid boiloff. For the storage of very expensive targets such as those 
made of isotope labelled or enriched materials, it may be worth equipping the dewar with 
an alarm for increased boiloff due to vacuum failure and for liquid dry-off. As the LN2 
level gauges are not reliable enough for this task, the best way appears to be to mount two 
platinum wire thermometers to the stopper, one so that it measures the vapor temperature 
in the lower part of the neck, and the other so that it measures the temperature of the vapor 
exit of the dewar. Dry-off is detected as stopped or reduced evaporation, the first manifes-
tation of which is the warmup of the neck which is no longer cooled by the boiloff vapor. 
Vacuum failure leads to a vigorous boiling, which is immediately detected as an abnormal 
cooling of the boiloff gas outlet. The samples must be saved within an hour following the 
alarm.

The sample storage containers can be made of Pyrex glass or a suitable plastic such as 
soft polyethylene. Small samples can be stored in glass test tubes closed with a cork stop-
per or with an aluminium foil attached with a copper wire around the tube. Larger samples 
are conveniently stored in sample bottles of various sizes equipped with a ground glass 
stopper. Such a stopper, however, has the unpleasant tendency of sticking, but this can be 
avoided by placing an aluminium foil strip between the ground surfaces. The stopper must 
then be secured by copper wires attached around the neck; these wires are also convenient 
for handling and moving the bottles between the handling bath and the storage dewar. 
Labelling of the bottles or test tubes is conveniently done by using a permanent felt-pen 
made for writing overhead transparencies. If labelling is forgotten before cooling the bot-
tle, one may also write on an aluminium foil attached with a copper wire around the bottle. 
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It is a good practice to test the ink before use, because some of them tend to flake off at 
77 K, particularly from a polyethylene or metal support which is flexible.

The above way of storing is convenient for targets of a few hundred mL. Storage and 
handling of larger amounts of material is more conveniently done in nylon socks [64] held 
in the metallic containers which come with the biological dewars. This facilitates the trans-
fer of the material under liquid nitrogen to the target cell in the cryostat because the sock is 
deformable and transparent to LN2. The sock may also provide some shielding against the 
frost which tends to accumulate in LN2 during handling.

The transfer of target beads to and from a glass or plastic container under liquid nitrogen 
is difficult if the beads are charged, because they adhere to the walls of the container. This 
can be prevented to a good extent by using a piezoelectric discharge gun designed for dust 
discharging.

The handling bath can be a wide glass or stainless steel dewar. It is a good practice to 
prepare for all tools needed in the sample manipulation holders which keep the tool tips 
under LN2 and the handle at room temperature. A low-cost handling bath is obtained from 
polyurethane or polystyrene foam; boxes used for packaging of goods for transport are 
often suitable. The thermal losses to such a bath are quite high but the resulting vigorous 
boiloff has the good advantage of preventing frost from accumulating from the ambient 
and exhaled air.

Direct contamination of target bead surfaces by water frost should be carefully avoided, 
because the removal of the frost afterwards is practically impossible. The water frost is 
seen in the proton NMR signal but cannot be distinguished from the signal arising from the 
target material protons; this affects the calibration of the NMR apparatus used for polariza-
tion measurement, because the protons in the frost are not (or little) polarized during DNP. 
It is therefore necessary to keep the beads always submerged in LN2 unless totally dried 
atmosphere surrounds them. One may visually observe the speed at which frost contami-
nates the beads, because they lose their translucid color in the same way as a window glass 
when frosted. The amount of water contamination also depends on the humidity of the air, 
so that on a dry winter day little frost is collected, whereas on a humid summer day one 
cannot get a view into the liquid nitrogen bath because it is covered by a stagnating cloud 
of mist and frost. One might then consider performing critical operations in a dehumidified 
room, and if this is not possible, for example, in large experimental halls, raising a dehu-
midified tent around the target installation for the duration of the target loading.
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8
Refrigeration

Polarized targets need continuous cooling of a relatively large heat load during dynamic 
nuclear polarization (DNP) at temperatures around or below 1 K. This can be achieved by 
continuous-flow refrigerators based on the evaporation of liquid 4He or 3He, or on the dilu-
tion of 3He by 4He. The refrigerator components have unusual requirements due to the large 
helium mass flow rates and the demand of long uninterrupted runs of operation.

We shall begin by describing the heat transfer mechanisms from the solid target material 
to the coolant fluid in Section 8.1 and then evaluate the various cooling cycles in detail in 
Sections 8.2 and 8.3. The heat loads, ranging from some W/cm3 to some tens of µW/cm3, 
and the choice of the cooling method are outlined in Section 8.4. We shall then discuss the 
design of other cryogenic parts of the apparatus, including the precooling heat exchangers, 
in Section 8.5, thermometry and other instrumentation in Section 8.6, and the pump and 
gas purification systems in Section 8.7.

8.1 Heat Transfer between Target Material and Helium

In order to promote heat transfer between the coolant and the solid material, the target is 
usually made of small spherical beads or irregularly shaped crushed and sieved pieces, 
as was discussed in Chapter 7. The mean diameter of the beads or pieces is normally just 
below 2 mm, which is conveniently defined as an equivalent surface-to-volume diameter 
de. This is obtained by considering the real geometric surface tσ  of the target beads con-
fined in the volume of the target holder cartridge, with the volume filling factor η :
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where V is the total volume filled with the target beads.
A definition of de identical to Eq. 8.1 will be used for evaluating the effective area of sintered 

heat exchange surfaces. The surface thus defined is equal to the hydrodynamic or hydraulic 
surface area and can be determined experimentally from the measured flow resistivity of the 
sintered sponge at room temperature. The hydrodynamic surface area thus measured is also 
the most reliable one for the surface boundary conduction, limited by the Kapitza resistance.
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Moreover, the equivalent surface-to-volume diameter de is useful for determining the 
flow resistance of the coolant within the target volume, needed for the estimation of con-
vectional heat transfer from the target beads to the surrounding helium bath.

8.1.1 Kapitza Resistance

Acoustic Mismatch Models
The heat transfer from solid material to liquid helium is limited at low temperatures by 
the Kapitza thermal boundary resistance, which is phenomenologically understood as an 
acoustic phonon mismatch or acoustic impedance between the two media. Phonons of 
relatively long wavelength1 may be reflected from the interface because their velocity is 
different on the two sides of the boundary. The model of Khalatnikov [1] explains the steep 
temperature dependence of the heat transfer between solid materials and liquid helium but 
gives always too low magnitude for the surface conductance. The model yields the emitted 
phonon energy flux from one side of the interface
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where ρ is the density of the liquid, c1 is its acoustic velocity (that of first sound in 4He), ρL 
is the density of the solid lattice, cl and ct are the velocities of the longitudinal and trans-
verse phonon modes in the solid and F is a definite integral involving the velocity ratio; 
this integral has the value around 2 for all solids, including glasses, dielectrics, metals and 
so on [1].

Assuming that the flux of Eq. 8.2 is emitted from solid with temperature TL to liquid 
helium with temperature THe, and that the same formula applies to flux emitted from liquid 
back to the solid, the amount of heat transferred is
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Thus, the theoretical calculation of the heat transfer by phonons gives the right dependence 
on the temperatures of the lattice TL and of liquid helium THe for the heat flux and describes 
correctly the fact that the heat transfer is reversible, but the experimental Kapitza conduc-
tance constant α is about one order of magnitude higher than the theoretical values obtained 

1 The mean wavelength, which dominates the phonon specific heat and heat transport at 1 K in solids, is around 0.24 µm (see Eq. 
2.177). In liquid helium such phonons propagate about 20 times slower, thus having much shorter wavelength.
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for most materials [2]. The discrepancy has many possible explanations, among which the 
following can give important contributions:

(a) The physical surface may be up to three times larger than the geometric surface, owing 
to microscopic details after machining or mechanical polishing.

(b) The solid surface has a different density than the bulk solid, and therefore different 
acoustic characteristics.

(c) The first atomic layers of helium behave more like solid rather than liquid.
(d) In metals the electron-phonon interaction near the surface may be modified.
(e) The surface (Rayleigh) waves provide additional degrees of freedom and contribute to 

the heat transmission.

The irreproducibility of the results with different samples of the same material, and even 
with the same sample, suggests that the state of the surface and its impurities (adsorbed 
gases, oxides, sulphides, etc.) provide additional mechanisms for the heat transfer by pho-
nons and by other excitations.

Kapitza Conductance at Metal-Liquid Interfaces
When comparing the theoretical values for solids with different elastic characteristics, 
Challis [3] noticed that while the theoretical expression for the phonon mismatch depends 
on the Debye temperature as Θ–3, the experimental values for Kapitza conductance fit quite 
well a much less steep dependence Θ–1; this seems to hold for metals as well as for dielectric 
materials. As the polarized target materials have a rather low density and they have Debye 
temperatures in the range of 100 K to 200 K, they can be expected to have higher Kapitza 
conductance than Cu, for instance. Snyder [4] has also reviewed the experimental results in 
view of the Debye temperatures and molar masses of several metals and dielectrics.

In comparing the Kapitza conductances of the interfaces of Cu with pure 3He and with 
pure 4He, one notices that the theoretical phonon mismatch models need to take into 
account that below 0.2 K the main excitations of the liquid state are quasiparticles rather 
than phonons. This provides additional mechanisms for the heat transfer, thus increasing 
the theoretical conductance. The experiments give the opposite results:

α
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28
W
m K
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Thus, the model based on the phonon flux as a limiting factor in the solid material is the 
leading theoretical basis for more refined and detailed models, but it fails to give the right 
magnitude for the experimental conductance.

For small temperature differences Eq. 8.2 can be written as
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where RK is the Kapitza resistance, related to the Kapitza conductance by

 
R T
1

4 K L
3α =  (8.4)

In dilution refrigerators the relevant Kapitza conductances between the metallic surfaces of 
the heat exchangers is reviewed in Appendix A.5.4.

Kapitza Conductance between Non-metallic Substances and Liquid
Dielectric materials are much less studied than pure metals; here we shall briefly discuss 
these and the rare results available for real target materials.

In early experimental work on Kapitza conductance it was noted already that dielectric 
substances behave in the same way as metals, including the quantitative discrepancy with 
the phonon mismatch models and the poor reproducibility of the results [2]. Furthermore, 
Glättli [5] discovered already in 1968 that paramagnetic cerium ethylsulphate (CeES) fea-
tured a high Kapitza conductance of about α = 100 W/[m2 (T/K)3.4] but with a less steep 
temperature dependence; the experiments were carried out in 4He below the lambda point 
down to 1.4 K. Measurements on three paramagnetic salts FeNH4, Mn(NH4)2 and CrK alum 
were then carried out by Vilches and Wheatley at temperatures down to 17 mK in contact 
with 4He [6]; they found the normal temperature dependence and value similar to that of 
Glättli:

50
W

m K
    3 paramagnetic salts in He.2 4

4α =

Wheatley and his coworkers measured an anomalously high boundary conductivity between 
the paramagnetic salt cerium magnesium nitrate (CMN) and pure 3He [7]. However, when 
about one monolayer of 4He was added to the sample cell, the thermal conductivity dras-
tically diminished. The high conductivity was interpreted as direct magnetic coupling 
between the paramagnetic spins of CMN and the nuclear magnetic moments of pure liquid 
3He. The measurements were carried out at low external field values and were of great 
technical interest for the cooling of 3He using adiabatic demagnetization.

In polarized targets the 3He is never pure enough for the magnetic coupling to help 
substantially in the heat transfer from the target material to the coolant. Furthermore, in a 
dilution refrigerator there is anyway much 4He in both phases, and in particular all solid 
surfaces are covered with about five monolayers of practically pure 4He.

Boyes et al. [8] have measured the Kapitza resistance between butanol beads and liquid 
4He around 1 K by applying microwave heating off-resonance while measuring the proton 
spin-lattice relaxation time from which the lattice temperature was determined. The vapor 
pressure was used for determining the liquid temperature, and the power dissipation in 
the beads was estimated from the boiloff rate. In these estimates correction was made for 
power dissipation on the walls of the cavity by making measurements also with empty 
cavity. The average temperature rise, assumed to be small relative to the temperature of the 
beads with radius r, is
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where κ is the thermal conductivity of the bead material. By repeating the measurement 
with beads of radii varying from 0.5 to 3 mm, they could determine the linear and quadratic 
parts of Eq. 8.5 and thus extract both the Kapitza resistance and the thermal conductivity 
at 1.08 K, with values [8]
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The Kapitza conductance constant from the above is

 α = ±34 16 
W

m K
 ( He – butanol);2 4

4  (8.7)

this is probably the best systematic measurement of the Kapitza conductance for polarized 
target materials at 1 K.

The Kapitza conductance was similarly determined between propanediol encapsulated 
in thin FEP foil and dilute solution in the mixing chamber of a dilution refrigerator below 
0.5 K, with a result [9]

 α ( )= ±25 5 
W

m K
 dilute solution – FEP film .2 4  (8.8a)

However, in this case the power dissipated in the cavity walls was estimated as 50% of 
the total power, rather than being determined from measurement; the related error was not 
included in the error estimation of Eq. 8.8a. This resistance is formed of two boundary 
resistances in series, but because the boundary conductance between two rather similar 
solid materials can be one order of magnitude higher than that between helium and any of 
the two materials, the measured value is characteristic of dilute 3He and FEP.

The boundary resistance between 3He and Epibond 100A epoxy, which also resembles 
glassy target materials with regard to its acoustic phonon spectrum, has been measured [10] 
to be 3 × 10–3 K4 m2/W below 0.1 K and yields the conductance

 83
W
m K

( He – Epoxy).2 4
3α =  (8.8b)

This is inconsistent with the results on pure Cu and other metals that have a general ten-
dency for the conductance to be lower for pure 3He than for 4He and dilute solutions. There 
is also a tendency that the conductance in 3He decreases between 1 K and 0.1 K, as can be 
observed in the compilation of Lounasmaa [11].
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The Kapitza conductance between different metals and plastics or glues [11] varies 
between 200 W/(K4 m2) and 1000 W/(K4 m2) and is rather constant around 0.1 K tempera-
ture. A thin isolation layer on a copper wire thus does not reduce the boundary conductance 
between the wire and helium, and there is evidence that it might in fact increase the heat 
transfer by providing a sort of acoustic matching layer.

The same might be true for adsorbed gas layers, such as water and nitrogen that usually 
cover the beads of the polarized target materials after preparation, handling and loading 
into the cryostat.

Dynamic polarization that results as a function of microwave power can also be used for 
the determination of the Kapitza resistance. In such cases it must be assumed that most of 
the power is absorbed in the target material, and that the ultimate polarization is calculable 
from the lattice temperature and the EPR lineshape, which is known quite well for propane-
diol-Cr(V) and other Cr(V) compounds. Deuterated butanol in dilute solution below 300 
mK temperature has a somewhat lower Kapitza conductance than given by Eq. 8.7:

 24 10 W
m K

dilute solution – d-butanol ,2 4α ( )= ±  (8.8c)

basing the determination on the best experimental results [12], and on the calculated rela-
tion between the spin and lattice temperatures, as was discussed in Chapter 4.

The Kapitza resistance between sintered metals and concentrated and dilute solutions of 
3He in 4He is numerically quite close to the above values of Eqs. 8.7–8.8 c; these will be 
discussed in better detail in Appendix A.5.4, together with the contributions of the thermal 
conductance of the metallic powder and of the liquid filling the pores of the powder.

8.1.2 Boiling Heat Transfer

The discussion below on boiling focuses on polarized target applications, in all of which 
the boiling takes place at low pressures, and the liquid temperature is in the vicinity of 1 K 
for pure 4He, close to 0.5 K for pure 3He, and in the range 0.7 K to 1 K for dilute solutions 
in the still of a dilution refrigerator.

The heat transfer within the boiling coolant must also be considered, particularly because 
the thermal conductivity of pure 3He and of dilute solutions is very low. In contrast, in pure 
4He superfluid the conductivity is mainly dependent on the geometry because heat is car-
ried by ballistic phonons which are scattered by boundaries only. For low heat fluxes there-
fore the heat transfer in 4He evaporation refrigerators is given by the Kapitza conductivity,2 
whereas at high heat fluxes thermal gradients arise and nucleate boiling on the bead sur-
faces begins to dominate. In 3He evaporators the nucleate boiling heat transfer dominates 
at all heat fluxes during DNP, whereas in dilution refrigerators it is the convection of the 
dilute solution of the mixing chamber which carries the heat out of the interior of the target.

2 In this case evaporation takes place only on the surface of the liquid pool, where the heat load is transported by the acoustic 
phonons.
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The nucleate boiling heat transfer coefficient hNB, defined as

 D
Q h T,
t

NB

�

σ
=  (8.9)

can be obtained from the Forster–Zuber equation for pool boiling

 D Dh T p
C
L

0.00122 ,NB sat sat
pL L L

L G

0.24 0.75
0.45 0.49 0.79

0.5
0
0.24 0.29 0.24

ρ κ
σ η ρ

=  (8.9a)

where Tsat∆  is the difference between the saturation temperature of the fluid and the tem-
perature of the heated surface, and psat∆  the difference between the vapor pressure of the 
fluid and its saturation pressure at the wall temperature; the subscripts L and G refer to 
the properties of the liquid and gas phases. This equation gives a non-linear dependence 
between the heat flux and temperature difference, and it holds quite well at pressures above 
atmospheric, but increasingly large deviations are seen at low boiling pressures for which 
no good universal correlations exist. There are no systematic measurements of boiling heat 
transfer in helium at low pressures, and we shall therefore review here the rare indirect 
information which can be deduced from polarized targets.

The experimental heat transfer coefficient from propanediol to boiling 3He can be 
deduced similarly from the measured liquid temperatures and the lattice temperatures 
determined from the DNP; using the data of the Refs. [9, 13] we find the boiling heat trans-
fer coefficient between propanediol and 3He (assuming linear relationship between heat 
flux and temperature difference)

 = ±h 3 0.3 
W

m K
 ( He – propanediol at 0.5 K).NB 2

3  (8.10)

Another measurement yields boiling heat transfer between the heated wall of the still of 
a dilution refrigerator [14] and the boiling dilute solution [15]:

 ( )=h 50 
W

m K
 dilute solution – Cu at 1 K .NB 2  (8.11)

This much larger value is probably due to the larger temperature differences used in 
these measurements, compared with those between 3He and propanediol.

Rather good data exist for the boiling heat transfer to 4He. At low pressures the heat flux 
is related to the temperature difference and vapor pressure by [16]
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whereas around 4.2 K the heat flux behaves linearly for ΔT < 0.2 K
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and then increases faster. The heat flux at 0.1 Torr and ΔT = 0.1 K is about 100 W/m2 from 
Eq. 8.12; this corresponds to the usual operating conditions of polarized targets at 1 K 
temperature.

In the evaporation refrigerators the heat transfer is understood in the terms of pool 
nucleate boiling heat transfer, the resistance of which is in series with the Kapitza surface 
boundary resistance describing the heat transfer from the solid to the liquid phase. At very 
high heat fluxes the turbulent two-phase flow correlations should be used for determining 
the heat transfer between the surface of the solid and the coolant fluid. The dimensionless 
correlations are determined only for boiling at or above atmospheric pressure, and they 
cannot be extrapolated to low boiling pressures. It should be noted, however, that at high 
flow speeds the forced convection of the fluid begins to contribute to the heat transfer, and 
the effective heat transfer coefficient may be substantially higher than the pool boiling heat 
transfer coefficient and very much higher than the liquid-only single-phase heat transfer 
coefficient. Under the continuous-flow conditions it is unlikely that a transition from nucle-
ate to film boiling occurs, but there is some evidence that at high heat fluxes a dryout of 
the target beads may take place. This happens when the heat flux is so high that the replen-
ishment of the liquid film on the beads from the vapor-carried liquid mist is insufficient 
compared with the required rate of evaporation.

8.1.3 Convection of Dilute Solution

In dilution refrigerators the target is immersed in the dilute solution of 3He in 4He in the 
mixing chamber of the device, and the heat transfer is mainly limited by the Kapitza sur-
face boundary resistance. The convectional heat transfer of the dilute solution is rather 
good and limits to a lesser extent the heat extraction out of the target. The convection eddy 
with volume flow rate V�  transfers the heat

 
D

Q V
C T
V
p

m

=� �  (8.14)

out of the target volume, where Cp is the molar specific heat and Vm the molar volume of 
the dilute solution, and ΔT is the difference between the average temperature of the fluid 
exiting the volume and that of the phase boundary where the cooling takes place. The 
molar quantities must be taken both per mole of total solution or per mole of 3He; we use 
here the latter.

The volume flow rate can be estimated from the hydrostatic pressure difference due to 
the density difference between the heated fluid inside the target and the cold fluid in the 
return path (assuming that dilution takes place also below the target):
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where h is the height of the target, dµ  is the viscosity of the dilute solution, Z is the flow 
impedance of the target and the derivative is taken at constant osmotic pressure, which is 
the same as the constant chemical potential of the superfluid 4He at such low temperature 
that the fountain pressure is insignificant. The derivative is obtained from the temperature 
derivative of the 3He concentration X at constant osmotic pressure

 
ρ ρ
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 (8.16)

where ρ4 is the density of 4He and the numeric factor comes from the atomic mass differ-
ence and molar volume difference between 3He and 4He:
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Here small terms proportional to X have been dropped because X < 0.2 in the usual oper-
ating conditions below 0.5 K. The negative value means that the hot fluid is heavier than the 
cold fluid, and the heated fluid thus moves downwards rather than upwards, which would 
be the case for convection in the gaseous phase.

The flow impedance is obtained by considering the target as a porous material with 
hydrodynamic surface area equal to the geometric area of the beads of Eq. 8.1, and by 
applying the equation of Kozeny (see Eq. 8.78) which relates this to the flow resistivity z 
of the material
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Here A is the cross-sectional area of the target perpendicular to the convection eddy. 
Assuming for simplicity that the volume of the target is a vertical cylinder with height h 
and base with area A, the power per unit volume can now be related to the temperature 
difference by inserting the terms of Eqs. 8.15–8.18 to Eq. 8.14
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which yields the temperature difference at the temperature of 0.2 K of the phase boundary

 DT Q
hA

4.6 mK 
mW

cm
1
2 3

1
2�

≅












 (8.20)

using the values Cp = 16.47 J/(mol·K), Vm = Vm, total /X ≈ 30/X cm3/mol, h = 5 cm, η = 0.6 
and de = 0.2 cm. As the normal power for DNP at 0.2 K temperature of the coolant is a 
fraction of 1 mW/cm3, the coolant temperature within the target volume is at most 10 mK 
higher than that of the phase boundary. Convection is therefore a very efficient way of 
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transporting the heat out of the volume of the porous media, if the input of the concentrated 
3He is placed under the target so as to cool the fluid in the lower part of the mixing chamber 
which will cause the cold and light dilute solution to rise up, thus closing the convection 
eddy. Moreover, in long targets the convection ensures good horizontal transport of heat 
from those areas where there may be lower input flow of the concentrated solution.

If the entry of the concentrated 3He is placed in the upper part of the mixing chamber, the 
fluid becomes convectionally stable and heat transport from the target to the phase bound-
ary will be only by thermal conduction, which is very poor. Although a thermometer at 
the phase boundary would show a relatively low temperature, the fluid in the target would 
be much hotter and therefore DNP would be unexpectedly low. The same result would be 
obtained if the convection is prevented by enclosing the target beads into a cell with too 
few or too small perforations. The best results are obtained by making the cell out of thin 
nylon mesh [12] and by distributing the 3He inlet under it along the length of the target. It 
is also best to place a thermometer under the target close to the exit of the dilute stream, in 
order to detect possible problems with the heat transport by convection.

The temperature dependence of the convective heat transfer, Eq. 8.19, is rather weak 
and follows from that of the specific heat, viscosity (about 40 × 10–6 g/(cm·s) at 0.2 K) and 
the temperature derivative of the concentration at constant osmotic pressure. The latter is 
given in Table 8.1, where the values are calculated from Table 17 of Ref. [17]. We note that 
both of these parameters make the convective heat transfer better at higher temperatures.

The temperature difference solved from Eq. 8.19 is inversely proportional to the bead 
size de. On the other hand, the heat flux due to the Kapitza conductance, Eq. 8.2, is also 
proportional to the inverse of the bead size. The dependence of the target temperature Tt on 
the bead size can be therefore solved from

 
Q
V d

T T T6

e
t m
4 4η α ( )= − + ∆





�
 (8.20a)

if the mixing chamber temperature is known from the cooling power curve. This would, 
in principle, allow to optimize the bead size so as to get the lowest possible bead tempera-
ture for a given power input. The range of bead sizes so obtained is below what is used 

Table 8.1 3He concentration X and osmotic temperature gradient of the 
concentration dX/dT |µ4 at the solubility curve of dilute 3He in 4He.

Tm (K) X –dX/dT (1/K)

0.05 0.06530 0.2600
0.10 0.07042 0.3675
0.20 0.09144 0.3832
0.30 0.12363 0.4634
0.40 0.16650 0.5868
0.50 0.22010 0.8608
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commonly, about 1.5 mm to 2.0 mm, which is dictated by the fabrication techniques and 
by ease of handling. There is, however, room for some improvement if a special application 
would call for a target which operates at temperatures lower than is usual.

Because in the dilution refrigerator the Kapitza resistance is in series with a much 
smaller resistance due to convective heat transfer, whereas in evaporation heat transfer the 
Kapitza resistance is dominated by the much larger boiling heat resistance, the temperature 
of the target is always significantly lower in a dilution refrigerator for the same heat flux. 
This will be discussed after working out the cooling powers of the various cooling cycles 
used in the polarized targets.

8.1.4 Heat Transport by Subcooled 4He and by Superfluid 4He Film

The coherent scattering of slow polarized neutrons has been applied for the biological 
structure research using cold neutrons of 8.5 Å wavelength [18, 19]. Such neutrons have 
a very large absorption cross section by 3He nuclei, and therefore the coolant must be 
eliminated in the beam path. This can be obtained by using 4He as a coolant, but because 
it is desirable to get a fairly large deuteron polarization and to be able to run in frozen spin 
mode that enables selective saturation of the protons or the deuterons in the target, the only 
alternative is to use a dilution refrigerator that cools the target via a subcooled 4He bath. 
The heat transport by superfluid 4He is very good above 1.4 K but gets low below 0.6 K, 
where boundary scattering of phonons totally dominates heat transport. On the other hand, 
the boundary scattering is specular, and one may draw profit of this in the geometrical 
design of the subcooled fluid containment. Practical formulas for the heat transport in 4He 
are given in Appendix A.5.3.

In the above experiments the heat sink of the subcooled 4He bath was a dilution refriger-
ator and the target was a square plate of 3 mm thickness having 17 ×17 mm2 cross section.

The application of subcooled 4He bath in high-intensity beams was studied by the 
Michigan group; in their case the heat sink was a 3He evaporation refrigerator [20]. The 
preliminary test results did not encourage pursuing further; the team failed to consider 
the heat transport within the restricted geometry of the target that consisted crushed solid 
ammonia fragments of 1.5 mm mean size.

One of the potential advantages of immersing a target in a subcooled 4He bath is that the 
density of the coolant is independent of the beam heating and microwave power for DNP. 
This reduces the possible false asymmetry due to correlations between the target thickness 
and the target and beam polarization.

In very thin targets it may be desirable to reduce the amount of coolant to minimum by 
using the evaporation of superfluid film. The film has the thickness of 20 nm to 30 nm and 
it replenishes at the volume flow speed of

V P
7.5 10

m
s m

,9
3
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where P is the smallest perimeter available for the film flow. This yields the molar flow of

n V
V

P
2.8 10

mol
s cm4

4

6= = ⋅ ×−�
�

and leads to an approximation for the maximum cooling power

Q n L P190 10 W
cm
.max 4 4

0 6≅ = ⋅ ×−� �

As DNP is possible at a microwave power of a fraction of mW/cm3, cooling of a thin 
target by evaporation of a superfluid film appears quite possible around 1 K temperature.

8.2 Evaporation Refrigerators

8.2.1 Cooling Cycle

Figure 8.1 shows the schematic diagram of a continuous-flow 4He refrigerator. Liquid 
helium is drawn from a transport dewar through a low-loss vacuum-isolated transfer 
line to a phase separator, from which liquid at 4.2 K is brought via a heat exchanger to a 
Joule–Thomson (J-T) expansion device which is an adjustable needle valve. The orifice of 
the valve is typically 0.5 mm in diameter. The two-phase fluid with low quality factor is 
blown directly into the cavity filled with target beads. The cold vapor cools the exchanger 
upstream of the J-T valve.

In the 3He refrigerator of Figure 8.2 the continuous-flow 4He refrigerator cools the 
condenser, from which 3He liquid is led to a subcooling exchanger and a J-T valve. The 

Figure 8.1 Schematic diagram of a continuous-flow open-cycle 4He refrigerator. Liquid helium is 
siphoned from a transport or storage dewar along a vacuum-isolated transfer line into a liquid-gas 
phase separator that works by two-phase flow laminarization using sintered sponge materials. The 
liquid is then subcooled in a heat exchanger before expansion through a needle valve into the target 
cavity. The expanded fluid undergoes flow boiling while traversing and cooling the target beads, and 
the boiloff vapor passes through the subcooling heat exchanger and possible other heat exchangers 
that absorb heat losses in support structures and shields. The details of the exchangers for the latter 
are not shown
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two-phase 3He flows through the target beads in the microwave cavity where it is evapo-
rated, and the cold low-pressure vapor returns through the subcooling exchanger. The valve 
has an orifice of about 0.5 mm which allows molar flow rates in the range up to 20 mmol/s 
to be obtained.

The enthalpy-pressure diagram is often used for evaluating the J-T cycle. It helps to 
visualize the 3He that is cooled isobarically in a series of exchangers and in the condenser 
down to the J-T valve; the isobaric cooling is represented by a horizontal line. At the valve 
the expansion is isenthalpic, represented by a vertical line which enters from the subcooled 
liquid region into the two-phase region; this yields the quality factor of the expanded fluid. 
Boiling in the two-phase region absorbs heat from the target isothermally, and the enthalpy 
of the cold vapor can be seen to be sufficient for subcooling the liquid because its specific 
heat is larger than that of the liquid. The cold low-pressure vapor cools the refrigerator 
structures, the waveguide and the coaxial lines before returning the pump and purifier sys-
tem. The compressed purified gas re-enters the refrigerator via precooling heat exchangers 
which use the cold vapor of 4He. The 3He cycle is thus closed, which preserves the rather 
expensive fluid.

8.2.2 Cooling Power of Evaporation Refrigerators

The maximum cooling power of an evaporation refrigerator based on Joule–Thomson 
(J-T) cooling cycle is

 Q n Lmax max
0=� �  (8.21)

where nmax
�  is the maximum mass (or molar) speed of the pump, and L0 is the latent heat 

of evaporation. This ignores possible small effects due to expansion into the two-phase 

Figure 8.2 Schematic diagram of a continuous-flow closed-cycle 3He refrigerator, in which 3He from 
a hermetic pump and purifier system is condensed after passing through precooling heat exchangers; 
the condenser is cooled by the evaporator of an open-cycle 4He refrigerator shown in Figure 8.1. The 
main heat exchanger then subcools the 3He using the cold vapor flow out of the target cavity, before 
expansion through a needle valve into the cavity. The expanded two-phase fluid undergoes flow 
boiling while traversing and cooling the target beads. The low-pressure 3He vapor then returns to the 
hermetic pump system for recompression and purification
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region and flash evaporation. The upper limit of helium mass flow is quite low for diffusion 
pumps (below 1 mmol/s for oil diffusion pumps and a few mmol/s for oil vapor boost-
ers) and therefore polarized targets are usually operated using mechanical Root’s blowers 
which have an almost constant volume speed in the pressure range 10–2 mbar to 10 mbar. 
The Root’s blowers have a maximum mass flow rate which depends on the power of the 
electrical motor, on the capacity of the next stage pumps and on the cooling of the pump 
and the gas. These pumps are available in hermetic versions with speeds from 100 m3/h to 
over 104 m3/h, with maximum mass flows in the range of 500 mmol/s for the gas-cooled 
versions. The versions with a shaft seal are capable of even larger mass flow rates. The 
maximum cooling power can thus reach some 40 W with 4He around 1.3 K, and 15 W with 
3He around 0.7 K. These numbers are similar to the output of high-power microwave tubes.

In evaporation refrigerators the cooling power becomes limited at lower temperatures 
by the drop of the vapor pressure p which follows in the vicinity of a reference temperature 
T0 the exponential law

 = − −
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where p0 is the vapor pressure at T0. Assuming a constant volume speed Vp�  of the pump and 
a pipe connecting to the target with a negligible pressure drop so that the mass flow can be 
related to the volume speed by the ideal gas law
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where R = NAk is the gas constant and Ta is the ambient temperature, the cooling power in 
the evaporator becomes

 �
� �

= = − −


















Q L
pV
RT

L
pV
RT

L
k T Texp
1 1

.p

a

p

a

0 0 0
0

0

 (8.24)

At low pressures the frictional pressure drop in the pipe between the refrigerator and the 
pump, however, cannot be neglected. The pipe is usually dimensioned so as to obtain lam-
inar flow and has a constant flow impedance per unit length which is for a circular pipe of 
length L and diameter D

 
Z
L D

128
.4π

=  (8.25)

This causes a pressure gradient
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where µ is the viscosity of the gas. By integrating Eq. 8.26 we obtain the relation between 
the pressure at the evaporator p and the pressure at the pump inlet pp

 p p Z nRT
L

2 .p
a2 2 µ= + ′�  (8.27)

The mass flow can now be solved by recalling that the pressure at the pump inlet is

 p nRT
V

;p
a

p

= ′�
�  (8.28)

this yields
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�  
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where

 D �µ=p Z V ;p  (8.30)

and n�  is given by Eq. 8.23.
The expression for the cooling power becomes now
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(8.31)

where the pressure p of the evaporator is related to the fluid temperature by Eq. 8.22.
The real cooling power is further reduced by gas dynamic effects due to the heating of 

the vapor from the evaporator to the room temperature, by the thermomolecular effect, by 
flash evaporation and by heat exchanger inefficiency, among others. The superfluid film 
creep limits downwards the temperature range of 4He refrigerators to about 0.8 K, depend-
ing on the perimeter which limits the flow rate due to the creep. These can, however, be 
minimized by careful design of the geometry of the evaporator and of the pump line, as 
well as of the heat exchanger.

Figure 8.3 shows the cooling power of a 4He evaporation refrigerator given by Eq. 8.31, 
with a constant volume speed of 2000 m3/h and a pump line of 3 m length between the 
refrigerator and the pump inlet, for 3 different diameters of the pumping line.

8.2.3 3He-4He Evaporation Refrigerators

In 1983 the U. Michigan group discovered [21] that the replacement of pure 3He in an 
evaporation refrigerator by a mixture of 3He and 4He enabled their polarized ammonia 
target to tolerate a three times higher proton beam flux in their elastic scattering exper-
iment. After a detailed analysis of the mechanisms of heat transfer in this complicated 
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case of two-phase boiling, it was concluded that the osmotic phenomena together with the 
higher dryout (or burnout) heat flux were the leading benefactors [22]. Further tests with 
the intense polarized proton beam of Brookhaven AGS confirmed the analysis and enabled 
to determine the optimum beam intensity of slightly less than 5 × 1010 protons per pulse 
[23]; the beam pulse length was 1 s and repetition cycle length 3 s. At this intensity the 
beam heating dominated locally the microwave heating due to DNP, which lets conclude 
that, beyond the optimum beam intensity, the dryout of the target beads was located at the 
peak of the beam flux.

In these tests the molar fraction of 3He in 4He was 0.4 in the total amount of coolant 
loaded in the closed circuit, and in the recirculated gas the molar fraction was 0.6; these 
lead to suppose that the evaporation of 4He contributed locally to the cooling of the beads, 
that the superfluid 4He film contributed to the liquid film replenishment and that osmotic 
phenomena contributed to the distribution of the liquid phase of the coolant.

Similar tests were also made in the 1.5 GeV electron beam of Bonn synchrotron using 
a deuterated polarized target in a beam current up to 35 nA (≈ 22 × 1010 s–1) rastered over 
the 3 cm2 front face of the target [24]. The beam duty cycle was 5%. A clear improvement 
was observed in the DNP of deuterons after the replacement of the pure 3He coolant by 
a mixture with 3He molar fraction of 0.6, although the effect was not as marked as that 

Figure 8.3 Cooling power of a 4He evaporation refrigerator using a pump with constant volume 
speed of 2000 m3/h connected to the refrigerator with a pumping line of 3 m length having 3 different 
diameters. It is assumed that the subcooling heat exchanger has 100% efficiency, so that expansion 
in the needle valve yields single-phase liquid into the target cavity; this is not always the case and 
therefore the real cooling power may be 10% to 20% lower than shown here
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with the proton beam of AGS. It was concluded that the electron beam heating effect in 
the helium bath temperature was negligible, suggesting that the loss of DNP in deuterated 
ammonia was due to the local heating of the solid material. Furthermore, the local loss of 
polarization may be substantially larger than that measured by the NMR coil that integrates 
the polarization over the volume of the target.

8.3 Dilution Refrigerators

8.3.1 Cooling Cycle

At low temperatures liquid solutions of 3He and 4He undergo a spontaneous separation into 
two phases with different concentrations which depend on temperature as shown by the 
solubility lines in the phase diagram of Appendix A.5.1. The phase which is concentrated in 
3He is lighter and floats on top of the heavier dilute phase. The principle of dilution refrig-
eration is based on the absorption of energy upon passing 3He atoms from the concentrated 
3He-4He solution into the dilute 3He-4He solution.

The solubility in the dilute phase at T = 0 is about 0.064 [17].3 The fact that the solubility 
remains finite makes it possible to obtain continuous cooling in a wide range of tempera-
tures. This is done by connecting the dilute phase of the cooling chamber (mixing chamber) 
to a distillation device (still) where 3He is evaporated and then recirculated back to the 
concentrated phase of the mixing chamber. This requires external pumps for continuous 
recirculation. In another scheme, continuous dilution is obtained by circulating 4He rather 
than 3He; this is done by using a superleak through which superfluid only can be injected 
into the dilute phase. In the other end of the superleak heat must be removed using a con-
tinuous-flow 3He refrigerator because the 4He is separated from the 3He using the heat-flush 
effect which requires a heat sink at a temperature well below 1 K.

It has turned out that the first scheme is more practical for obtaining a large cooling 
power in a wide range of temperatures. Although it requires sophisticated heat exchangers 
for a high cooling power, this is well compensated by the fact that the additional 3He refrig-
erator can be eliminated.

Figure 8.4 shows the schematic diagram of the dilution refrigerator operating with the 
principle of the first scheme. Gaseous 3He enters in the refrigerator into the precooling 
exchangers which use the returning cold 4He vapor from the continuous-flow 4He refrig-
erator. The 3He is condensed in the evaporator of this refrigerator in the same way as 
in the 3He evaporation refrigerator; the condenser is usually a capillary pipe which runs 
through the 4He evaporator. The condensed fluid is further subcooled in another similar 
exchanger in the still and then passes through an expansion device without entering into 
the two-phase (gas and liquid) region. The expansion device can be a small-diameter cap-
illary pipe in small refrigerators, whereas in larger ones it is an adjustable needle valve. 

3 Experimental values vary from 0.064 to 0.067. For consistency, we use here the value 0.064 adopted by Radebaugh [17] 
although 0.066 is currently favored [25].
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The 3He then passes through the main heat exchanger and enters into the mixing chamber 
where the target beads are in the dilute solution of 3He in 4He. Cooling there takes place 
as the 3He passes the phase boundary from the concentrated into the dilute phase. 3He then 
moves along the column of the dilute phase through the main heat exchanger into the still, 
where it is distilled out of the solution. The distillation is based simply on the fact that the 
vapor pressure of 3He in the solution is much higher than that of 4He. The vapor is pumped 
out, compressed to a pressure determined by the condenser, purified and sent back to the 
refrigerator.

Because of the large mass flows required for high cooling power, it is tempting to use 
the enthalpy of the cold vapor of the still for absorbing some of the heat from the incom-
ing 3He, thus lowering the need of liquid 4He. This, however, requires very large heat 
exchangers, and there is evidence that the pressure drop in them may actually deteriorate 
the cooling performance in the mixing chamber. The origin of this is not fully understood, 
but it is clear that because the still then operates at a higher temperature, there will be more 
4He vapor in the circulated helium. Furthermore, the hot end of the main heat exchanger 
will then also operate at a higher temperature with a lower diffusion constant of 3He in the 
column of dilute solution. This may reduce the amount of 3He which can be circulated, and 
will be discussed at the end of the next subsection.

It is theoretically possible to operate the dilution refrigerator without a 4He evaporator 
running at a low pressure. It has turned out, however, that this reduces the range of 3He 
mass flows for stable operation and needs a very efficient heat exchanger between the 

Figure 8.4 Schematic diagram of a continuous-flow 3He-4He dilution refrigerator described in the 
text. The cycle down to the condenser is the same as that of the 3He evaporation refrigerator, but after 
condensation the concentrated 3He is further subcooled in the still heat exchanger, before expansion 
into the main heat exchanger without boiloff. The concentrated fluid is further subcooled in the 
main heat exchanger, before entering under the target located in the mixing chamber. The heat load 
of the target is cooled by the convection of the dilute phase that transports the heat to the boundary 
of the concentrated and dilute phases; this boundary is partly trapped below the target and partly 
surrounding the droplets of the concentrated phase that underflows the traps. 3He in the dilute phase 
then diffuses along the dilute fluid column into the still, where 3He gas is distilled out of the dilute 
solution before returning to the pumps via precooling heat exchangers (not shown for simplicity)

Main heat
exchanger

J-T
valve

Mixing
chamber

3He
pumps

4He
evaporator

Condenser
Precooling
heat exchangers

Still
heat
exchanger

Still

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108567435.009
https://www.cambridge.org/core


 8.3 Dilution Refrigerators 357

low-pressure vapor of the still and the incoming 3He. The pressure drop on the low-pres-
sure side increases the still temperature and therefore also reduces the maximum cooling 
power available. The 4He evaporator cooling the condenser should operate at a tempera-
ture below 2 K for the best performance of the dilution refrigerator in terms of the cooling 
power and temperature range.

The main heat exchanger is often bypassed by leading a pipe from the condenser directly 
into the mixing chamber; for clarity this is not shown in Figure 8.4. The bypass is used for 
cooling down the target from LN2 temperature to helium temperature and is closed by a 
needle valve during normal operation.

Other details not shown in Figure 8.4 include the 4He circuit and the exchangers for cool-
ing the thermal screens and heat sinks for waveguides, coaxial cables and instrumentation 
leads in the refrigerator.

8.3.2 Cooling Power of the Dilution Refrigerator

The cooling power Qm�  available in the mixing chamber (MC) at a flow rate n3�  of the 3He is

 Q T n H T H T ,m m m c o3( ) ( ) ( )= − 
� � �  (8.32)

where H Tm( )�  is the enthalpy of the saturated dilute solution at the mixing chamber tem-
perature Tm and Hc(To ) is the enthalpy of the concentrated incoming 3He at the temperature 
To of the outlet stream of the counterflow heat exchanger. In this equation it is assumed that 
the phase boundary between the dilute and concentrated phases of the 3He is isothermal and 
its temperature Tm is equal to that of the dilute solution in the MC.

The maximum of this cooling power is found by requiring that its derivative with respect 
to n3�  be zero, while keeping constant Tm, the still temperature Ts and the 4He fraction x4 of 
the concentrated solution, i.e.
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 (8.33)

The optimum 3He flow nopt�  which maximizes the cooling power is immediately obtained 
by applying this to Eq. 8.32 and solving for n3� :
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Here Cc(To ) is the specific heat of the concentrated stream fluid in the outlet of the heat 
exchanger, assumed to be at the same temperature as the mixing chamber inlet. This equa-
tion can be put to explicit form by finding To and its derivative with respect to n3� ; these 
depend on the performance of the heat exchanger and require the solution of the differential 
equation describing the heat transfer and flow friction in this device.
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In the continuous-flow heat exchanger the incoming concentrated 3He is cooled by heat 
transfer to the colder outcoming 3He diffusing in the dilute solution towards the still. By 
denoting the longitudinal coordinate of the heat exchanger along the direction of flow by z, 
with z = 0 in the mixing chamber and z = L in the still, and by σ(z) the amount of effective 
heat exchange surface between 0 and z, the following equation relates the thermal gradient 
in the concentrated stream with the fluid and exchanger parameters at any position z:
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 (8.35)

Here the subscripts c and d refer to the fluid properties in the concentrated and dilute streams, 
respectively; Cc(Tc) = d(Hc(Tc)) /dTc is the specific heat of the helium mixture in the concen-
trated stream, and T T,c dα ( ) is the function of the heat transfer between the two streams, Eq. 
8.2, in the low-temperature limit. The molar volume, heat conductivity and viscosity of the 
concentrated fluid are denoted by Vc, Tc cκ ( )  and Tc cη ( ) ; A zc ( ) is the cross-sectional area 

available for the flow of the concentrated fluid, and Z zc ( ) is the impedance of the concen-
trated flow channel between the points z and 0, the outlet of the concentrated stream.

The Eq. 8.35 is obtained by requiring energy balance in each infinitesimal volume Ac(z)dz  
of the concentrated stream, and we note immediately that axial conduction and flow fric-
tion in the dilute stream and conduction in the mechanical structures are all neglected. 
These can be justified if Td is so much lower than Tc that its effect on the heat transfer can 
be approximated by a small adjustment of the heat transfer constant, and the mechanical 
design is made so as to give negligible conduction in structural materials. The Eq. 8.36 
thus deals with the optimum design of the concentrated stream, whereas additional require-
ments must be satisfied by the dilute stream and the mechanical structures, in order that 
these will not limit the performance based on the optimized design of the concentrated 
stream which is usually more critical.

It can be seen immediately that the heat exchange term in Eq. 8.35 should be large, and 
the terms describing the axial heat conduction and frictional heating in the concentrated 
stream should be everywhere as small as possible. If these terms can be made negligibly 
small compared with the heat transfer term, Eq. 8.35 can be truncated to
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 (8.36)

which can be integrated from the outlet temperature Tc(0) = To at z = 0 to the still tempera-
ture T(L) = Tstill at z = L, in order to obtain the relationship between To and n3� . The integra-
tion can be made in closed form if the dependence of T T,c dα ( ) on Td can be solved and 
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Td = f (Tc ) can be written explicitly. This is possible, because at any position z of the heat 
exchanger the energy balance requires

 H T H T
Q
nc c d d
m

3

( ) ( )= +
�

�
 (8.37)

in the absence of axial conduction and viscous heating. When the dilution refrigerator runs 
at optimum power, it is easy to demonstrate [26, 27] that Td /Tc = ρT ≈ 0.50 everywhere in the 
heat exchanger, a condition which allows to easily obtain analytical solutions of Eq. 8.36.

8.3.3 Heat Transfer in Sintered Sponge Surfaces by Kapitza Conductance

The heat transfer parameter is determined by the thermal conductances of the helium fluids 
and their separating wall materials and, in particular, by the thermal boundary (Kapitza) 
conductance between the helium fluids and the solid walls. If the wall surface is extended 
by fine sintered powder, for example, the temperature drop due to the Kapitza resistance 
may become smaller than those due to other thermal resistances; this tends to be the case 
for high temperatures T > 0.1 K typically. At lower temperatures the Kapitza conductance 
often is the limiting factor, and the heat transfer between the concentrated and dilute 
streams obeys then

 D D DQ T T T T ,c c c
n

Cu
n

d d Cu
n

d
nσ β σ β( ) ( )= − = −�  (8.38)

where βc(d) are the Kapitza conductances at the interfaces of the sintered powder and the 
concentrated (dilute) fluids, and n 4≅  is approximately constant in a wide range of tem-
peratures. The temperature of the separating wall TCu can be eliminated from Eq. 8.38 to get

 D D DQ T ST1
1

.c c c
n T

n

c c
nσ β ρ

ρ
σ= −

+
=

β

�  (8.39)

This defines the parameter S which is approximately constant when the ratio

 
D

D

c c

d d

ρ
σ β
σ β

=β  (8.40)

of the Kapitza conductances per unit length of the heat exchanger between the concentrated 
and dilute streams is made constant by design. The expression Eq. 8.40 is often also made 
small by adjusting the thickness of the sintered powder in the dilute stream greater than that 
in the concentrated stream; in our case, however, both are similar and we therefore have 

/ 0.5c dρ β β= ≅β  owing to the lower Kapitza resistance in the dilute stream.
The fraction in the middle of Eq. 8.39 is thus approximately constant in the low tempera-

ture limit. At high temperature, however, the thermal conductivities of the sintered powder 
as well as those of the fluids filling the pores of the powder begin to limit the heat transfer, 
and this must be taken into account by replacing Δσ by an effective exchange surface Δσe f f 
with a temperature dependence

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108567435.009
https://www.cambridge.org/core


360 Refrigeration

 
T
T

1

 ,eff 2σ σ
∆ =

∆

+





σ

 (8.41)

where the adjustable parameter Tσ ≈ 0.25 K is obtained from a fit to data on exchangers with 
1 mm sinter depth of 325 mesh Cu powder. This parameter can be also derived directly 
from the thermal conductivity data but with a reduced precision. Other sinter thicknesses 
and grain sizes will have a different temperature dependence for the effective surface area; 
this is discussed in Appendix A.5.4, together with the thermal penetration in the liquid 
filling the pores and in the sintered metal sponges.

We conclude that we have thus eliminated Td from the expression of T T,c dα ( ) and may 
write

 α α( ) ( )≅ =

+
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2  (8.42)

where

 S 1 1c T
nβ ρ ρ( )( )= − + β  (8.43)

is approximately constant.

8.3.4 Maximum Cooling Power and Optimum Flow Rate

The truncated Eq. 8.36 can now be integrated to get
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( )= �  (8.44)

where σc is the integrated surface area of the concentrated stream. The temperature depen-
dence of the thermal penetration in the sintered powder is thus included in the surface 
conductance term αc(Tc). The derivative required for Eq. 8.33 is now easily obtained by 
differentiating with respect to n3�  while keeping all other variables but To constant and rear-
ranging the terms to get
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This gives
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which can be inserted in Eq. 8.33 to yield the optimum flow rate of 3He:
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and the maximum cooling power

 Q T T .m m o
max σα( ) ( )=�  (8.48)

Eqs. 8.47 and 8.48 can be used for the design of the heat exchanger of a dilution refrigera-
tor with given power specifications, once the outlet temperature To of the heat exchanger is 
known. This can be obtained by combining Eqs. 8.44 and 8.47 to get

 �∫α
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whose solution yields the ratio To/Tm as a function of Tm which is universal for a given tem-
perature dependence of the Kapitza resistance. The numeric solution of this equation [26, 
27] shows that this ratio approaches an asymptotic value at low temperatures, where the 
enthalpies can be approximated by
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and where the Kapitza conductance is, using the asymptotic form of Eq. 8.42,

 T ST .c c c
4α ( ) =  (8.51)

Here a, b and S are constants. Inserting these into Eq. 8.49 yields, for x4 = 0.1,

 T
T

a
b2
1.9,o

m

≅ ≅  (8.52)

which gives the asymptotic expressions for the maximum cooling power and the corre-
sponding optimum 3He flow rate:
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At low temperatures the maximum cooling power is therefore proportional to Tm
4 and 

to the effective total surface area of the exchanger; the maximum power is obtained at an 
optimum flow which is proportional to Tm

2 and to the effective surface area.
At mixing chamber temperatures above 50 mK Eq. 8.49 must be solved numerically. 

This can be done most conveniently by using functions fit to the experimental data on 
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H T( )� , Hc(T ) and αc(T ). The following relationships have been used in the design of sev-
eral large refrigerators [12, 15, 27–33]:

 H aT
T T1 /

,
a

2

=
+�  (8.55)

 H bT
T T1 /c

b

2

=
+

 (8.56)

and

 T ST

T T1 /
,

4

2α ( ) ( )
=

+ σ

 (8.57)

with the numerical values for the constants given in Table 8.2 for various 4He concentra-
tions in the concentrated stream.

Figure 8.5 shows the maximum cooling power and optimum flow rate of CERN Frozen 
Spin Target dilution refrigerator [27]. The above parameters were obtained by adjusting the 
curves so as to fit the data visually; the adjustment mainly concerns S that was defined by 
Eqs. 8.39 and 8.43; the value deduced from the fit corresponds to RKσT3 = 85 cm2K4 W–1. 
Several larger dilution refrigerators were consequently designed using these parameters 
and the design principles of dilute and concentrated flow channel to be described below; 
Figure 8.6 shows the cooling power of the largest one, that of the SMC Polarized Target 
[32]. The refrigerator will be described in more detail in Section 8.5.3.

8.3.5 Design of Dilute and Concentrated Stream Channels

Eq. 8.35 allows to design the flow passages for the concentrated and dilute streams so that 
the effects of the axial heat conduction and viscous heating are minimized when operating 
the refrigerator at optimum flow. For this we need the first and second derivatives of the 
temperature in the concentrated stream Tc(z). These are readily obtained in the asymptotic 
low-temperature limit by combining Eqs. 8.53–8.54 with the truncated Eq. 8.36:

Table 8.2 Parameters fit to the experimental data of Ref. [17] on the enthalpies of the dilute and 
concentrated streams and to the effective Kapitza conductance of sintered 325 Mesh Cu powder of 
40% filling factor and 1 mm depth [25], using the functions of Eqs. (8.55–8.57).

a b Ta Tb Tσ 1
1

T
nρ

ρ
−
+ β

x4 (J mol–1 K–2) (J mol–1 K–2) (K) (K) (K)

0.00 92.0 12.0 0.316 0.400 0.250 0.625
0.10 92.0 13.0 0.316 0.500 0.250 0.625
0.27 92.0 14.7 0.316 1.000 0.250 0.625

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108567435.009
https://www.cambridge.org/core


 8.3 Dilution Refrigerators 363

Figure 8.5 Maximum cooling power (a) and optimum flow rate (b) of CERN Frozen Spin Target 
dilution refrigerator. The solid lines are visual fits to Eq. 8.48 and Eq. 8.47, using the enthalpy and 
heat transfer functions of Eqs. 8.55 to 8.57. Reprinted from Ref. [26].
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In Eq. 8.59 two small terms were eliminated which contribute exactly zero if the heat 
exchange surface per unit axial length is piecewise constant. Using these and in addition 
assuming that heat exchange surface is uniformly distributed along z, we can write the 
requirement that the second term on the right side of Eq. 8.35 is always much smaller than 
the first one:
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Figure 8.6 Maximum cooling power of SMC polarized target refrigerator that uses design principles 
similar to that of CERN Frozen Spin target, with the difference that the condenser runs close to 2 K 
temperature rather than 1.2 K
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The axial conduction is likely to be most important at the lowest temperature of operation. 
Under this condition the logarithmic derivative of the heat conductivity in Eq. 8.61 can be 
replaced by its maximum of 1, which yields a simple result

 
�

κ ( )<<A
LQ

T T
,c

m

c c c

min

 (8.62)

where the maximum cooling power is replaced by the minimum heat leak to the mixing 
chamber.

In the high-temperature end of the heat exchanger there is usually less surface per unit 
length; under these conditions the requirement for the cross-sectional area can be written 
from Eqs. 8.60 to 8.61 as
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Q
T T d dz/
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c c c

min

κ
σ

σ( )<<
�

 (8.63)

If the thermal penetration in the sintered powder is not complete in the upper end of the 
heat exchanger, the surface area should be the temperature-dependent effective area and 
two remarks must be made: (1) Eq. 8.63 is no longer exactly valid; (2) and, however, only 
a short section of the exchanger suffers from the possible disagreement with Eq. 8.63, 
because the thermal gradient at that point is steepest. In practice it is a good design princi-
ple to ensure that Eq. 8.63 is obeyed for the low-temperature ends of all sections of the heat 
exchanger with a constant axial distribution of the exchange surface.

For the dilute stream one can write equations similar to the above ones. We note that 
much larger cross sections are allowed and also required because the thermal gradient in 
the dilute stream is small everywhere except in the immediate vicinity of the still.

The effect of the viscous heating is also minimized by requiring that the last term in Eq. 
8.35 be much smaller than the first one on the right side. This yields
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which is clearly hardest to obey at the low-temperature end of the concentrated stream. 
There we have Tc = T0 ; using Eqs. 8.51 and 8.54 we get the requirement
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For a circular passage of diameter D of the concentrated stream in the outlet of the 
exchanger, we find
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and for a slit with width w and height t we get
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The viscous heating in the dilute stream has been debated in the past and it has been argued 
that because the osmotic pressure is the driving force for the quasiparticle ‘gas’, a loss 
in this pressure must be associated with isenthalpic expansion and therefore cooling or 
heating of the fluid depending on the slopes of the isotherms in the plot of osmotic pres-
sure versus enthalpy. At low temperatures where viscous heating could be a problem, the 
quasiparticle fluid has the properties of a degenerate Fermi fluid with specific heat close to  
Cv,µ4 = 107.2 (T/K) J/(mol·K) and isenthalpic expansion therefore results in heating 
which has been evaluated experimentally by Wheatley [34]. Above 0.2 K the specific heat 
approaches a constant value (5/2)R and the quasiparticle fluid therefore behaves as an ideal 
gas; in this case an isenthalpic expansion causes no heating and may even result in cooling, 
as has been shown by Radebaugh [17]. At high temperatures and flow rates, furthermore, 
the concentration is high and viscosity low, and therefore the possible heating effects in 
isenthalpic expansion are reduced.

Flow resistance in the dilute stream causes a loss in the osmotic pressure which can be 
observed as a drop in the 3He concentration in the vapor pumped out of the still. It has 
turned out in practice that losses of the osmotic pressure scale with the cross-sectional 
area of the dilute stream flow channel of a dilution refrigerator. This indicates that the 
dilute flow is limited by diffusion rather than by viscous effects, and that the drop tends 
to occur close to the still. In dilution refrigerators with maximum 3He flows ranging from 
2 mmol/s to 350 mmol/s, the measured value of the flow limit at high temperature obeys 
approximately

 �( ) ≤ ×






n
A

max 0.5
mmol
s mm

,d
3 2  (8.68)

where Ad is the cross-sectional area in the dilute stream of the refrigerator. This rule, how-
ever, is applicable only to refrigerators operating at high flow rate and at relatively high 
temperature. The flow in the dilute stream at very low temperatures will be discussed at the 
end of this subsection.

Although there is no microscopic description of the origin of the diffusion, one may 
imagine a ‘mutual friction’ which limits the flow speed of 3He quasiparticles in the super-
fluid 4He. The concentration gradient under flow along the z-axis, and under isothermal 
conditions,4 is given by

 D X
z

Xv 0,n

∂
∂

− =  (8.69)

4 This allows one to ignore the concentration change due to the thermal gradient.
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where D is the mass diffusion coefficient of dilute 3He in 4He, and vn is the drift velocity 
of the normal fluid in superfluid. The two-fluid model involves relatively little 4He atoms 
in the normal fluid below 0.6 K if the concentration is above 1%. By expressing the drift 
velocity in terms of the mass flow rate of the 3He in a channel of cross-sectional area A

 v
nV
A

nV
AX

,n
d3 3 3 4= ≅

� �
 (8.70)

where the molar volume of the dilute 3He is approximated by V4/X, the concentration gra-
dient becomes

 X
z

nV
AD
.3 4∂

∂
≅
�

 (8.71)

By inserting the critical design flux of 3He from Eq. 8.68 to Eq. 8.71 one gets an idea of the 
order of magnitude of the diffusion constant under the critical operating conditions of the 
dilution refrigerators when maximum flow conditions are required. This yields the value 
D = 1300 cm2/s for an estimated allowable concentration gradient of 10–3 cm–1.

The diffusion coefficient can be estimated, on the other hand, from the measured thermal 
conductivity of the dilute solution by using the two-fluid model which relates the thermal 
gradient to the normal fluid drift velocity

 Q
A

S T v
V

T
zL

n
d4

0

4
0 κ= = − ∂

∂

�
 (8.72)

in a pipe with cross-sectional area A . Here the entropy S L4
0  is that of 4He in the dilute 

solution and is approximated by the entropy of pure 4He. In dynamic equilibrium, on the 
other hand, the gradients of the concentration and temperature are related by requiring that 
the chemical potential of 4He be constant, which leads to the requirement that the osmotic 
pressure be constant, because the contribution of the fountain pressure is small below 1 K 
for concentrations above 1%. This can be written as

 RT X
z

S T
z

.L4
0∂

∂
= −

∂
∂

 (8.73)

Solving now the drift velocity from Eq. 8.72 and the temperature gradient from Eq. 8.73, 
and inserting these to Eq. 8.69, yields the diffusion constant

 κ
( )

=D
V RX

S
.d

4
0

4
0 2  (8.74)

This relation should be approximately valid in the temperature region below 1 K with 
concentrations for which the 4He phonon contribution to the thermal conduction remains 
smaller than that due to the internal superfluid convection. The diffusion constant is cal-
culated in Table 8.3 from the experimental conductivity data of Ref. [35] and from the 
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entropy compiled in Ref. [17]. The values for the diffusion constant must be considered as 
upper limits because the internal convection is certainly not the only mechanism of heat 
transport contributing to the experimental thermal conductivity. Furthermore, the internal 
convection becomes small below 0.6 K and therefore the divergence of the values in Table 
8.3 at low temperatures is an artefact of this method of determining the diffusion constant.

We note that the diffusion constant reaches the critical value of 1300 cm2/s at about 
0.45 K which corresponds quite well with the observation that the maximum flow rate 
becomes saturated at a mixing chamber temperature of about 0.5 K. Higher flow rates thus 
require a larger cross-sectional area of the dilute stream, or a shorter heat exchanger. At 
lower temperatures the optimum flow rate is limited by the heat exchanger surface area, and 
the diffusion constant becomes rapidly larger so that the concentration in the still can be 
expected to correspond to nearly the same osmotic pressure as that of the mixing chamber.

Below 0.2 K, however, the two-fluid model cannot be used for relating the diffusion con-
stant and the thermal conductivity, because these are determined increasingly by different 
mechanisms. Furthermore, at temperatures where the phonon density becomes negligible, 
other mechanisms than simple diffusion begin to limit the flow speed of 3He. The first 
mechanism which was suggested involved the viscous flow of the quasiparticle gas, but it 
was discovered in several laboratories that measurements of viscosity by different methods 
did not agree among themselves and were not in agreement with other related parameters 
either, such as the viscous heating and the viscous pressure drop. The dilemma has been 
experimentally and theoretically studied by de Waele et al. [25, 36, 37], who found that 
below 0.2 K the flow of 3He generates a 4He vortex tangle which leads to the observed 
mutual friction between 3He and 4He, and that the vortex tangle is strongly pinned to the 
walls.

Table 8.3 Entropy of pure 4He, and the thermal conductivity [35] and diffusion constant of two dilute 
solutions. The diffusion constant is estimated using the Eq. 8.74 and is expected to be of the right 
order of magnitude at and above 0.4 K temperature, but is known not to diverge at lower temperatures 
as shown in the table (see text).

 X = 0.013  X = 0.050

T S4
0 κd D κd D

(K) (10–3 J/Mol/K) (W/m/K) (cm2/s) (W/m/K) (cm2/s)
0.1 2.723 × 10–5 0.40 1.6 × 107 0.051 7.9 × 106

0.2 2.179 × 10–4 0.31 194000 0.065 157000
0.3 7.353 × 10–4 0.23 12600 0.060 12700
0.4 1.743 × 10–3 0.21 2060 0.060 2260
0.5 3.404 × 10–3 0.21 540 0.058 573
0.6 5.881 × 10–3 0.20 172 0.055 182
0.7 9.725 × 10–3 0.20 63 0.050 61
0.8 0.01724 0.19 19.0 0.048 18.5
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The experimental observations of de Waele et al. below 150 mK can be summarized as 
follows:

(1) The mechanical pressure drop across a flow channel is consistent with zero at all flow 
rates and temperatures, in strong variance with the viscous flow model predictions 
(laminar Poiseuille flow).

(2) The concentration difference between the two ends of a pipe is proportional to its 
length L and depends on its cross-sectional area A and on the flow rate by

 x x L n
A

3.2 0.3 10
m

m s
Mol

.1 2
8 3

2 2.8 0.4

( )− = ± ⋅


















−

±
�  (8.75)

(3) The temperature of the dilute solution in the outlet pipe of a mixing chamber is related 
to the concentration in the pipe by

 T T x x ,m m
2 2

3β ( )− = −  (8.76)

where 3β  is independent of L, A and the flow rate, and varies slightly from 0.21 K2 at  
Tm = 12 mK to 0.19 K2 at Tm = 70 mK.

By inserting the high-temperature critical flow limit from Eq. 8.68 into 8.75 we get a 
concentration gradient of 1.2 m–1 which is too high by a factor of about 10. It is rather 
clear that the flow is limited by different mechanisms at temperatures well below and well 
above 0.2 K, but unfortunately there is no systematic study in the high-temperature regime 
 comparable to that of de Waele et al.

The strong temperature dependence of the diffusion constant in Table 8.2 suggests that 
if a high cooling power and therefore a high mass flow are required, the volume speed of 
the 3He pump is important because this lowers the still temperature and therefore the tem-
perature of the hotter end of the heat exchanger. Direct evidence of this was obtained by 
preceding a pump with a nominal speed of 1000 m3/h by one with a speed of 3000 m3/h; 
this increased the maximum 3He flow and cooling power by 20% to 50% in the temperature 
range 0.40 K to 0.55 K [27, 30].

8.3.6 Sintered Copper Heat Exchangers: Preparation and Evaluation

Tubular Heat Exchangers
The upper part of the main heat exchanger of the dilution refrigerator should have a short 
and wide dilute stream so that the osmotic pressure gradient in it remains reasonable. The 
usual length of this part of the heat exchanger is between 20 cm and 50 cm. The cross- 
sectional area of this part then determines the maximum mass flow, given by the empirical 
Eq. 8.68.

The upper part of this main heat exchanger houses the tubular heat exchanger. For flow 
rates below 1 mmol/s a simple tube-in-tube exchanger is sufficient. At higher mass flows 
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a coiled tube should be mounted into the dilute channel. The heat exchange surface can, in 
principle, be extended by mounting several parallel tubes, but this has the risk of channel-
ling the flow preferably into the hottest tube. It is therefore preferable to extend the surface 
area by adjusting the length of the coiled tube.

Kozeny’s Law and Measurement of the Surface Area Effective for Heat Exchange
The heat exchange surface area of sintered powders is an important parameter, and there-
fore several methods have been used for evaluating the active surface of the sintered pow-
der. The use of gas adsorption measures accurately the physical area, but this includes also 
almost closed voids that are dead ends for heat conduction. We have therefore used the 
gas flow method that measures the hydrodynamic surface area of the powder [38]; this is 
insensitive to closed voids and maps predominantly multiply connected flow channels that 
simulate the flow of conducted heat, both in the liquid filling the pores and in the metallic 
grains of the sinter.

The flow in such porous media is described by the Kozeny–Carman equation that can be 
written, for a sintered plug of cross-sectional area A and length L, in the form

 D p
V

V L
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�  (8.77)

where the numeric factor 5.0 is empirical, β is the volume filling factor of the powder, σ 
is the total hydraulic surface area of the powder plug, V = LA and μ is the viscosity of the 
fluid and V�  its volume flow rate. Powders are characterized by a distribution of grain sizes 
and shapes: the grain i has a volume V D

6i i
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=  and surface area A Di i i
2λ π= , where Di is the 
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By inserting this into Eq. 8.77 we get
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−
�  (8.78)

The 325 Mesh Cu powder has a maximum grain size of 44 µm and the size distribution 
extends down to fine dust. The grains are irregularly shaped with no predominance of form; 
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the surface-to-volume diameter is D = 18 µm [38] before sintering and changes little upon 
sintering if the powder is not compressed. A more recent study of a 325 Mesh Cu powder, 
sintered under similar conditions, yielded D = 20.6 µm [39]. In the same study a Cu powder 
of nominally 1 µm grain size yielded D = 1.9 µm.

Choice of Sintered Powder
Appendix A.5.4 describes a simple method to evaluate the thermal penetration in sintered 
metal contacts used in the heat exchangers of dilution refrigerators. Because the tempera-
ture range in frozen-spin operation is limited by the heat loads due to the beam, for exam-
ple, we are here interested mainly in temperatures of the mixing chamber above 20 mK. 
In dilute solution the thermal penetration depth for a 325 Mesh Cu powder above 30 mK 
is numerically
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assuming that the heat conductivity has a constant value of 25 mW/(Km) up to about 
0.5 K temperature, for liquid concentrations near the solubility line. Thus, a sintered heat 
exchanger in the dilute solution at 0.5 K temperature has the thermal penetration mainly 
to the first 0.2 mm layer, which is why polarized target refrigerators usually feature sinter 
depths between 0.5 mm and 1 mm only. With yet finer powders the penetration depth varies 
roughly with the square root of surface-to-volume diameter, so that when using D = 1.9 µm 
powder, the thermal penetration depth is about one-third of the above value of 0.2 mm at 
0.5 K.

In concentrated solutions the thermal conductivity and thermal penetration depth behave 
in the same way as in the dilute solution, but we may note that because the concentrated 
side of the heat exchanger is at a temperature 1.5 to 2 times that of the dilute side, the ther-
mal penetration is even more severely restricting the active layer for heat exchange.

In our temperature range of interest the heat conduction in the metallic part of the sin-
tered sponge may also limit the heat transport, but this is negligible with respect to that of 
the liquid conduction, unless very thick sintered layers are used.

Continuous Sintered Heat Exchangers
The axial conduction along the flow of the main heat exchanger can be limited by the 
design of the liquid streams as was described in Section 8.5.3. The metallic parts of the 
sintered Cu exchangers, however, are practically isothermal, and therefore they approxi-
mate poorly the continuous counterflow principle, in particular in operation at the lowest 
temperatures. A study was made on the numeric error made by ignoring the thermal con-
duction in the copper heat exchanger elements, and it was concluded that when the main 
exchanger consists of order 10 isothermal elements, the residual error is in the range of a 
few percent [40]. Even with two sintered elements only, if their design is such that the axial 
heat conduction in the fluids can be ignored and if there is a coaxial-tube countercurrent 
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heat exchanger between the sintered elements and the still, the neglect of axial conduction 
in the copper heat exchangers does not result in more than 10% reduction in the estimated 
cooling performance.

8.4 Heat Load Evaluation and Choice of the Cooling Method

The operation of a polarized target in a high-intensity beam was discussed in Section 7.1.1 
from the point of view of target material optimization. Here we shall focus mainly on the 
choice of the cooling method.

A simple rule-of-thumb lets estimate the heat deposit by a charged beam by the mini-
mum ionization energy loss per target thickness, which is about dE/dx = 2 MeV/(g/cm2). 
This gives a volumetric heat dissipation in the target

 
�

ρ= Φ
Q
V

dE
dx

,
t

b t
min  (8.80)

where Φ b is the beam flux, ρt is the mean target density and x = ρz. With a mean target 
density of 0.6 g/cm3 and beam flux of 1010 /(s·cm2), this yields roughly
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,
t

3  (8.81)

which is of the same order of magnitude as the maximum power for DNP below 0.5 K. 
Therefore, operation in higher beam fluxes requires the use of evaporative cooling by 4He.

The highest reported beam flux was on the solid polarized target of the SLAC E143 
experiment [41], in which an electron beam of intensity 5 × 1011 s–1 was rastered over the 
5 cm2 cross section of the target, cooled by a powerful 4He refrigerator operated close to 
1 K. The beam heating was witnessed by raising the beam intensity from 2 × 1011 s–1 to 
5 × 1011 s–1 which caused a relative loss of 15% of the proton polarization of the solid 
ammonia target [41]. The mean flux of the beam was 1011 s–1·cm–2 which deposits at least 
19 mW/cm3 of heat in the target; this is about as much as the microwave power used for 
DNP at 1 K. By using Eq. 8.12 we may estimate that the beam flux caused about 0.1 K tem-
perature rise of the target beads, thus explaining quantitatively the loss in the target polar-
ization, which was about 60% to 75% during the high-intensity runs. It should be noted that 
these numbers include also the polarization losses due to radiation damage, which required 
annealing of the target material after each cumulated electron flux of about 1016 cm–2.

On the other hand, frozen spin operation requires reduced thermal loads tolerable in the 
range 50 mK coolant temperature; this is relatively easy to obtain from the point of view 
of the dilution refrigerator. The Kapitza resistance between the target beads and the dilute 
solution, however, then sets an upper limit of charged beam operation

 
� β α ( )= −
Q
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T T6
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t
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4 4  (8.82)
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Assuming a butanol target with 2 mm bead diameter and that the target temperature should 
not be raised by the beam above 0.1 K, the beam heating should be limited to 4.3 µW/cm3. 
This, in turn, sets the limit of minimum ionizing beam flux to
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We conclude that the beam heating in frozen spin operation begins to dominate polariza-
tion losses at a mean beam flux of about 107/(s cm2), while in continuous DNP mode the 
dilution refrigerator can cool an additional heat load due to the beam flux of 1010/(s cm2). 
At a higher beam flux evaporative cooling by 4He and operation in 5 T magnetic field are 
recommendable.

The polarized muon beam M2 in the North Area of CERN SPS had an intensity of 
4 × 107 muons in each 2.4 s long spills with a repetition rate of 14.4 s during the experi-
mental runs of SMC. The flux was rather well confined to the 5 cm diameter of the SMC 
polarized target cells, with a broad maximum at the center. The maximum flux in the cen-
tral part of the target was therefore about 106/(cm2s), and this did not cause any observable 
polarization loss during frozen spin operation.

Evaporative cooling by 3He can tolerate a slightly higher beam flux when compared with 
dilution refrigeration, at the cost of slightly lower maximum polarization. Still higher beam 
flux can be tolerated when adding 4He to the circuit, as was discussed in Section 8.2.3.

The heat load distribution and its variation with the microwave power and beam current 
influence the coolant density in the target volume:

• In all evaporative cooling methods the higher heat load entails higher quality factor 
(vapor fraction) of the coolant fluid, both spatially and in time.

• In dilution refrigerator the higher heat load leads to spatially slightly higher coolant 
density owing to osmotic pressure, and higher overall heat load leads to slightly lower 
coolant fluid density because of higher solubility of 3He in the dilute phase at a higher 
temperature.

These variations of the coolant density may lead to a systematic error in the spin asym-
metry measurement, due to a possible correlation of the variation with the target spin ori-
entation. The methods of estimating and avoiding the resulting false asymmetries will be 
discussed in Chapter 11.

8.5 Design of Precooling Heat Exchangers

The precooling heat exchangers reduce the heat load to the 4He reservoir at 4.2 K and to the 
condenser pot near 1 K. This heat load is obviously largest at the highest 3He flow rates, and 
therefore the heat exchangers must be dimensioned and designed for this flow rate. This 
implies calculation of the effectiveness and pressure drop of the heat exchangers.
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8.5.1 Effectiveness of the Precooling Heat Exchangers

Before entering the still heat exchanger, the concentrated stream of the dilution refriger-
ator must be cooled down from RT to below 4 K and then condensed in a heat exchanger 
immersed in a boiling bath of 4He at a temperature below 2 K. The design of this series of 
exchangers is in the domain of classical thermodynamic engineering, and it is based on the 
application of the number of thermal units (NTU) method or effectiveness method, both of 
which use dimensionless numbers, such as the Nusselt number (Nu), Prandtl number (Pr), 
Reynolds number (Re) and so on, and empirical correlations of the dimensionless fluid 
properties and flow geometry. This method applies to all flow regimes and covers also sit-
uations where there is boiling and condensation on one or both sides of the heat exchanger.

The Reynolds number Re is

 uDRe ,hρ
µ

=  (8.84)

where ρ is the fluid density, Dh is the hydraulic diameter of the channel (see below), u is 
the average fluid velocity and μ is the dynamic viscosity of the fluid. The Prandtl number 
depends only on the properties of the fluid:
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=  (8.85)

where cp is the isobaric specific heat of the fluid, and κ its thermal conductivity.
In the NTU method and effectiveness method we first define the heat capacity flow rates
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where the subscripts h and c refer to the hot and cold fluids, respectively; min and max refer 
to the smaller and greater of the two; n and C are the number of moles and the molar spe-
cific heat of the fluid concerned. The method is particularly suitable to cover flows of ideal 
gases such as helium isotopes and their mixtures, whose specific heat is rather constant in 
the temperature and pressure range of usual dilution refrigerator precoolers.

In counterflow heat exchangers, which have the advantage of using the cold fluid heat 
capacity in an optimum way and which we always use in dilution refrigerators, we then 
define the theoretical maximum rate of heat transfer between the two fluids and the real 
heat transfer rate q� :

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108567435.009
https://www.cambridge.org/core


 8.5 Design of Precooling Heat Exchangers 375

 
� �

� � �

( )
( ) ( )

= −

= − = −

q C T T

q C T T C T T

;

,

h in c out

h h in h out c c out c in

max min , ,

, , , ,

 (8.87)

which define the effectiveness
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 (8.88)

If we know the effectiveness and because qmax�  is known, we find the amount of heat trans-
ferred and the outlet temperature of the hot fluid. The effectiveness is a function

 f N R,  ,TUε ( )=  (8.89)

where NTU is the number of transfer units

 N UA
CTU

min

= �  (8.90)

calculated from the heat transfer area A and the overall heat transfer coefficient U. These 
are obtained from the sum of the heat resistances

 
UA h A h A

R1 1 1
 ,

c c h h
wall= + +  (8.91)

where Rwall is the thermal resistance of the separating pipe wall; for thin-walled coaxial tube 
exchangers this can be assumed to be negligible.

In a counterflow heat exchanger the effectiveness is

 ε
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=
− − − 
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 (8.92)

for R = 1 the effectiveness is

 
N
N1

.TU

TU

ε =
+

 (8.93)

If there is boiling or condensation on one side of the heat exchanger, R = 0 whence

 N1 exp  .TUε ( )= − −  (8.94)

The heat transfer coefficients h, on the other hand, are obtained from the Nusselt number 
Nu:

 hD fNu Convective heat transfer
Conductive heat transfer

Re,Pr ,h

κ ( )= = =  (8.95)
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where h is the convective heat transfer coefficient of the flow, Dh is the hydraulic diameter of 
the flow channel, κ is the heat conductivity of the fluid and f is an empirical universal func-
tion that depends on the heat exchanger geometry. The hydraulic diameter is the diameter for 
a circular pipe, and for the annular space between two coaxial tubes it is Dh = Douter – Dinner; 
for a more complex shape it is defined as

 D
A
P

Cross-sectional area of flow channel
Wetted perimeter/4

4
.h

flow= =  (8.96)

For laminar flow, we have simply Nu = 3.66 if the entrance and exit effects of the flow 
channel are insignificant. For turbulent flow with Re > 10000, the simplest correlation to 
obtain h is that of Dittus and Bölter:

 hD GD c
Nu 0.023 0.023Re Pr ,h h p

n

n
0.8

0.8

κ µ
µ
κ

= =


















 =  (8.97)

where G is the mass flow divided by Aflow, n = 0.4 for the cold fluid and n = 0.33 for the 
hot fluid, and Re is the dimensionless Reynolds number. Given that the Prandtl number for 
helium is practically constant Pr = 0.67 from 300 K to 4 K, and because the heat conduc-
tivity κ and viscosity µ vary as square root of T, the Nusselt number and h vary little in the 
entire range down to 4 K (see Appendix A.5.3). Unfortunately, the correlation is good only 
for high flow rates with Re > 10000. An improved agreement for 0.1 < Pr < 1 (helium gas 
has Pr = 0.67) covers a wider range of flows 3000 < Re < 106 ; the correlation is obtained 
by Taler and Taler [42]

 =Nu 0.02155Re Pr .0.8018 0.7095  (8.98)

The heat transfer of heat exchangers designed for the cooling of shields and support 
structures is obtained also using the above Nusselt numbers.

The boiling heat transfer was discussed in Section 8.1.3 (see Eqs. 8.9–8.13). For the 
condensation of the recirculated 3He there are no empirical nor theoretical correlations 
available; one should note that the low viscosity of the vapor and liquid phases lead easily 
to turbulence in both phases. We have resorted to using the Dittus–Bölter equation above 
and applying a generous safety factor: for the maximum flow of 30 mMol/s, for example, 
this leads to using a pipe of 2 mm inner diameter and 4 m length, wound into a coil in the 
4He evaporator bath.

8.5.2 Pressure Drop in the Heat Exchangers

The incoming 3He, the shields and the thermal losses of support structures are cooled 
mainly by flow of 4He in heat exchangers consisting of circular pipe channels. For heat 
exchange these channels should be as small as is practical, while allowing a flow rate that 
is sufficient to absorb the heat load. Therefore, it is important to evaluate the pressure drop 
in such pipework so that the designed maximum flow rate can be maintained. In general, 
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the pressure drop and heat transfer are coupled problems and they often use the same 
dimensionless parameters.

In this chapter here we shall ignore the gas dynamic effects, i.e. pressure drop due to the 
acceleration in heated flow or deceleration in cooled flow. These effects are not negligible, 
but they are relatively small in the flow regimes common in polarized targets. Thus, the 
formulas below apply mainly to incompressible flow.

The pressure drop per unit length in single phase flow is determined from

 
D

ρ
=

p
L

f u
D

4 ,d
h

2

 (8.99)

where u is the mean fluid velocity and fd is the Fanning friction factor:
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In the last form the friction factor must be solved numerically.

8.5.3 Examples of Polarized Target Refrigerators

The first polarized targets were cooled with small horizontal 4He evaporation refrigera-
tors [43, 44] that were soon modified by adding a 3He circuit [45, 46, 47], and a dilution 
refrigerator circuit [14]. These enable the cooling of targets up to 5 cm length. Slightly 
more sizable versions of these were then constructed to cool targets up to 20 cm length that 
was optimized for physics with hadron beams [15, 46, 47]. Most of these targets used iron 
core magnets with vertical field which imposed a horizontal geometry for the refrigerator. 
Here we shall describe in more detail the recent polarized targets using superconducting 
magnets; these targets were optimized for the studies of the nucleon spin structure using 
the deep inelastic scattering of intense electron and muon beams. In these targets the main 
field and polarization were axial with the beam, but also a transverse field and polarization 
were needed.

Virginia-Basel-SLAC Polarized Target
This target features a powerful 4He evaporation refrigerator built into the vertical cryostat 
of a 5 T superconducting magnet. The field axis is horizontal and the magnet can be oper-
ated with the field axial or transverse to the intense polarized electron beam of SLAC [41]. 
The bore of the magnet is 20 cm in diameter with 100° angle of access about the solenoid 
axis; the split is 8 cm with angles of access 34° horizontally and 50° vertically. Figure 8.7 
shows the side view of the target schematically.
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The central target insert moves vertically along the central bore of the refrigerator per-
mitting the positioning of four different targets into the beam: irradiated ND3, irradiated 
NH3, empty target and a dummy carbon or aluminium target. The vertical move can be 
done remotely without interrupting the cooling of the targets.

The refrigerator is pumped by a Root’s blower cascade with a volume speed of about 
12000 m3/h, yielding 1.3 W cooling power at 1.06 K temperature. Liquid 4He is transferred 
into the phase separator of the refrigerator from the LHe vessel of the magnet via a short 
vacuum-isolated line. The gas out of the separator cools the radiation baffles, waveguides 
and coaxial NMR lines inside the central bore, and the liquid flow to the nose is controlled 
by a needle valve.

The microwave guide terminates into a horn transition just above the targets; this and the 
NMR coaxial lines move vertically inside the insert together with the targets.

The refrigerator and magnet system is based on the 1 K/5 T tests of the Michigan group 
which made a breakthrough in the radiation-resistant polarized targets for experiments in 

Figure 8.7 Side view of the Virginia-Basel-SLAC 4He refrigerator used in the polarized target of the 
SLAC E143 experiment. The vacuum of the split-coil magnet and its 4He cryostat is separated from 
the vacuum of the 4He evaporation refrigerator, which simplifies the target loading and annealing 
operations. Reprinted from Ref. [41], with permission from Elsevier
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the intense proton beams of BNL [48]. A similar target is used at Bonn (with a 4 T magnet) 
[49] and in the Jefferson Lab [50].

SMC Double-Cell Polarized Target
The NA47 experiment of SMC in the polarized muon beam of CERN SPS used a 1.5 m 
long double-cell polarized target to measure very small asymmetries in the deep inelastic 
scattering off polarized protons and deuterons [12]. The target needed a high cooling power 
for the DNP and a low base temperature for frozen spin operation when reversing the target 
polarizations by rotating the axial field orientation and when operating in the transverse 
field mode. The target layout, quite similar to that of its predecessor in the NA2 experiment 
of EMC [28, 29], is shown schematically in Figure 8.8 [32, 33].

The target holder has two main parts: a stainless steel vacuum chamber with 0.1 mm 
thick beam windows and a lightweight plastic part confining the target material in two cells 
made of polyester net with 60% transparency for providing good convectional cooling of 

Figure 8.8 Side view of the Spin Muon Collaboration polarized target used in CERN NA47 
experiment in 1993–1995. The muon beam enters along the target axis from the left and traverses 
the two target cells (1). The microwave cavity (2) is electrically split in two halves by isolating 
structures. The main solenoid coil (3) and its compensation coils (5) are coaxial to the targets. The 
dipole coil (4) is outside the compensation coils, and the main heat exchanger (6) and lower part of 
the still are on the axis of the target. The precooler heat exchangers are housed in the vertical tower 
(7). The target holder has a cold indium seal (8) and a warm seal at RT (9); 10 coaxial lines for NMR 
polarization measurement are housed in the target holder. These and the microwave guides are not 
shown for clarity. The magnet current leads and helium lines pass through the service tower of the 
magnet system on the right
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the targets by dilute solution. The polyester and other plastic parts contribute about 1% to 
the proton NMR calibration signals and this can be corrected with a minor residual uncer-
tainty. The 10 NMR lines traverse the vacuum chamber where heat sinks are provided for 
the thermalization of the lines and radiation baffles with thin Al windows for the beam.

The mixing chamber is made of 0.6 mm thick glass reinforced epoxy and is located, 
together with the main heat exchanger, coaxially inside the microwave cavity. The cavity, 
split in two compartments by the absorbing and reflecting structures of a microwave iso-
lator, is hermetic with indium seals at both ends and is fed by two Ka-band guides with 
tapered slots for side coupling with the cavity compartments.

The still has a lower compartment coaxial to the main heat exchanger, communicating 
with the vertical compartment housing the electrical heater of 0.57 m2 boiling surface to 
stay in the nucleate boiling regime at a flow of 500 mmol/s requiring 16 W of heating 
power. This is based on test data with smaller machines indicating that the critical heat flux 
to film boiling is not much higher than 3 mW/cm2 on the still boiling surface.

The main heat exchanger has a higher-temperature part made of flattened stainless steel 
tubes and has a total inner surface of 0.1 m2. This is in series with the lower-temperature 
part made of 12 sintered copper units arranged in two parallel streams, with 6 units in 
each, crossed at several points to avoid the formation of a cold plug due to the increasing 
viscosity of 3He below 0.5 K. The sintered elements consist of flat plates of P-doped Cu 
sheet of 0.2 mm thickness covered on both sides by 12×4 cm2 layers of sintered 325 Mesh 
Cu powder with 18 µm surface-to-volume diameter; after sintering the plates were bent to 
the shape of the dilute channel and then electron beam welded together. The sintered layers 
have 0.5 mm deep grooves and an average thickness of 0.75 mm; this yields 375 g sintered 
sponge and the exchange surface area of 12 m2 in both streams. The inner grooves are 
skewed to the direction of the flow, thus providing mixing of the flow of the concentrated 
fluid. The outer grooves are oriented along the direction of the flow in the dilute channel. 
The dilute stream is machined on a glass fibre epoxy spacer between the inner and outer 
shells of the main heat exchanger; the channel is 1.7 m long and has an average free cross 
section of 11.5 cm2.

The measured cooling power, plotted in Figure 8.6, was fit by the expression
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which is based on Eqs. 8.42, 8.48, 8.55 to 8.57; the fit yields γ = 500 W/K4, Tσ = 0.248 K 
and the residual heat load = 1.4 mW. These indicate that either the effective heat exchange 
surface or Kapitza conductance of the sintered heat exchanger units are by a factor of 2 to 3 
smaller than the values calculated for a d = 18 µm powder, but that the thermal penetration 
in its pores behaves as expected. These make us suspect that at low flow rate the convection 
makes the upflow parts of the dilute stream isothermal in the exchanger.
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The dilution refrigerator is pumped by a cascade of 8 Root’s blowers with a nominal 
volume speed of 13500 m3/h; the pumping line has a length of 20 m and diameter 320 mm. 
The line begins to limit the conductance at mass flow rates below 200 mmol/s.

The precooling requires from 15 l/h to 40 l/h of LHe between the minimum flow of the 
recirculated 3He of 30 mmol/s and maximum flow of 350 mmol/s during normal operation 
below 500 mK. Higher flow can be tolerated at the cost of a higher mixing chamber tem-
perature; stable operation is possible up to 0.8 K temperature. The 27 l evaporator bath of 
the condenser is pumped with a Root’s blower of 2000 m3/h nominal volume speed; the 
bath temperature is around 2 K. The condenser heat exchanger is made of Cu tubes with 
total inner surface of 0.35 m2.

Prior to arriving into the condenser, 3He is precooled in a parallel-tube heat exchanger 
where 4He gas from the separator is counterstreaming. This heat exchanger is in contact 
with fin-type heat exchangers cooled by the outgoing low-pressure streams of the evapo-
rator and the still.

8.6 Thermometry and Other Instrumentation

8.6.1 Thermometry

The calibration of the NMR polarization measurement circuit requires accurate tempera-
ture measurement around 1 K temperature; this temperature must be stable over extended 
periods of time, and it must be measured with a high absolute accuracy, as was described 
in Chapter 6.

To get a rough temperature dependence of the vapor pressure one may integrate the 
Clausius–Clapeyron equation
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Here L0 is the latent heat of evaporation and C is a constant of integration. The formula is 
not very accurate, because the latent heat of evaporation depends also on the temperature. 
Therefore, one needs a precise empirical formula for the relation between the vapor pres-
sure and temperature.

This is accomplished in the absolute temperature scale between 0.65 K and 3.2 K that is 
defined by the International Temperature Scale of 1990 (ITS-90) as the relation between 
the vapor pressure in Pa of 3He and the temperature T90 in K [51]:
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where the coefficients Ai, B and C are given in Appendix A5.2.
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There are reported deviations of less than 0.2 mK of the thermodynamic temperature 
from ITS-90 above 1 K; these are lesser in the new scale PTB-2006 [52]. The vapor pres-
sure of 3He is not sensitive to high magnetic field, and the capacitive pressure gauges are 
stable and accurate when the gauge cell temperature is controlled in an oven.

The practical temperature scale uses platinum resistor thermometers for the interpolation 
between the fixed points of ITS-90. Resistance thermometers are the most commonly used 
devices for the monitoring and control of temperature, and calibrated devices are commer-
cially available also for the range of dilution refrigeration below 1 K. When choosing the 
resistive temperature transducer (RTD), one should keep in mind its stability, radiation 
resistance and sensitivity to magnetic field. The nuclear transmutation-doped germanium 
RDTs are excellent in all of these, but their sensitivity to magnetic field limits their use to 
the transfer of calibration to other thermometers that are less sensitive to the field. These 
are ruthenium oxide, carbon composite and carbon glass RTDs. Cryogenic resistance ther-
mometry has been reviewed in several papers recently [53–56].

The resistance thermometers suffer from self-heating at temperatures below 100 mK. 
This calls for the use of specialized readout instruments that are available commercially5; 
such instruments use self-balancing AC bridge techniques and their electromagnetic inter-
ference (EMI) control is compatible with the low signal levels. The AC technique avoids 
thermocouple effects in the measurement leads, and the AC frequency is subharmonic to 
50 Hz or 60 Hz, thus minimizing interference due to the parasitic signals at the mains fre-
quency and its harmonics. The self-balancing AC bridge technique has been extended to a 
multichannel system that reduces the cost per measurement channel [57].

In order to avoid the propagation of EMI signals to the resistance thermometers inside 
the cryogenic enclosure, it is tempting to use hermetic feedthroughs of the instrumentation 
wires equipped with RF filters. This is not, however, recommendable in polarized target 
instrumentation, because the RF signals of the NMR coils couple with the thermometry 
wiring in the target. The result is that the NMR coil impedance and tuning are affected by 
the presence of the magnetic materials in these filters, causing tune shift and tune drift due 
to temperature effects and due to external field shift during the NMR calibration process. 
These are particularly harmful for the accuracy of deuteron TE calibration signals, which 
is why their use must be avoided in polarized targets.

8.6.2 Pressure and Vacuum Measurement

Apart from the capacitive pressure gauges for thermometry, the cryogenic circuits of polar-
ized targets need the measurement of the pressure of helium and vacuum in the various 
areas:

(1) boiling pressure in the still, in the 4He vapor-liquid separator and in the evaporator;
(2) condensation pressure of 3He;
(3) outlet and/or inlet pressures of the various heat exchangers;

5 RV Elektroniikka PICOWATT.
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(4) 3He pump outlet pressure;
(5) vacuum measurement in the outer and inner vacuum enclosures.

All of the above can be covered with commercial gauges of hermetic construction, oper-
ating at room temperature. The items (1) to (4) are best measured with metal membrane 
devices with semiconductor strain gauges sensing the deformation due to inner pressure. In 
these gauges the ambient pressure may influence the reading, unless the reference pressure 
is vacuum.

The boiling pressures in the still and/or evaporators are best measured with thermal 
Pirani gauges based on the thermal losses of a heated wire sensing the molecular con-
duction due to the gas. A particularly useful concept is that of a Pirani wire operating at 
constant temperature, because of its fast response time. Unfortunately, the Pirani gauge 
must be calibrated for each gas separately. The calibration can be easily carried out by 
comparison with a McLeod gauge.

The vacuum measurement is useful at the time of the evacuation of the enclosures, 
because it enables the diagnostics of the presence of residual gases and possible large 
leaks into the vacuum circuits. During stable operation, however, it is best to turn off these 
gauges that are based on the ionization of the gas atoms or molecules. The ionizers break 
hydrocarbon molecules of the residual gas which entails generation of neutral hydrogen 
atoms at a low density. Because the wall recombination of these atoms is low due to the 
low density and small sticking probability, the atoms survive travel to the low-temperature 
parts of the insulation vacuum, thus causing a residual heat leak.

8.6.3 Mass Flow Measurement

Calorimetric mass flowmeters measure directly the mass flow of 3He and 4He and their 
mixtures, because their principle is based on the thermal mapping of a heated capillary pipe 
carrying a laminar flow of the gas. As a consequence, the sensor is calibrated for all gases 
having the same molar specific heat, such as the helium isotopes in a wide range of pres-
sures. The range of each flowmeter is selected by the choice of the laminar flow element 
bypassing the measurement capillary.

Most commercially available mass flowmeters are designed for operation in high-pres-
sure gas lines drawn from pressurized cylinders. Consequently, their pressure drop is too 
high for the helium circuits of polarized targets, where none of the gases are at a pressure 
above atmospheric. Fortunately, there is at least one supplier6 that specializes in mass flow-
meters with low pressure drop, with execution that can be made hermetic.

The mass flowmeters are particularly handy for the control of the counterflow heat 
exchanger described in Section 8.5.1. One mass flowmeter measures the flow of 3He and 
gives a signal to a flow controller valve that adjusts the 4He counterflow to the same or 
slightly higher value, measured with a second mass flowmeter.

6 Teledyne Hastings Instruments.
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8.6.4 Helium Level Gauges

Polarized target refrigerators work mostly with continuous flow of liquid helium from a 
transport dewar of liquefier dewar. The transfer line terminates in a liquid-gas separator, 
which does not need level control. The superconducting magnet may have its own helium 
circuit, and many of the magnets are cooled by a liquid bath with a level and flow control 
system adopted to the needs of cooling the coils and the current leads.

The 4He evaporator in dilution refrigerators works in continuous refill mode that needs a 
liquid level measurement. Unfortunately, the commercially available superconducting wire 
level gauges don’t work in a superfluid 4He bath, so the only simple alternative is the use 
of heated resistance thermometers that sense the level based on the heat transfer difference 
between the gas and liquid phases. The level detection is improved by connecting the sen-
sor to a bridge circuit that provides positive feedback to the power dissipated in the sensor 
when it is not submerged in the liquid phase.

Superconducting wire level gauges, however, can work also in superfluid bath, if the 
level measurement is based on the quench propagation in the wire covered with superfluid 
film. A pulsed measurement principle was tested in CERN Cryolab, based on a pulsed 
current source that caused the normal zone to propagate downwards in the gas phase until 
the liquid level was reached, leaving the length of the wire submerged in the liquid in the 
superconducting state. The method works well with 20 µm NbTi filaments extracted from 
a multifilament wire after removing the stabilizing Cu matrix by etching.

8.6.5 Residual Gas Analysis and Measurement of 4He Content of Recirculated 3He

The analysis of residual gases is useful if the cryogenic circuit of 3He gets partially or com-
pletely blocked and needs remedy. A sample of the gases emitted by the blocked circuit 
during its warm-up is collected and analyzed using a quadrupole mass spectrometer. This 
will be discussed in better detail in Section 8.7.

During the initial testing phase of a dilution refrigerator, and also if problems arise 
during routine operation, it is useful to measure the quantity of 4He in the recirculated 3He. 
The quadrupole mass spectrometer can then be used for sampling the gas in the still pum-
pout line. This, in principle, is straightforward, but if high accuracy is required, one needs 
to calibrate the sensitivity of the sampling valve with each isotope, because 3He traverses 
the valve more quickly owing to its lower atomic mass and therefore higher mean velocity. 
The calibration is best obtained by preparing a known mixture of the two isotopes, diluting 
it to a volume connected to the sampling valve and then measuring the two peaks of the 
spectrometer as a function of time; the extrapolation of the resulting peak area ratio back to 
time zero yields the sensitivity ratio in continuous measurement.

8.7 Helium Circulation Systems

Here we shall discuss the systematic elimination of impurities in cryogenic closed-cycle 
hermetic helium circuits involving oil-containing pumps and elastomer seals. Such circuits 
and pumps are usually made of metallic components joined and sealed with torical o-rings. 
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The pumps may have canned electrical motors (Root’s blowers) or rotating lip seals on 
shaft (rotary blade pumps). There are now also rotary blade pumps equipped with magnetic 
coupling through a hermetic wall.

Such circuits and pumps have been run uninterrupted for periods in excess of six months 
in high-energy physics experiments. Substantial experience with them has been gained in 
circuits with flow speeds up to 600 mmol/s. The careful analysis of many incidents has led to 
several systematic measures, with proven effectiveness against cryogenic circuit blockages.

These measures include the preparation and tests of the pumps, the installation of active 
purifiers and the analysis of the incidents in order to be able to eliminate or cure failing 
components. These will be briefly discussed in the subsections below.

8.7.1 Preparation of Pumps

Purge
The delivered pump oils always contain a large amount of evaporable impurities, which will 
be carried out of the pump by the helium stream. These impurities will saturate the purifiers 
if no measure is taken before initial startup after installation or oil change. The analysis of 
these impurities shows large amounts of water (around 50% of the fraction collected in a 
condenser at LN2 temperature) and a wide spectrum of light and heavy hydrocarbons.

Because it is impractical to purge the pump and the oil separately, we have used the 
following procedure for cleaning the pump and the subsequent oil mist filter before con-
nection to the sorbent filters and the cryogenic circuit:

• The first stage of the purge is made by pumping dry air for six hours at a speed of about 
80% of the nominal pump system rating. The exhaust is to the air through a check valve 
and sometimes via an LN2-cooled condenser for observing and monitoring the impuri-
ties. The functioning of the oil mist filter and its automatic return valve is verified. The 
dry air is obtained by passing ambient air through another LN2-cooled condenser.

• The second stage is made by pumping dry nitrogen gas overnight at about 20% of the 
nominal pump speed. The exhaust can be to air with a check valve, or the circuit can 
be closed if an LN2-cooled condenser and an X13 molecular sieve filter7 are used in the 
circuit. Helium can also be used in closed-circuit purge; this can eliminate the third step 
of the purge.

• The third step consists of evacuating the nitrogen from the pump and degassing the oil 
by pumping dry helium through it. We use helium with max. 40 ppm impurities, stored 
in pressure cylinders and cleaned with X13 molecular sieve. The helium purge must last 
several hours.

If the pump system consists of several pumps (usually there is one or more Root’s blow-
ers in front of a rotary blade pump), the whole pump cascade is purged in the same process. 
This obviously requires that all the pumps are operated so that their oil warms up to normal 
operating temperature.

7 Sigma-Aldrich Inc.
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Tests
Leak through the shaft seal of the rotary blade pump may depend on the operating pressure, 
and therefore the pump may show no leak under vacuum, while leaking badly at exhaust 
pressures slightly above atmospheric. Such leaks are usually associated with oil leakage 
through the lip seal. The possible losses of oil out of the shaft seal are therefore monitored 
carefully during the purge.

In closed-circuit purging the loss or gain of gas is always monitored by recording the 
exhaust pressure with an electronic manometer connected to a pen recorder. This allows to 
detect air leaks down to the range around 0.1 litre·atm/day at which blockages of the refrig-
erator will occur only after several weeks of running, provided that the adsorbent purifiers 
will have a normal capacity.

The leak testing of helium pumps by a helium leak detector is difficult if the circuit 
is filled with helium, and in this mode only the pump inlet circuit can be tested while 
the pump is running. The leak detector is then connected to the inlet of the first pump in 
the cascade, after purging by air and nitrogen. If the oil in all the pumps has never been 
exposed to helium or is sufficiently well degassed, leaks of even the outlet of the primary 
pump can be detected on a level which is well below the critical capacity of the purifiers.

The functioning of the oil mist filter is tested in the first step of the purge by observing 
the absence of oil mist in the gas outlet of the pump. A simple method of verification 
consists of placing a clean glass plate for about 10 minutes to the outlet gas stream and 
inspecting it then under microscope. A quantitative measure can be obtained by weighing 
precisely a thin aluminium foil before and after exposure to the outlet gas stream.

The operation of the automatic return valve of the oil mist filter can be tested by filling 
some oil into the chamber and observing the level change after turning the pump on. This 
should be made after initial installation and after all oil changes in the beginning of the 
purge operations.

8.7.2  Helium Purifiers

Oil Mist Filters
The oil mist filters are commercially available in hermetic execution, with stainless steel 
outer casing and elastomer o-ring seals. The mist filters themselves were earlier fabricated 
using paper stacks, and they are now made of porous solid materials and are commercially 
available with automatic oil return valves; these work satisfactorily in helium circuits if 
the filter element is dimensioned correctly for a reasonable pressure drop at the maximum 
mass flow rate.

Charcoal and Molecular Sieve Filters at RT
The gas coming out of a primary pump or a Root’s blower is always contaminated also by 
oil vapors, even if a careful purge has been performed. These vapors can be eliminated to a 
large extent by adsorbent filters made of charcoal or chemisorption filters using molecular 
sieve 13X. The charcoal is made by dehydrating carbonizing coconut shell granules with 

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108567435.009
https://www.cambridge.org/core


 8.7 Helium Circulation Systems 387

water steam flow at 800 °C to 1100 °C temperature; such activated granules have a surface 
of physisorption of about 2000 m2/g. The activated charcoal is particularly effective for 
adsorbing oil vapors, but it also removes smaller amounts of water vapor. The molecular 
sieves are particularly effective for removing water vapor.

Commercial filter cartridges and shells are available in several sizes of shells. They can 
be used with cartridges which are specified for flow rates up to 20 mMol/s and 100 mMol/s 
nominal helium mass flow rates. For short times, three times higher mass flow rate can 
be tolerated. The pressure drop in these filters is rather high, and the flow rating can only 
be extended by installing several of them in parallel. The seals and the pipe fittings of the 
commercial filter shells can be easily improved by machining a groove for a torical seal 
and by brazing metal-seal fittings.

For higher flow rates it is best to fabricate custom-made shells in which one can fill bulk 
sorbent material, and which one can provide with a heater system for rapid regeneration 
of the sorbent.

Activated charcoal cartridges are installed after the oil mist filter of the primary pump. 
As the gas coming out of the mist filter is quite hot at high flow, the charcoal filter is placed 
always in the far end of the line leading to the gas handling and LN2 trap system.

A better choice of sorbent might be the molecular sieve 13X, which can absorb almost as 
much oil vapors, and is effective against water as well. Water is known to diffuse through 
elastomer seals, and also sometimes refrigerators are started under conditions which may 
lead to serious water contamination of the 3He circuit. Under such circumstances the use 
of 13X sorbent should be considered before further purification in an LN2-cooled activated 
charcoal trap.

The main motivations for using an RT sorbent filter are to avoid blocking of the heat 
exchanger of the LN2-cooled trap and to avoid the gradual saturation of the activated char-
coal in it. There is also good evidence for the LN2-cooled trap alone to be ineffective against 
some types of heavy contaminants, including water. It has been speculated that condensable 
gases may form microcrystals similar to snow when cooled rapidly in the heat exchanger, 
or after degassing off from the heat exchanger surface when the flow varies or LN2 level 
drops. These microcrystals may be carried through the sorbent granules and the sintered 
bronze end caps by the gas stream and they will then be evaporated again when flowing up 
in the heat exchanger. Further evidence for this will be provided in Section 8.7.3.

Charcoal Filter at LN2 Temperature
The LN2-cooled activated charcoal trap usually has a volume of about 500 cm3 and it is 
equipped with a tube-in-tube countercurrent heat exchanger dimensioned for the required 
gas flow. The trap is activated by heating it up to about 200 °C temperature and then evac-
uating with a primary pump while purging through the trap a small flow of pure helium 
gas. The purge gas is obtained from a pressure cylinder; the initial impurity level in the 
range of 40 ppm is improved to below 1 ppm by a commercial molecular sieve 13X filter. 
Sometimes helium from a pressurized dewar is used for purging the trap.

The tube-in-tube heat exchanger of the trap is dimensioned for the maximum flow rate of 
the refrigerator. A length of about 1 m is found to be adequate for flows up to 30 mMol/s; the 
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largest polarized target setups have an exchanger of 4 m length and can be used for 3He flows 
up to 350 mMol/s. The inlet to the trap is through the annular space between the tubes and 
the outlet is in the central tube; this arrangement is believed to give some degree of immu-
nity against the blocking of the exchanger by condensable impurities which may obstruct 
the inlet channel of the trap after the first charcoal filter becomes saturated during the run.

The filling of the LN2 dewar of the trap can be made automatic by using a commercial 
LN2 level gauge and an ordinary bellows-sealed electromagnetic valve in the filling line.

8.7.3  Operation of Gas Purification Systems and Analysis of Blockage Events

Snow Blockages
Before the need of activated charcoal filters between the oil mist filter and the LN2-cooled 
trap became known, it was rather common to observe the gradual blockage of the refriger-
ator in about one week from the initial startup. The LN2-cooled trap also usually becomes 
blocked; depending on the geometry of the heat exchanger, the trap gets blocked soon 
thereafter or some weeks later.

The analysis of the vapors collected from these types of blockages has revealed only minor 
amounts of argon, which is thought to indicate the absence of air leakage into the circuit. 
Other evidence against an air leak comes from the relative difficulty in removing the block-
age by warmup and from the observation that the LN2-cooled trap is not saturated by air.

The water signal has also been always detected in the blockage vapors. The most abun-
dant gases present in the blockage vapors, however, were hydrocarbons of various masses 
ranging up to 400, the range of the quadrupole mass analyzer. After speculating that these 
condensable vapors may traverse the LN2-cooled trap in the form of frozen microcrystals 
or snow, this finding led to the addition of the RT charcoal filter, as was already discussed 
above. The improvement immediately enabled one to run for months with no signs of this 
type of blockage.

The ‘snow theory’ of blockages due to condensable vapors is also supported by the find-
ings coming from refrigerators equipped with an adjustable J-T-valve. Before a complete 
blockage occurs, it has been common to observe the rise of the condensation pressure while 
operating in otherwise stable conditions. The initial condensation pressure can be almost 
always recovered by closing the valve for a few seconds and immediately opening it to the 
initial position. The recovery of the condensation pressure is usually spectacular, and we 
found no other explanation than snow-like impurities which are compressed by the needle 
and partly pushed through the orifice.

A snow trap in the refrigerator could be effective against these types of blockage. 
Sintered copper filters were tried for this purpose, but it was found that the sintered 325-
Mesh powder had to be heated to impractically high temperatures in order to be able to 
degas the impurities and recover the normal flow at RT. A better material and geometry for 
trapping the snow should be possible to find, and this would be highly desirable because 
the preventive measures described above may sometimes fail, for example, due to an acci-
dental warmup of the LN2 trap.
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Hydrogen Blockages
The cracking of hydrocarbon or silicon oils always leads to the formation of gaseous hydro-
gen. The statements below are based on experience with systems using Root’s blowers fol-
lowed by a rotary blade pump, but the same problem is known to occur with oil diffusion 
or booster pumps, where the oil is very hot.

Some of the blockages have been recovered after a heatup to only 30 K temperature, and 
we have noted that this kind of incident usually entails the rotary blade pump failure soon 
thereafter. The likely cause of these failures is the extended operation of the pump at low back 
pressures, which usually occurs during frozen spin target runs. The problem appears to be due 
to the lack of oil circulation in the pump, which is normally forced by the pump back pres-
sure. Other types of pump failure have also resulted in detecting suspect hydrogen blockages 
prior to the jamming of the pump. After the pumps were equipped with an internal oil circu-
lation device, no evidence was found of hydrogen blockages when using this type of pumps.

It should be noted that the LN2-cooled trap is capable of absorbing reasonable amounts 
of hydrogen (≈ 0.1 liters NTP) before becoming saturated, if its heat exchanger is correctly 
dimensioned.

Air Blockages
The clearest signature of an air leak is the saturation of the LN2-cooled trap, which must 
be always tested when unblocking the cryostat. The saturation corresponds to the RT pres-
sures varying from a few to 10 bar, depending on the dead volumes in the trap and in the 
exchanger.

The pressure resulting from the warmup of the saturated trap can be tested by deliberately 
letting air flow into the cold trap until about 10 mbar pressure is observed; the untrapped air is 
then purged away by flowing clean helium through the cold trap during about one hour, and by 
finally evacuating the trap before closing and warming it up. We should warn that the trap, the 
heat exchanger and the manometers should be compatible with the resulting pressures; other-
wise the air must be allowed to expand to an additional closed volume which is large enough.

Operation of Gas Purifier Systems
With the measures described above the blockage problems have become rarer but have 
not vanished entirely. Most of the remaining problems are ascribed to the malfunctioning 
or failure of one the filters or traps described above. The failure of the oil mist filter, for 
example, results in the quick saturation of the activated charcoal trap at RT; this in turn 
soon leads to the snow-type blockage of the refrigerator and possibly blockage of the heat 
exchanger of the LN2-cooled trap. The problem can only be cured by changing or improv-
ing the oil mist filter and then cleaning or activating the other two traps.

The gradual saturation of the activated charcoal trap at RT leads also to the symptoms 
of blockages. The interval for changing the filter cartridge depends on its capacity and on 
the running conditions; this interval must be found empirically. If operation periods are 
extended over six months, it may be worth installing two parallel sets of RT filters to facil-
itate their change without interrupting the gas circulation.
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The activated charcoal traps at LN2 temperature have retained a reasonable adsorption 
capability despite observation of oil in them while recharging with new charcoal.

Among all incidents leading to the blockage of the refrigerator, the failure of the oil mist 
filter is probably the worst event to occur. This is most likely to happen during operation 
at high flow. The presence of oil both in the line leading to the refrigerator and inside 
the refrigerator itself should be checked as soon as possible after the first symptoms are 
detected for a blockage of either the LN2-cooled trap or the refrigerator itself.
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9
Microwave and Magnet Techniques

9.1 Microwave Sources

Most polarized targets operate in a magnetic field of 2.5 T or 5 T. The corresponding EPR 
frequencies of free radicals are around 70 GHz and 140 GHz and the free-space wavelengths 
are 4 mm and 2 mm, respectively. Some of the systems operate in 3.4 T or 6.5 T fields, which 
correspond to 95 GHz or 182 GHz frequency bands. The power required for DNP at 70 GHz 
and 0.5 K is typically about 1 mW/g when reversing the polarization, and about 0.2 mW/g 
when optimizing for high polarization. For targets operating in high-intensity beams, the 
typical requirement for DNP is 100 mW/g at 140 GHz and 1 K. Given the power transmis-
sion losses between the source and target, the power output of the microwave source there-
fore puts limits to the sizes of practical targets: about 1 kg at 0.5 K and 50 g at 5 T and 1 K.

High-power microwave sources covering such frequencies use vacuum tubes to generate 
continuous-wave microwave power. These devices are based on the ballistic motion of 
electrons in vacuum, under the influence of controlling electric and magnetic fields, and 
include crossed field tubes (magnetrons), linear beam tubes and fast-wave tubes such as the 
gyrotron. Among these only the linear beam tubes have been commonly used in polarized 
targets; in this category the main devices are klystrons, backward wave oscillators (BWO) 
and extended interaction oscillators (EIO). They work on the basis of bunches of electrons 
flying ballistically through a drift space inside resonant structures, rather than using a con-
tinuous stream of electrons. Gyrotron sources have been recently introduced for DNP in 
high-field MAS NMR spectroscopy [1–3].

9.1.1 Backward Wave Oscillator (BWO)

The BWO or Carcinotron tube has been used in many polarized targets because of its abil-
ity of being electrically tunable in a wide enough range of frequencies (≈ 1 GHz) so that no 
mechanical tuning or magnetic field shift was necessary to reach the upper and lower edges 
of the ESR line frequencies. The principle is similar to traveling wave tube (TWT) oscilla-
tors, but the resonant structure is a series of cavities rather than a helix, and the amplified 
wave travels in opposite direction to the electron beam; power is extracted close to the 
cathode, and the frequency is controlled by the cathode potential that sets the speed of the 
electron beam. The output power is controlled by the anode potential that sets the cathode 
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current. The frequency control is very fast, which enables the efficient use of BWO in radar 
jammers. Moreover, the output power spectrum is rather narrow, which has applications in 
radio astronomy and metrology. More than 10 W of power in the 70 GHz band and up to 
2 W in the 140 GHz band have been available. The disadvantage is that the cathode lifetime 
is rather limited in high-power operation, in comparison with that of the EIO tube.

Similar to the EIO tube, BWO tubes have a strong permanent magnet for focusing the 
electron beam.

9.1.2 Klystrons

Klystron millimeter wave sources also have an electron beam accelerated between a 
heated cathode and an anode. The beam is bunched when traversing an input cavity, and 
the bunched beam loses its energy to the electromagnetic field in the output cavity. A part 
of the output power is directed back to the input cavity, thus closing the positive feedback 
loop. The electric tuning range is some MHz at 70 GHz, and the source has to be tuned 
mechanically to switch between positive and negative polarization frequencies. It has been 
a common practice to use two klystrons tuned to these two frequencies, because the cavity 
tuning has a limited lifetime of about 1000 tuning cycles. The output power is a few hun-
dred mW, which is now accessible also with Gunn and IMPATT diode sources having a 
much broader electric tuning range. Therefore the klystron sources have been replaced by 
IMPATT and Gunn sources in many small polarized targets, test set-ups and instrumenta-
tion applications.

9.1.3 Extended Interaction Oscillator (EIO)

The EIO is a single-cavity tube that is capable of producing a very high continuous wave 
power, since the collector is separate from the resonant structure, and the device is not limited 
by the power dissipation capability of the RF elements. The EIO tube has a separate cathode 
that leads to a lower current density and therefore to a longer cathode life expectancy of sev-
eral thousand hours at maximum specified power that can be 100 W at 70 GHz and 20 W at 
140 GHz; operation at lower power extends the cathode life further. The mechanical tuning 
range is about 3% and electric tuning up to 0.3%; operation at reduced power also reduces 
the electric tuning range. Because of the latter, targets using EIO tubes usually have two 
tubes mechanically tuned to the frequencies of the lower and upper edges of the ESR line. 
The switching between the two sources can then be made by a mechanical waveguide switch.

Low-power microwave sources use solid-state devices such as tunnel diodes, Gunn 
diodes and IMPATT diodes.  The tunnel diode, known also as Esaki diode, is a low power 
device that has been replaced by the Gunn diode devices capable of generating 100 mW of 
millimeter wave power.
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9.1.4 Gunn Diode Sources

A Gunn diode is also known as a transferred electron device (TED); these two-terminal 
devices have heavily n-doped regions for contacts to the lightly n-doped layer in between. 
Unlike the usual diodes where a p-n structure works as a rectifier, TED is symmetric and 
therefore cannot rectify. The frequency can be multiplied and amplified in several steps 
after splitting the power from a phase-locked Gunn oscillator operating at a lower fre-
quency. The power output can be thus increased by combining the power from several 
Gunn diode sources driven by the common phase-locked source.

These Gunn diodes are nowadays made mostly of GaAs; InP is used in their upper fre-
quency range.

The Gunn diode sources are mechanically tunable in a wide range of frequencies, and 
they are used for microwave instrumentation where they have advantageously replaced 
the reflex klystrons. Custom-designed sources can deliver 100 mW power in the V band. 
The sources can be frequency modulated or phase locked to a lower-frequency stabilized 
reference source.

9.1.5 IMPATT Diode Sources

The IMPact ionization Avalanche Transit-Time (IMPATT) diode is a high-power semi-
conductor device used in millimeter wave electronics applications to make oscillators 
and amplifiers. These operate at frequencies between about 3 GHz and 100 GHz or 
more. The main advantage is the high-power capability of the device structure, with 
a diamond substrate as a heat sink. These diodes are used in a variety of applications 
from low-power radar systems to proximity alarms. A major drawback of IMPATT 
diodes is their high level of phase noise that results from the statistical nature of the 
avalanche process, in which a fast electron strikes an atom breaking a covalent bond 
and liberating several valence electrons that are again accelerated by the electric field 
so as to cascade the process. The transit time must match with the oscillation frequency 
to which the resonant structure is tuned. The frequency of an IMPATT oscillator can be 
tuned by adjusting the resonant structure by a micrometer, and to some extent also by 
the bias current.

The IMPATT sources can generate up to 0.5 W power at 70 GHz and therefore they can 
be used for the DNP of small polarized targets or for the tests of small samples in labora-
tory environment.

One of the advantages of semiconductor sources is that they do not require a strong mag-
net for focusing the electron beam. Therefore, they can be placed closer to the polarized 
target magnet. However, these sources must be equipped with an output isolator that has 
a magnetic part in the junction of a waveguide circulator, and this cannot tolerate a large 
stray field close to a superconducting magnet.
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9.2 Waveguide Circuits

9.2.1 Waveguide Modes of Propagation

The transmission of microwave power requires a low-loss line that is also free of discon-
tinuities, which may reflect a substantial part of the power back to the source or its output 
isolator. Coaxial lines can, in principle, transmit millimeter waves, but their transmission 
losses are much higher than those of hollow metallic waveguides.

The electromagnetic waves in a metal-pipe waveguide may be imagined as travelling 
down the guide in a zig-zag path, being repeatedly reflected between opposite walls of 
the guide. For the particular case of rectangular and round waveguides, it is possible to 
base an exact analysis on this view. In general, electromagnetic waveguides are analyzed 
by solving Maxwell’s equations (see Appendix A1.1), or rather their reduced form based 
on sinusoidally varying fields, the electromagnetic wave equation, with boundary condi-
tions determined by the properties of the materials and their interfaces. These equations 
have multiple solutions, or modes, which are eigenfunctions of the differential equations. 
Each mode is characterized by a cut-off frequency below which the mode cannot transmit 
power in the guide; however, the TEM00 mode of a coaxial line transmits down to zero 
frequency.

Waveguide propagation modes depend on the operating wavelength and polarization 
(here meaning the orientation of the electric field vector) and on the shape and size of 
the guide. The transverse modes are classified into different types, with index m giving 
the number of half-wavelengths in the x-direction and index n giving the number of half- 
wavelengths in the y-direction (along the smaller wall of a rectangular guide):

• TEmn modes (transverse electric) have no electric field in the direction of propagation.
• TMmn modes (transverse magnetic) have no magnetic field in the direction of propagation.
• TEMmn modes (transverse electromagnetic) have neither electric nor magnetic field in 

the direction of propagation; these modes occur in coaxial transmission lines.
• Hybrid modes have both electric and magnetic field components in the direction of 

propagation.

9.2.2 Rectangular Waveguides

We shall discuss here only the TE and TM modes and limit ourselves to standard rectan-
gular waveguides; round waveguides have a different definition of the indexes, which will 
be discussed in the following subsection. Among the modes the fundamental mode has 
the lowest cut-off frequency and therefore the transmission along the guide takes place 
always in single mode up to the next lowest cut-off frequency. Only one polarization 
is then transmitted and the design of waveguide couplers, junctions, attenuators, phase 
shifters, terminator loads, circulators and power loads is reliable and predictable in the 
single-mode band.
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Table 9.1 Rectangular waveguide bands most commonly used in the microwave sources and circuits 
in polarized targets. Transmission of power between the recommended frequencies takes place in 
single mode, which facilitates and simplifies the characterization of the waveguide components. X 
band and Ka band guides are oversized at 70 GHz and 140 GHz frequencies; their straight sections 
with tapered transitions to single mode guides transmit power with substantially lower losses at these 
frequencies.

Waveguide band designation
Recommended low-
frequency limit (GHz)

Recommended high-
frequency limit (GHz)

X band 8.2 12.4
Ka band 26.5 40.0
V band 40 75
E band 60 90
D band 110 170

Let us assume the cross section of the guide shown in Figure 9.1 having metallic walls 
with width a and height b, and let us align the coordinate axis z along the direction of prop-
agation of the electromagnetic wave, axis x along the wide wall and axis y along the side 
wall, as shown by Figure 9.1. Without going into the details of the solution of Maxwell’s 
equations (see Appendix A1.1) in the case of propagation of waves with angular frequency 
ω, we just note that the electric field in a charge-free region must obey [4] the Laplace 
equation:

 
σ

εω
µεω∇ + +







=
iE E1 0 ,2 2  (9.1)

which yields the equation of the electric field along y-direction in the case of the TE0m 
modes:
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This simplified equation was obtained by considering propagation at a constant angu-
lar frequency ω in the free space limited by high-conductivity walls. The solution of 

Figure 9.1 Dimensions of a rectangular waveguide, and the coordinate system used in the text
z

y

x

b
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the differential Eq. 9.2 gives Ey(x, z) from which the magnetic field components can be 
obtained by taking the derivatives
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 (9.3)

If the guide is filled with air or vacuum whose conductivity σ is zero, and if we assume that 
the wave propagates in the z -direction as

 ( )= γ−E K x y e, ,y
z  (9.4)

where iγ α β= +  is the complex propagation constant, we get

 
E
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k Ey
y

2

2
2∂

∂
= −  (9.5)

where

 γ ω µ ε= +k 2 2 2
0  (9.6)

and Ey is only a function of x and y. Given the general form of the solution of Eq. 9.5

 E A k x A k x ecos siny
z

1 2( )= + γ−  (9.7)

and the boundary conditions of rectangular section with high conductivity so that the elec-
tric field vanishes at x = 0 and x = a, we get

 A

A ka

0,

sin 0,
1

2

=

=
 (9.8)

which yields

 E Ae m x
a

siny
z π

= γ−  (9.9)

and

 k m
a

.2 2
0γ ω µ ε π

= + =  (9.10)

So there can be an infinite number of modes at high enough frequencies. The lowest fre-
quency propagation mode is obtained for m = 1, which is the case of the fundamental 
single-mode propagation with the constant
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Equation 9.11 can have a real or imaginary value, among which the real value corresponds 
to an exponentially attenuated penetration of the microwave field into the guide, and the 
imaginary value

 γ α β ω µ ε π
= + = + −







i i
a

0 2
0

2

 (9.12)

yields propagation without attenuation. Therefore the low-frequency limit of propagation 
is at the cut-off angular frequency:

 ω π

µ ε

π
= =
a

c
a
.c

0

 (9.13)

For an air-filled or evacuated line the cut-off frequency is then f c a/ 2c ( )=  and the cut-off 
wavelength is

 a2  .cλ =  (9.14)

The phase velocity u /p ω β=  for the same line is
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p 2
π
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−










 (9.15)

and is seen to be frequency dependent and higher than the speed of light. This makes the 
guide behave like a dispersive medium, and the group velocity of a pulse propagated along 
the guide is

 u c
u

c c
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1g
p

2 π
ω

= = −






 (9.16)

is always smaller than c and becomes zero at the cut-off frequency.
The impedance of the waveguide transmission line is useful for understanding the reflec-

tions and matching of the devices connected to it. The guide impedance is usually defined 
as the ratio of the maximum amplitudes of Ey and Hx; the magnetic field can be obtained 
from the electric field of Eq. 9.9 by taking the derivatives of Eq. 9.3:
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where we can see that the impedance of the rectangular guide in TE01 mode is always 
higher than the impedance of the free space Zf , and that it depends on frequency, unlike the 
impedance of a coaxial line in the fundamental mode. Here Zf = 377 Ω is the impedance 
of free space:
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 Z 377 .f
0

0

µ
ε

= = Ω

The attenuation of the waveguide is mainly due to the finite conductivity of its inner 
walls. In a given mode of propagation, the power losses that can be compared with the 
transmitted power are given by the Poynting vector. Without following through the details 
of the derivation that is beyond our scope here, we shall just give the result for the attenu-
ation constant α:
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where the propagation constant is, from Eq. 9.12,
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 (9.18a)

σ is the conductivity of the wall metal, and µ its magnetic permeability. By inserting the 
permeability µ = µ0 and conductivity of copper σ = 0.596×107 1/(Ωm) (at RT), we find the 
attenuation of a V band guide of about 0.3 dB/m for 70 GHz microwave frequency.

In Eq. 9.18 the conductivity of the metallic walls appear explicitly, because its finite 
value makes the electromagnetic field attenuate exponentially with the depth from the 
metallic surface. Both the electric and the magnetic fields fall to 1/e in a distance

 
2

,δ
µσω

=  (9.19)

which is known as the skin depth [4]. At 70 GHz in pure Cu, this is 0.25 µm, which is about 
one order of magnitude higher than the mean free path of the conduction electrons (a few 
tens of nm). Therefore at the millimeter wave frequencies, the surface conductivity is not 
yet limited by the anomalous skin depth [5], the effects of which begin to appear only when 
the frequency approaches the electron collision frequency

 n e
m

1 ,e

e

2

τ σ
=  (9.20)

where me and ne are the mass of the free electron and their number density. For copper this 
is in the far infrared region at RT, but if the temperature is lowered below 1 K, the conduc-
tivity can be several orders of magnitude higher and the skin depth may be higher than that 
given by the low-frequency Eq. 9.19.

Attenuation in a straight oversized guide can be substantially lower than that of a sin-
gle-mode guide, if the transition from single-mode guide at both ends is done progressively 
so as to reduce the reflections and mode conversions at both ends. It is usual to place the 
microwave source and its control circuitry at a distance of order 10 m from the polarized 
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target, and to cover the essential part of the distance by an X-band guide where the attenua-
tion is about three times lower. Discontinuities, bends, twists and other possible transitions 
are excluded in this line; these must be made in the single mode sections of the transmis-
sion line behind the tapered transitions.

9.2.3 Round Waveguides

Because the transmission line inside the refrigerator often needs to traverse hermetically 
through various walls and because there needs to be at least one waveguide window that 
separates the air-filled and evacuated sections of the guide, it is practical to make a section 
of the transmission line out of a round tube having a low thermal conductivity, for example, 
70/30 cupronickel, coated inside by silver or copper layer of a few skin depths thickness, 
usually 0.5 µm to 1 µm.

In round waveguides the first subscript designates the order of the Bessel function that 
is the solution of Laplace’s equation derived from the wave equation in cylindrical coordi-
nates, and the second subscript gives the number of the root of this Bessel function; these 
stem from the boundary conditions that must be satisfied at the inner surface of the metallic 
wall of the round guide.

In a round guide the circular symmetry leads to the propagation with no preferred trans-
verse orientation. Any imperfection of the guide can then change the orientation of the 
transverse electric field of the TE11 mode and also to conversion to another possible mode. 
Therefore, it is common to maximize the transmission of the microwave power in situ by 
rotating the plane of the polarization so that the transmission through the round guide and 
coupling to the target cavity are maximized. This is easily accomplished by using a suitable 
resistance thermometer as a microwave bolometer inside the refrigerator near the target.

The simplest mode of propagation in a round waveguide is TM01 in which the magnetic 
field lines are circles concentric with the axis of the guide, the z-axis of our cylindrical 
coordinate system, with no component in the z and radial directions. The electric field lines 
meet the walls perpendicular to it and to the magnetic field lines, with components in the z 
and radial directions. One uses the term circular polarization for this mode of transmission, 
because the electric field has components in all transverse directions.

The dominant mode (with lowest cut-off frequency), however, is TE11 in which the elec-
tric and magnetic field lines resemble those of the TE01 mode of a rectangular guide. The 
electromagnetic wave equation, with boundary conditions determined by the properties of 
the materials and their interfaces, can be solved in cylindrical system of coordinates. These 
equations have multiple solutions, or modes, which are eigenfunctions of the differential 
equations; because of the cylindrical symmetry, the eigenfunctions are Bessel functions, 
whose zeros are determined by the boundary conditions given by the cylindrical walls.

The details of the mathematics are beyond our present scope, and we shall just summa-
rize here the results for the mode TE11 in which the electric field has no component in the z 
direction, and which has the lowest cut-off frequency.
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Maxwell’s equations for sinusoidally varying fields yield Laplace Eq. 9.1; in cylindrical 
coordinate system, this can be written, for a round guide with propagation in the direction 
of the z-axis in the TE11 mode (with no electric field in the z direction):
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Here γ is again the propagation constant that has to be determined. These can be (tediously) 
further simplified to obtain the differential equation for the radial component of the trans-
verse electric field
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where
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The solution of Eq. 9.22 can be tried by the technique of separated variables, which is done 
by the replacement
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This can be written as two independent differential equations
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The solution of the first of these is a sinusoidal dependence on θ; by choosing the elec-
tric field orientation so that T(θ) vanishes for all r when θ is 0 and nπ, and by choosing the 
simplest mode, we find C1 = 1 and

 T C sin  .2θ θ( ) =  (9.27)

The solution of the second Eq. 9.26 is

 ( ) ( ) ( )= +R r FJ hr GY hr ,1 1  (9.28)

where J1 and Y1 are first-order Bessel functions of the first and second kind, respectively. 
The function Y1 diverges for r = 0, so that G must be zero for a physical solution. These 
yield the complete solution for the radial electric field:

 rE r AJ hr, sin .r 1θ θ( ) ( )=  (9.29)

The azimuthal component Eθ(r,θ) is obtained by taking the derivative of the fourth of Eq. 
9.21 and integrating
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which yields

 E r AhJ hr B, cos .1θ θ( ) ( )= ′ +θ  (9.31)

The boundary conditions for Eθ(r,θ) are
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The second of these gives that the constant of integration must be B = 0. The first condition 
yields

 J hb 0,1( )′ =  (9.33)

which implies that hb must be a root of the derivative of J1(x). For the TE11 mode this is the 
first root is p1 = 1.84118, which leads to

 ω µ ε γ σ ω µ( )= = = + −hb p b i1.84118 .1
2
0

2
0

 (9.34)

Because the conductivity inside the evacuated or air-filled guide is zero, we can solve

 γ ω µ ε α β( )=
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and as we are here interested in unattenuated (α = 0) propagation, we find the propagation 
constant
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The first roots of the low-order Bessel functions can be found in Appendix A.8; higher 
order functions and their roots can be found in all major tables of functions, for example, 
Ref. [6].

The electric field components can now be summarized for the TE11 mode:
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The magnetic field components can be found now from Eq. 9.21:
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The cut-off frequency for mode TE1n is obtained by putting in Eq. 9.36 β = 0:

 f
cp
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;n

0 π
=  (9.39)

this gives f0 = 44 GHz for a guide with 2 mm inner radius in TE11 mode. The cut-off fre-
quency for the TM01 mode is 57 GHz, so that at 70 GHz both modes can propagate.

The phase velocity, guide wavelength and propagation impedance are for the TE11 mode:
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In the case of the TM01 mode, the Laplace equation can be again written in the form of Eq. 
9.21, while noting that now the magnetic field has only the azimuthal component, with 
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no radial nor axial component, and the electric field has no azimuthal component. This is 
simpler than in the above case of the TE11 mode.

Without going to the details, we just quote here the results for the TM01 mode:
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The attenuation of the TM01 mode is approximately
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the attenuation of the lowest mode TE11 has a similar magnitude and frequency dependence.

9.2.4 Waveguide Components

The microwave circuitry for a polarized target consists of

• the source and its control and measurement devices that can be conveniently mounted to 
an optical table in a control room;

• the oversized waveguide that brings the power to the target sitting in the beam area with 
controlled access;

• transition to a single mode guide and to a round guide, followed by a rotatable joint, the 
waveguide window and the round guide section and

• transition to a rectangular guide section and coupling to the target cavity.

The waveguides are connected together and to other components by standardized flanges 
that have precise alignment pins (dowel pins) to provide a good match of the rectangular 
openings of the guides. For V and E band guides the round flanges are most commonly des-
ignated UG-385 coming from the U.S. Military Standard. Other standardization organiza-
tions (IEC, EIA and RCSC) have different designations for essentially the same flange type, 
thus permitting their interconnection with minimal problems. Oversized X band guides use 
rectangular flanges with different type designations following the above standards.
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The components include various types of passive and active devices; among the passive 
components are guide junctions, isolators, power absorbers, attenuators, phase shifters, 
tuners, couplers, shorts, antenna horns, switches, reflectometers and tapered transitions 
to other guide sizes and so on. Active devices include diode mounts, harmonic mixers, 
harmonic generators and amplifiers. The commercial suppliers provide test data sheets for 
their components that include insertion loss and often full scattering (S-) parameters mea-
sured in the specified frequency band.

If access to a fully equipped microwave lab with a vector network analyzers and spec-
trum analyzers is not conveniently available, the minimal instrumentation for the control 
of waveguide circuitry would include a search horn antenna and a tunable diode mount 
to search for possible leaks of the microwave power from the connections of the guides. 
Also, a reflectometer with a tuned diode mount and a calibrated attenuator allow the precise 
measurement of reflected power; this is useful for optimizing the round waveguide section 
and the coupling from the waveguide to the cavity inside the refrigerator. It is also desirable 
to control the reflections of the tapered transitions to and from the oversized guide sectors.

Transition from a single mode guide to a round guide should be equipped with a rotating 
flange on the round guide. This allows to twist the single mode guide so as to orient the 
electric field for optimum coupling to the target cavity.

9.2.5 Waveguide Windows

The waveguide must be equipped with at least one window that separates the RT section 
filled with air from the section traversing the isolating vacuum of the refrigerator. If the 
vacuum is sectorized so that the coldest part of the refrigerator has its independent vacuum, 
a second window must be installed in the guide. This is also required if the guide terminates 
in the part of the refrigerator that is exposed to helium.

The window is most easily installed in a round section of the guide. It is often made of 
FEP foil of 0.25 mm thickness, clamped between round guide flanges of the UG-385 size, 
shaped so that one side is equipped with a rounded knife, whose height is one half of the 
foil thickness. As such a flange may leak power out and also cause a reflection of power 
back towards the source, it is often equipped with a quarter-wavelength deep circular choke 
groove, which is about 0.4 mm wide and 1.2 mm deep. The short on the bottom of the 
groove ditch is thus transformed into a high impedance at its mouth. The groove should 
be at a distance of one quarter wavelength from the radius of the guide; thus the gap due 
to the FEP foil will transform the high impedance into a short circuit at the radius of the 
guide. Here we must note that the wavelength in this case refers to that in the FEP-filled 
gap, which is longer than the free-space wavelength.

It should be noted that the choke in the window flange is not needed if its design min-
imizes the power leakage, and if the reflected power does not cause problems for the 
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microwave power source. Choked flanges are mainly used for high-power systems where 
pressurization of the guide is used for preventing arcing.

9.2.6 Target Cavity

Small target cavities can be fed by a conical antenna transition from the guide to the side 
or end of the cavity, as best fits for the layout of the refrigerator. For longer targets the 
coupling to the target cavity is usually made from the long side using a rectangular guide 
section.

When a single-mode guide is used, the coupling slots are machined to the short side of 
the guide. These transverse slots are 1.5 mm wide and inclined by about 15° from trans-
verse orientation and spaced by one wavelength of the guide. If the coupling to a long cav-
ity must be uniformly distributed, the coupling slots may be grouped, and the groups may 
be spaced so as to get progressively increased coupling along the guide. The slot width can 
be also used as an adjustable parameter.

If an oversized Ka band guide is used for the cavity feed, the coupling is made via a lon-
gitudinal slot machined to the center of the wide side of the guide. The slot can be tapered 
so as to obtain a better uniformity of the coupling along the length of the target; the tapered 
slot dimensions are best adjusted by measurement of the microwave field strength inside 
the cavity when it is loaded by a graphite absorber.

The target cavity can be best defined as a multimode resonant structure that is not tuned 
to a particular frequency or designed to favor a particular mode or field orientation. The 
walls are made of high-conductivity Cu sheet and leakage through cracks in the design is 
controlled by choke grooves and absorbers. The cavity can be cooled by the flow of helium 
so that its heat load due to microwaves is not absorbed by the target refrigeration cycle.

For a uniform irradiation of the target inside the untuned multimode cavity, the cavity 
should be as large as possible. However, as the cavity losses increase with its size, a com-
promise must be sought that also takes into account the requirement that heavy materials 
should be minimized in the target surroundings.

Microwave field strength inside the cavity can be monitored by a carbon composite 
resistance thermometer that acts as a very sensitive bolometer when the refrigerator is in 
normal operating mode. It serves for two useful purposes, with a fixed microwave fre-
quency while scanning the magnetic field:

(1) Search of ESR absorption line edges, which appear as sudden reduction in the field 
strength when the magnetic field is scanned through the resonance condition.

(2) Observation of the cavity tune and mode switches when one scans the field outside the 
absorption line, where the dispersion part of the ESR line has a substantial frequency 
dependence.
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The details of the ESR absorption line, however, cannot be resolved by such a bolometric 
detector, because the spin density is so high that the target appears as almost ‘black’ when 
its dimensions exceed the wavelength.

9.2.7 Frequency and Power Measurement

The microwave frequency can be measured by a cavity wavemeter and a diode detector. A 
calibrated micrometer dial of the wavemeter allows the direct reading of the frequency at 
the dip of the diode signal. As the microwave diodes have an extremely low capacitance, 
they are quickly destroyed by static charge if they are not connected to a readout device 
with a low impedance, such as a 10 µA moving coil meter.

The cavity wavemeter and diode can be replaced by a harmonic mixer that downcon-
verts the microwave signal to the range of a direct frequency counter, which permits to 
relate the microwave frequency with that of a local oscillator phase locked to a crystal 
standard. Commercially available microwave counters determine which harmonic of the 
local oscillator has been selected for converting the frequency to the range of the counter 
and calculate directly the microwave frequency from the harmonic and downconverted 
signal frequencies.

Rectifying diode detectors mounted in a tunable cavity also give an idea of the micro-
wave signal amplitude, if a calibration is available. A calibrated attenuator, based on 
Faraday rotation, permits to make accurate measurement of the relative power, based on 
the diode signal. The absolute power measurement, however, requires a calorimeter that is 
calibrated by electric power applied to the microwave absorber structure equipped with a 
heater and a thermometer.

The polarized target refrigerator can be also used as a calibrated calorimeter, if the cool-
ing power has been accurately determined as a function of coolant temperature and its 
rate of circulation. This works well in evaporation refrigerators where the boiling pressure 
gives the temperature and cooling power. However, in a dilution refrigerator a resistance 
thermometer is the most practical thermometer, and as the microwave power heats it sub-
stantially, the power to be measured must be turned off and the record of the temperature 
reading has to be extrapolated back to the moment when the power was turned off. This 
extrapolated temperature then gives the heat load due to microwaves whose power was 
switched off just prior to the record [7].

As no powermeter can withstand the full output power of an EIO or a BWO tube, the 
power must be sampled by a directional coupler; this may be rated with a –20 dB or –40 dB 
coupling coefficient, depending on the power of the source and on the power handling 
capacity of the meter. Moreover, it is practical to place an adjustable attenuator between 
the coupler and the powermeter; this may be a blade attenuator or a calibrated Faraday 
rotation attenuator.
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9.3 Iron Yoke Magnets with Warm Coils

First polarized targets used iron yoke magnets powered by water-cooled copper coils. They 
were operating in 1.8 T to 2.0 T field obtained between soft iron pole pieces, and the micro-
wave frequency was around 70 GHz, because the target material was LMN single crystal 
with Nd3+ doping, oriented so that the g-factor had its maximum value.

The advent of high polarization in glassy alcohol and diol materials doped with free 
radicals or metallo-organic complexes led to the need of a higher magnetic field of 2.5 T, 
because the g-factors of these dopants are close to the free-electron value, with a fairly small 
anisotropy. It was easier and less costly to equip the magnets with cobalt-iron pole pieces 
rather than buying new microwave sources. Cobalt-iron alloys with about 50% cobalt have 
saturation magnetizations reaching 2.35 T, thus permitting to obtain 2.5 T in between pole 
pieces when the current coils add some tenths of tesla to the field strength. Such pole 
pieces need, however, to be annealed during 10 h at 800°C and then slowly cooled to reach 
maximum permeability. Figure 9.2 shows the permeability of annealed cobalt-iron alloy 
Vacoflux® 50.1 This alloy is commonly used for 2.5 T magnets of polarized targets.

The soft iron yoke has usually C shape and a beam hole in the vertical return flux part, in 
order to maximize the angle of access to the target in the horizontal scattering plane. This 
allows to make transverse spin asymmetry measurements with vertical target spin orienta-
tions. Longitudinal spin orientation then necessitates frozen spin operation in the holding field 
created by a thin superconducting solenoid wound around the inner vacuum jacket covering 
the target. A typical C-yoke-polarized target magnet was pictured by Desportes in Ref. [8].

Figure 9.2 DC magnetization of Vacoflux® 50 alloy containing 49% Co, 49% Fe and 2% V. The 
material must be annealed for obtaining maximum relative permeability
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1 Vacuumschmelze GmbH.
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A rule-of-thumb calculation of the current coils is based on the concept of ‘reluctance’ of 
the magnetic circuit, which has similarity with the resistance of a circuit with resistances in 
series. It is useful for the cases where the stray magnetic flux is small in comparison with 
the flux carried by the magnetic circuit, and in particular when the volume in the air gap(s) 
(or in media with low relative permeability) is small in comparison with the volume of the 
magnetic circuit with a high permeability.

9.3.1 Magnetic Susceptibility and Boundary Conditions

Let us assume that the magnetic parts are ideally permeable so that there is no permanent 
magnetic moment in the absence of true currents, and where the magnetic moment is pro-
duced only by the field produced by external true currents. The field equations are then [4]

 
� d J

B

H l

0;

.true∫
∇ ⋅ =

⋅ =
 (9.43)

Assuming now that M Hmχ= , we get

 B H H H1m r0 0µ χ µ µ µ( )= + = =  (9.44)

where µr is the relative permeability and µ is the absolute permeability. At a boundary 
between two linear media 1 and 2, denoting with n the unity vector normal to the interface, 
the relation between the normal components is

 n B B n H H 0,2 1 2 2 1 1µ µ( ) ( )⋅ − = ⋅ − =  (9.45)

while for the tangential components

 φ φ
µ µ( )( )× − = × ∇ ⋅ − ∇ ⋅ = × −
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B B
K ,m m2 1 2 1

2

2

1

1

 (9.46)

where ϕm is the magnetic scalar potential and K is the true surface current between the two 
media, which is usually zero in magnetostatic problems. The normal component of B is 
thus continuous across the boundary, and the tangential component of H is continuous if 
there is no surface current. This also applies approximately in the saturated magnetic mate-
rials, if the saturation magnetization is not complete.

9.3.2 Magnetic Circuit and Reluctance

We can note that Eqs. 9.43 and 9.44 are mathematically identical with the equations of 
stationary flow of current in a continuous medium in the presence of nonconservative elec-
tromotive force, which leads to the concept of resistance of linear conductors in series [4], 
[9]. This analogy leads to the concept of the magnetic circuit, and the solution of linear 
magnetic media problems given by the expression for the magnetic flux Φm:
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 ∫Φ = ⋅ =
ℜ

d IB S ,m  (9.47)

where

 ∑ µ
ℜ =

l
Si

i

i i

is the magnetic reluctance that has the units ampere/weber; here Si is the cross-sectional 
area of the magnetic conductor, li is its length and µi is its magnetic permeability. Thus, the 
reluctances of components in series or in parallel are obtained analogously with electrical 
resistance from

 
∑

∑
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i
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i i
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 (9.48)

If the current conductor carrying I is a coil making N turns around the magnetic circuit’s 
ring, the current must be understood as ‘ampere turns’, i.e. NI.

If a section of the magnet’s ring is replaced by an air gap with shaped pole pieces, one 
obtains an electromagnet with reluctance [9]

 
µ

ℜ = ℜ + ℜ = ℜ +
′

l
S
,iron air gap iron

air

0 air

 (9.49)

where lair and S’air are the length and effective cross-sectional area of the gap, respectively. 
The flux throughout the circuit is then obtained from Eq. 9.47:

 

µ

Φ =
ℜ
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′
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 (9.50)

and the magnetic flux density (= magnetic induction) in the air gap is

 B
S

NI
S l

.m
air gap

air

0

0 iron air air

µ
µ

= Φ
′

=
ℜ ′ +

 (9.51)

It should be noted that the magnetic permeability may be more than 10,000 at low mag-
netic field, while near saturation it can be two orders of magnitude lower. This happens in 
particular in the pole pieces shaped to concentrate the flux so as to reach 2.5 T flux density. 
In this case the reluctance of the pole pieces is not linearly related with the current of the 
coils, and an iterative process or simulation must be used to obtain the magnetic induction 
between the pole pieces.

In the case where the reluctance of the air gap dominates that of the magnetic circuit, Eq. 
9.51 can be approximated by
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 B
NI
l

,air gap
0

air

µ
≅  (9.52)

which can be used to obtain a rough value of the magnetic induction in the gap at low 
current in the coils.

9.3.3 Magnetic Field Uniformity in the Air Gap

In Chapter 4 we have shown that the polarization can be increased if the magnetic field uni-
formity is made better. Improvement of DNP down to the range of 10–5 in field homogene-
ity can be seen when the dominant broadening mechanism is the anisotropy of the g-factor 
and the dynamic cooling of spin-spin interactions dominates other mechanisms of DNP.

The uniformity of 10–5 in an iron-core magnet can be reached by the shimming of the 
pole pieces. This is accomplished by attaching shaped foils of soft iron onto the pole 
pieces. The shape of the foils can be calculated by a numeric simulation of the magnetic 
circuit. The procedure is iterative: after measurement of the unshimmed field map in the 
air gap, the magnetic field is numerically simulated, and the simulation parameters are then 
adjusted so as to get a good fit with the measurement. The main adjustable parameters are 
those of the magnetic permeability curve and the effective density of the magnetic material 
in the pole pieces. The shape of the shims is then optimized by numeric simulation so that 
they give a desired improvement in the uniformity of the field within the planned volume of 
the target. They are fabricated and mounted for a new measurement of the field map. This 
iteration is then repeated until the desired field uniformity is reached.

The magnet modelling and numeric simulation are based on the potential field approach 
of Maxwell equations: in the case of static magnetic field, one determines the magnetic 
vector potential A from which the magnetic induction is readily obtained by B A= × . In 
the general potential field approach Maxwell equations (see Appendix A.1.1) are
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 (9.53)

where φ is the scalar electric potential, ρ is the charge density and J is the current density. 
In the case of a static magnetic field, there is no explicit time dependence and the charge 
density is zero everywhere; moreover, for stationary currents we may put

 A 0,⋅ =  (9.54)

which involves no new physical assumptions [4]. With this simplifying assumption, the 
differential equation for A reduces to the vector form of Poisson’s equation:

 A J,2
0µ= −  (9.55)
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which can be solved numerically by finite element (FE) computational methods that 
are commercially available. The commercial software can be used for the creation of a 
three-dimensional mesh in which Eq. 9.55 is solved for each node in the mesh, which can 
be of tetrahedral or of more complex shape. Simpler geometries can be solved in a two- 
dimensional mesh; these include PT magnets with circularly symmetric pole pieces. The 
non-linearity of the magnetic circuit materials is taken into account by the use of experi-
mental data on the magnetic permeability as a function of magnetic field. The shimming in 
this case must be done at the field value chosen for the polarized target.

A large polarized target magnet, with cobalt-iron pole pieces of 25 cm pole tip diameter 
and 7.5 cm gap length, was successfully shimmed to reach the field uniformity of 10–5 at 
2.5 T in the target volume of 12 cm length and 20 mm diameter [7]. The field modelling and 
simulation used the Poisson FE software of CERN program library [10]. Deuteron polar-
izations in excess of 40% were first time reached in a such a large target volume, which 
proved the usefulness of the improved field homogeneity. This target was then used in a 
series of polarized neutron charge exchange reactions using the polarized deuterated target 
and kaon and pion beams at CERN [11, 12].

9.4 Superconducting Magnets

Superconducting solenoids are ideally suitable for longitudinally polarized targets, but they 
can also be used for transverse polarization using a split coil design. The modelling and 
simulation is particularly easy if there are no magnetic materials in the proximity; other-
wise it is necessary to use the FE software, especially if there are nearby magnetic shields 
or spectrometer magnets. The key issues arise in the winding of very regular coils that are 
needed for reaching the required field homogeneity:

• When using a round conductor, the wire valleys in the coil layers must be filled with 
epoxy before winding the next layer, so as to avoid winding irregularity at the crossing 
of the return layer wire with that of the underlying layer.

• With a rectangular conductor, the twist of the filaments ends up in a twist of the conduc-
tor after final drawing steps, unless bundles of filaments with opposite twist are used. If 
the twist remains under control, epoxy filling of the layers is not needed, and wet wind-
ing is alternative to impregnation after dry winding.

• Winding forces on the mandrel tend to bend and deform the solenoid into the shape of a 
‘banana’. A support mandrel is used to prevent this.

• Magnetic forces on the coils need to be supported by Al alloy tape or wire wound on top 
the coils.

• The coil assemblies must be supported inside the cryostat using cryogenic support rods 
that need heat sinking and low conductivity, while withstanding the applied magnetic 
and gravity forces.

The main configurations of axially symmetric superconducting coils were discussed 
already in 1971 by H. Desportes, with several examples of early magnets reaching over 
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2.5 T fields in a sizable target volume [8]. As the superconducting wire and winding tech-
niques have evolved since then, today such magnets reach over 5 T fields. In the small 
volumes of high-resolution NMR probes fields above 20 T have been reached.

9.4.1 Solenoid Field

To discuss field quality in detail, we must first estimate the magnetic field on the symmetry 
axis of an ideal thin solenoid shown in Figure. 9.3, with a winding radius a, total length l 
and total number of turns N. Using the notation of the figure, the field at point P is readily 
obtained by integration from the law of Ampère [9]:

 H NI
l2
cos cos .2 1β β( )= −  (9.56)

At the center of a very long solenoid cosβ2 ≅ 1, cosβ1 ≅ –1 and the field is therefore close to

 H NI
l

≅  (9.57)

and at the end it is one half of this:

 H NI
l2
.≅  (9.58)

This suggests that the field at the end could be brought up to its value at the center by 
roughly doubling the number of turns towards the ends of the coil. This is done usually by 
adding compensating coils at the ends of the solenoid.

The field at the center of the uncompensated solenoid is approximately

 H NI
l

a
l

1 2  ,0

2

≅ −


















 (9.59)

Figure 9.3 Model for a thin long solenoid of length l and winding radius a. See text for the evaluation 
of the field at point P on the axis
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and if z is the axial distance from the center, the field on the axis drops as

 H z H a
l

z
l

1 2 2 .0

2 2

( ) ≅ −
































 (9.60)

Let us see numerically what this implies, by assuming a coil with 2a/l = 0.1 and z/l = 0.1; 
these yield

 H z H z
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H1 2 10 1 2 10 .0
2

2

0
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= − ⋅ 
− −  (9.61)

Thus less than 20% of the length of this solenoid is usable for the DNP of a polarized target. 
Therefore, trimming coils are mounted along its whole length; these must have adjustable 
current so that winding irregularities can also be corrected.

9.4.2 Solenoid End Compensation

In a very long ideal solenoid the field in the central part is very homogeneous both axially 
and radially. In a real solenoid this is not the case, which is why we now evaluate the rela-
tionship between the radial and axial field gradients. This is most easily done by writing 
the Maxwell equation for the divergence of the magnetic induction explicitly in cylindrical 
coordinate system:

 
ϕ

( )
∇ ⋅ = =

∂

∂
+

∂

∂
+

∂
∂

ϕ

r

rB

r r

B B
z

B 0
1 1

.r z  (9.62)

Because the solenoid has axial symmetry, the azimuthal derivative is zero, and we find 
directly the relationship between the radial and axial derivatives
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.r z  (9.63)

This is valid in the whole volume of the solenoid. The variation of the axial field is there-
fore directly related with that of the radial field: when the axial component drops, the radial 
one grows.

In order to keep the total length of the solenoid reasonable, end compensation coils 
are added to the main solenoid; these can be wound on top of the solenoid or at its ends. 
Additional trim coils, however, are required to get the field homogeneity to the level of 
10–5. These provide fine tuning of the end effects, and compensation for the inaccuracy of 
the main solenoid coil winding and that of the superconducting wire itself.

9.4.3 Winding Accuracy

In a well-compensated and trimmed solenoid, the residual field errors are mainly due to 
winding errors and inaccuracies. Let us now estimate the error due to the crossing of the 
wires in successive layers of a round wire, which happens when the surface of each layer 
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is not made flat by epoxy and/or by a sheet of rigid insulator. As shown in Figure 9.4, the 
second layer is lifted radially by

 r r h d d3
2

0.8662 1− = = ≅  (9.64)

when the wire of the next layer falls in between the turns underneath, but in the sector 
where the wires cross, the second layer is lifted by

 r r d.2 1′ − =  (9.65)

For one turn the coil error (‘void’ in the current density) can be estimated as from an oppo-
site current loop with height

 r r d d1 3
2

0.134 ,2 2′ − = −








 ≅  (9.65′)

and length approximately r/2, carrying the same current as the coil wire. This gives rise to 
a fictitious dipole moment
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which adds the dipole field component, from the upper limit of Eq. 2.4,

 µ
π

= − ⋅ = − −
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on the axial field of the solenoid. In the above it is taken into account that there are two wire 
crossings per turn in a helically wound coil.

The wire crossings advance helically along the winding layer of the solenoid, with heli-
cally advancing field irregularity of the magnitude of Eq. 9.67, which can be compared 
with the field of Eq. 9.57:

 = − −








 = − −











H
H

dl
r N

d
r2

1
3
2 2

1
3
2
,dipole

0
2

2

2
 (9.67′)

Figure 9.4 (A) The round wire of the second layer falls in the unfilled gaps of the first layer wire; (B) 
the round wire of the second layer crosses the wire of the first layer. This happens twice per turn on 
opposite sides of the coil
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where we have made use of the fact that l/N = d. As a numeric example, let us assume a 
wire diameter d = 1.5 mm and coil radius r = 100 mm, which yield for each turn

 
H
H

1.5 10 .dipole

0

5= − × −  (9.67″)

As the dipole fields are inhomogeneous, their radial gradients add up to produce a helically 
advancing radial gradient that is multiplied by roughly Nr/2l = r/2d = 67. This may be 
partly compensated if the number of coil layers is large, but it turns out in practice that it is 
hard to wind coils without filling the gaps if the field homogeneity of 10–5 is required. The 
gap filling technique was used for winding the main solenoid of the EMC polarized target 
magnet [13, 14].

Alternatively the coil of a solenoid can be wound with a rectangular wire. This speeds up 
the fabrication because wet winding techniques can be used. Moreover, heat transport across 
the layers is improved, and there is more stabilizing copper in the coil. The solenoid of the 
Spin Muon Collaboration (SMC) polarized target was wound using such technique [15].

9.4.4 Control and Protection of Large Magnets

Large solenoids and dipole magnets are usually wound with a sizable wire or cable because 
the magnet is then easier to make accurate and its inductance is lower, which makes it 
easier to protect against quenches. Consequently, the coils must be supplied with a high 
current, and it becomes attractive to equip the magnet with a persistent mode switch and 
retractable current leads, which reduces the heat losses to the helium cryostat. This, in turn, 
then requires the addition of a sweep coil that permits the control of the field for the mea-
surement of the baselines of the NMR Q-meters.

The use of a resistive shunt is possible for the measurement of current in small magnets, 
but is impractical and inaccurate when the current is several hundred amperes. The high 
current in a sizable magnet is best measured with a current transformer that adds no power 
dissipation in the main current circuit.

The quench protection of large magnets aims at dissipating the magnetic energy uniformly 
in the coil in the event of a transit of a part of the conductor from superconducting to normal 
state. For small magnets a part of the energy can also be dissipated in an external resistor, 
which is possible when the inductance and current are low. In large magnets this is impos-
sible because of the high electric potential difference and electrical breakthrough between 
the coil layers. The coils of large magnets are therefore equipped with quench detection and 
quench heaters that warm up the entire coil system uniformly above the critical temperature.

9.4.5 Examples of Large Solenoids and Magnet Systems

In the following subsections we describe some of the leading developments in high-accu-
racy superconducting solenoids and magnet systems.
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EMC Superconducting Solenoid Magnet
Rutherford Laboratory designed, built and tested the first major magnet of the large polarized 
target of the European Muon Collaboration at CERN. The target system is briefly described 
in Ref. [16]. The solenoid design and its test results were published in detail in Refs. [13, 14].

The polarized target of EMC was 1 m long, split into 40 cm long halves with a 20 cm 
gap that permitted unambiguous determination of the target half in which each event ver-
tex was located. The main solenoid was 1.6 m long, with 12 trim coils mounted along its 
length; it was wound using a ∅ 1.00 mm wire with Cu:SC ratio 2:1 of the 361 NbTi fila-
ments of 30 µm diameter; the trim coils were wound of ∅ 0.44 mm wire with 1:1 Cu:SC 
ratio and 1,000 filaments of 10 µm diameter. Both wires were insulated with 30 µm thick 
polyvinyl acetal layer. The trim coils had equal lengths and they were equally spaced over 
the main solenoid, with 1 mm gaps between the coil ends.

The main solenoid was wound on a Cu bore tube with 195 mm ID and 200 mm OD. 
During winding the bore tube was supported by a demountable mandrel of Al alloy. The trim 
coils were also wound on Cu bore tubes that were shrink fit onto the finished main solenoid.

Simulation using 3D GFUN FE program showed that wire cross-overs would cause a 
field error of 1.4 × 10–4. Therefore a wet winding technique was adopted in which the val-
leys of each of the 12 layers of the main solenoid was filled by epoxy and then wiped flat 
before letting the epoxy harden. As the hardening involves shrinkage, the filling and wiping 
was repeated twice for each layer. The final trimmed field, measured by an NMR probe, 
was within ±8 parts in 105 in a volume of 1,000 mm length and 60 mm diameter.

The assembly of the main solenoid with the overlaid trim coils was finally wound over 
with an Al alloy wire, the differential dilatation of which provided support to the magnetic 
forces that tend to lift the coils off their bore tubes.

The Cu bore tubes were important parts of the quench protection system, because their 
induced current heating permitted fast quench propagation so as to distribute the resistive 
heating of the wire uniformly throughout the coils. The main solenoid current was 180 A 
for 2.5 T field, and its inductance was 8.63 H.

SMC Superconducting Solenoid and Dipole Magnet System
SMC has continued and perfectioned the polarized muon-proton and muon-deuteron 
experiments of EMC with a longer target and wider angle of acceptance; also, the beam 
was more intense after the redesign of the CERN M2 muon beam.

The magnet system of the SMC at CERN was described briefly in Ref. [17] and in detail 
in Ref. [15]. The target volume was 1,500 mm long and 50 mm in diameter; the main 
solenoid was 2,000 mm long, extended by 150 mm long compensation coils wound on the 
same supporting bore tube of Al alloy. The bore tube for the main and compensation coils 
was ∅ 300 mm, and the outer dimension of the windings were ∅ 326 mm and ∅ 347 mm, 
respectively. The rectangular wire was approximately 1.5 mm in height and 2 mm in width. 
Wet winding technique was used for these coils.

Sixteen correction coils of 150 mm length were wound on top of the main solenoid, 
equally distributed along its length, and the whole assembly was wound with Al alloy tape 
for supporting the magnetic forces on the coils by differential dilatation.
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An outer saddle coil dipole, with vertical field, was mounted on top of the coil assembly. 
This was wound, using Keystone Rutherford-type flat SC tape, on a support of ∅ 500 mm, 
and had a maximum field of 0.5 T, with 2% uniformity in the target volume. The coil was 
used for rotating the field of the main solenoid system so that zero crossing was avoided, 
and for operating the target in transverse spin mode. The field rotation permitted the rever-
sal of the target spin orientation in about 10 minutes.

The nominal current of the main solenoid was 416 A at 2.5 T and inductance 5.6 H. The 
dipole current was 650 A for 0.5 T field and its inductance was 0.4 H.

The SMC magnet system was replaced by one with a larger bore and acceptance angle 
by the COMPASS collaboration [18]. Similar in principle with the SMC magnet system, 
it consists of a compensated a corrected solenoid with high winding density operating up 
to 2.5 T field, together with overlaid saddle-coil dipole reaching 0.63 T. The total length of 
the solenoid is just over 2 m and the homogeneous field length, in the target diameter of 
3 cm, is about 1.4 m.

SLAC E143 Split-Coil Solenoid Magnet
The deep inelastic polarized electron-proton and electron-deuteron scattering experiments 
at SLAC used a longitudinal-field split-coil magnet system built into the vertical target 
refrigerator. The magnet, produced by Oxford Instruments, had a uniformity of 10–4 in a 
volume of 3 cm diameter and length [19, 20]. The coil split was 8 cm at the narrowest point 
with clear angles of acceptance of 34° horizontally and 50° vertically. The magnet was 
operated in persistent mode and its cross section is shown in Figure 8.7.

CEN-Saclay Magnet System for the Nucleon-Nucleon Experiments
A superconducting magnet system was designed for the Saturne II Nucleon-Nucleon scat-
tering experiments with a polarized target and beam; this system consists of three coils and 
permits the orientation of the target spin in three orthogonal directions [21]. The orientabil-
ity of the target spin makes it possible, in a single experiment, to perform complete sets of 
measurements allowing unique determination of the spin-dependent scattering amplitudes 
in two-body reactions of the nucleons, in this case polarized protons and neutrons.

The main coil with vertical homogeneous field of 2.5 T was lowered after DNP and 
freezing of the polarization, while one of the two larger holding coils was powered in 
order to hold the target polarization either vertically or in any direction of the horizontal 
scattering plane.
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10
Other Methods of Nuclear Spin Polarization

Here we shall discuss other methods to produce high nuclear spin polarization, either in 
thermal equilibrium with the solid lattice or in dynamic equilibrium in a rotating frame. 
Optical pumping methods create a very high enhancement of the nuclear spin polarization 
based on spin-exchange collisions with atoms whose outer electron is polarized by circular 
polarized light. Some methods are also based on creating high non-equilibrium polariza-
tion that is then frozen in by increasing the spin-lattice relaxation time.

Chemical and biomedical research teams use the term ‘hyperpolarization’ to describe 
the general methods of spin polarization enhancement beyond thermal equilibrium; DNP 
methods belong clearly to these. Other methods include optical pumping and chemical 
polarization methods such as chemical-induced dynamic nuclear polarization (CIDNP) 
and parahydrogen-induced polarization (PHIP).

10.1 ‘Brute Force’ Polarization

The equilibrium populations of spin states are given by the Boltzmann distribution in the 
absence of magnetic phase transitions, as was discussed in Section 1.2.1, based on sim-
ple and plausible arguments. When the spin-lattice relaxation is sufficiently fast in high 
magnetic field and low temperature, the thermal equilibrium polarization is reached in a 
reasonable time scale so that the target spin polarization, given by the Brillouin function 
of Eq. 1.63, can be used for experimentation. The spin-lattice relaxation was discussed in 
Section 2.3, and in better detail in Chapter 5 for nuclear spins; from these it was clear that 
nuclear spin relaxation due to paramagnetic impurities in dielectric materials is much too 
slow for getting thermal equilibrium in conditions favorable for high polarization.

The favorable conditions here mean that the Boltzmann factor of Eq. 1.63 satisfies 
roughly

 x
B
k T

f
T2

24
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1.
B

0 NMRγ
= ≅ >
�

 (10.1)

Assuming the gyromagnetic factor of free protons, for example, we find x = 1.02 in a 
magnetic field of 10 T at 10 mK temperature. Therefore, substantial spin polarizations are 
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obtainable for a wide range of nuclei, and targets containing them can be used in experiments 
such as neutron transmission and scattering that deposit little heat in the target material.

The relaxation is fast enough in metallic materials and in quantum solids such as solid 
hydrogens HD and DT, and solid 3He; these will be briefly discussed below. A review of the 
practical brute-force polarized target materials at TUNL1 has been given by Seely et al. [1].

10.1.1 Metals

In many metals in a high magnetic field, the conduction electrons provide an efficient 
mechanism for nuclear spin-lattice relaxation. This obeys the Korringa law of Eq. 1.126, 
where κ is of order 1 sK for many common metals. Therefore, the relaxation time is in the 
range of 100 s at 10 mK temperature, which is quite manageable for a nuclear spin target.

Among the pure metals used in the TUNL brute-force polarized target are 27Al, 93Nb and 
165Ho. These and other relative abundant nuclei in metallic solids were compiled by Seely 
et al. in Ref. [1]. However, the Korringa constants are not known for many of these.

Metal hydrides such as TiH, TiH2, ZrH2, YH2 and YH3 may contain a large amount of 
hydrogen, with a hydrogen density comparable or larger (9.0 × 1022 free protons/cm3 for 
TiH2) than that of solid ammonia (8.2 × 1022 free protons/cm3 for NH3). Heeringa devel-
oped the fabrication method involving hydrogenation of Ti powder in a high-temperature 
oven to produce TiH2 in the form of a sponge that was then compressed into a copper ring. 
This provides the cooling contact for the target [2]. Heeringa proved that the temperature 
measurement of such a target yielded a proton polarization value of 60% and confirmed the 
measurement by the known transmission difference of 1.2 MeV neutrons with spin paral-
lel and antiparallel with that of the target [2]. The equilibrium polarization at 12 mK was 
reached with a time constant of a few days; this was determined to be due to the limited 
heat conductivity of the sponge material. The spin-lattice relaxation time at 3 mK had an 
upper limit of 5 min, thus showing Korringa-like behavior [2].

The metallic target temperature is most easily measured by 60CoCo nuclear orientation 
thermometer that can work in the high field of the polarizing magnet but is more sensitive 
if located in a low-field region [1]. As it takes several hours of counting the gamma asym-
metry of the nuclear orientation thermometer, TUNL have added a 3He melting pressure 
thermometer to their target system.

Because the brute-force polarization method yields only positive spin temperatures and 
therefore only one target spin direction with respect to that of the high magnetic field, one 
has only two methods of polarization reversal:

• reversal of the magnetic field,
• adiabatic passage by RF field at low frequency.

The former must be done extremely slowly because of eddy current heating, and it is 
usable when only neutral particles are measured. The second is limited to studies of nuclear 

1 Triangle Universities Nuclear Laboratory, Durham, NC, USA.
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magnetism, because the spin-lattice relaxation is fast in metallic materials, thus limiting 
severely the counting time with negative spin temperature. Consequently, the spin asym-
metries must be obtained by comparing scattering from the target in polarized state with 
scattering from unpolarized (warm) target.

The rapid exchange of brute-force polarized TiH2 target with a dummy Ti target was 
accomplished by a lifting mechanism that permits the target insert to be moved vertically 
inside the vertical dilution refrigerator [3]. The targets were cooled by a Cu rod with flexi-
ble thermal link to the mixing chamber of the dilution refrigerator.

10.1.2 HD

In H2 the para (J = 0) spin state of the molecule has an energy substantially below that 
of the ortho (J = 1) state, as was discussed in Chapter 7, and therefore pure hydrogen 
cannot be polarized in its ground state. The HD molecules are not limited by this because 
the H and D nuclei are not identical, and their polarizations are independent as there is 
no efficient cross-relaxation mechanism. However, if the solid HD is contaminated by 
some H2 in ortho state, this provides a mechanism for spin-lattice relaxation of the proton 
spins even close to 1 K temperature, as was demonstrated by Hardy and Gaines in 1966 
[4]. Consequently, Honig [5] proposed to use the ortho–para conversion of H2 as a switch 
between the polarization and frozen spin modes of an HD target.

It turned out quickly that in the frozen spin state the proton and deuteron spins of HD 
were quite efficiently decoupled from each other, and that the D spins took very much 
longer to polarize by the brute force method. The only method to polarize the D spins then 
remained RF mixing with the proton spins, which worked well [6].

As the thermal conductivity of solid HD is quite limited at millikelvin temperatures, the 
heat from spin relaxation (and from the possible beam) must be carried away by metallic 
wires embedded in the solid target. The background material thus added can be minimized 
by making the wires out of high-purity Al [6].

A polarized solid HD target was recently used successfully in a polarized photon beam 
to study  inclusive π production [7].

10.1.3 Solid 3He
3He has the peculiar behavior of exhibiting a minimum in the melting curve at 315.24 mK 
that prevents compression into the solid phase by external pressure. In the liquid phase, the 
Fermi liquid properties limit the polarization to rather low values, but the solid stays para-
magnetic in a high field, permitting brute force polarization of the nuclear spins.

The use of solid 3He as a polarized target was already discussed by J. Wheatley in 1971 
[8]; in the early phase it was proposed that the technique of Pomeranchuk cooling be used 
for cooling the 3He in a high field. A more practical technique was developed for the TUNL 
brute-force polarized target facility whereby the compressed liquid is cooled at a density of 
0.125 g/cm2 that corresponds to a pressure higher than the minimum of the melting curve, 
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and at this pressure and density the liquid solidifies upon cooling into the paramagnetic 
phase in a high magnetic field [1]. The exchange interaction in the quantum solid is rather 
strong, and its effect is that the Curie law must be corrected to read

 P
B P KP

kT
He tanh

He He
,3

3 3 3µ
( ) ( ) ( )

=
+ Θ +

 (10.2)

where the spin exchange constants are Θ/k = –1.18 mK and K/k = –1.962 mK. We recall 
that the nuclear magnetic moment of 3He is negative and therefore the spin polarization 
vector is antiparallel with the magnetic field when the spin temperature is positive. Thus, 
the effect of the two spin exchange terms is to reduce the polarization below that given by 
the Curie law.

10.2 Spin Refrigerator

Spin refrigerator technique is based on a paramagnetic crystal, with an anisotropic g-factor, 
rotated in a steady magnetic field at a low temperature. The case best studied is yttrium 
ethyl sulphate (YES), Y(C2H5SO4)3·9H2O, in which ≤0.04 at.% of the non-magnetic Y3+ 
ions are substituted by ytterbium Yb3+ ions that has in its lowest Kramers doublet a very 
anisotropic g-factor [9]

 g g gcos sin ,||
2 2 2 2

1
2θ θ θ( )( ) = + ⊥  (10.3)

where θ is the angle between the applied field and the c-axis of the crystal:

 
g

g

3.33

0.00302.
|| =

=⊥

The relaxation rate of the ytterbium ion varies approximately as sin2θ cos2θ [9]. If the crys-
tal is rotated in a steady field at a rate greater than the relaxation rate, the Yb3+ ion reaches 
an equilibrium polarization that corresponds roughly to g(45°), or

 P
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kT
Yb tanh
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  (10.4)

At θ= 90°, the doublet splitting approaches that of the proton, which makes the proton 
spin system cool by cross-relaxation towards that of the Yb3+ ions that were strongly cooled 
due to the reduction of the g-factor. As the angle progresses beyond 90°, the proton relax-
ation rate drops rapidly, and the protons become isolated from the paramagnetic ion system.

We note that the rotation at speeds greater than the relaxation rate keeps at times the 
spin systems adiabatic, while at 90° there can be thermal mixing between the spin systems. 
Close to 45° the rapid spin-lattice relaxation of the paramagnetic ions repolarizes them. 
The spin refrigerator can therefore ‘pump’ magnetic energy from the protons to the lattice.

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108567435.011
https://www.cambridge.org/core


 10.3 Chemical Spin Polarization 425

Simplistically one might say that the spin refrigeration works best with oriented 
single crystals, but it turns out that high proton polarizations can also be reached in 
powder samples. This is mainly because the g-factor is nearly zero in the whole plane 
perpendicular to the c-axis and this can be reached during the rotation whatever is 
the orientation of the crystallite with respect to the rotation axis, unless the c-axis is 
parallel to the axis of rotation. The first confirmation was when proton polarization of 
approximately 65% was achieved with the University of Massachusetts spin refriger-
ator in a non-uniform 1.07 T magnetic field at 1.25 K temperature. The free protons 
in YES were polarized in a sample rotated at speeds between 100/s and 200/s [10]. 
The target was successfully used in an experiment at BNL in secondary kaon and pion 
beams [11].

Other uses of the spin refrigerator are in spin filtering of neutron beams. The method has 
the great simplicity that only moderate magnetic field is required, and the field can be very 
inhomogeneous. The advantage of using polarized protons in such filters is that it is the 
only method to filter truly white neutron beams up to keV neutron energies.

10.3 Chemical Spin Polarization

10.3.1 Atomic Hydrogen

Chemical reactions are sensitive to the spin states of the atoms in the reacting molecules. 
Atomic hydrogen is an extreme case of this, and this exotic gas has been proposed to be 
used in polarized targets and beam sources [12]. The atoms populate the four spin states 
labelled a, b, c and d from the lowest to the highest magnetic energy, as shown by Figure 
10.1 schematically. In the figure the magnetic energy is scaled by the zero-field hyperfine 
splitting of hydrogen

�E B a0 ,HFS H
2( )= =

and the magnetic field is scaled by

B
a
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Hydrogen atoms on superfluid helium have an anomalously low surface adsorption 
energy of k/ 0.9 Kaε =  on 4He and k/ 0.3 Kaε =  on 3He-4He mixture [13, 14]. This and 
the electron spin alignment by magnetic selection reduce the surface recombination reac-
tion speed and allow the gas phase density nv to be increased by magnetic compression. 
The surface density
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where λ is the thermal de Broglie wavelength, increases rapidly when kT goes below the 
adsorption energy and approaches then the saturation limit

 n
V2
,s

a
s

sat

int

ε=  (10.6)

where Vint
s is the interaction potential of the 2-d gas of atomic hydrogen H ⇓  with electron 

spins aligned. In practice it is difficult to reach this density, because recombination heats 
up the superfluid film on the surface.

In a high trap field B > 8 T, the thermal leak time constant is

 τ =
c c V
K vA

4
,He M eff  (10.7)

where Veff is the effective volume, cHe and cM are the compression ratios due to the helium 
vapor pumping effect and magnetic attraction, K is the Clausing flow conductance factor 
and A the filling tube cross section. This time constant becomes substantially longer (>103 s) 

Figure 10.1 Magnetic energy (scaled by the zero-field hyperfine splitting) of the hyperfine states a, b, 
c and d of atomic hydrogen, as a function of the static magnetic field scaled by the hyperfine splitting 
divided by the magnetic moment of the free electron
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than the decay time constant due to the surface recombination on 4He. The addition of 3He 
on the film surface increases the relaxation time a b↔  to about one hour, which leads to 
a large enhancement of the pure b-state because the mixed a-state has a higher recombina-
tion speed. This leads to gas densities of the order 1017 cm–3 of the atomic gas, with nearly 
complete electron spin polarization and high proton spin polarization[15]. The proton spin 
polarization, however, behaves in a non-linear manner when exiting the transverse spin by a 
resonant transverse magnetic field that gives rise to spin waves due to the oscillatory behav-
ior in the spin diffusion. This invalidates the linear response hypothesis discussed in Section 
2.2.2 that is the basis of the linear relation of Eqs. 2.64, 2.65 and 2.81; consequently the 
integral of the NMR absorption signal cannot be assumed to have a linear relationship with 
the nuclear spin polarization. The spin waves also influence strongly the NMR lineshape 
[15] and complicates further the NMR measurement of proton spin polarization.

10.3.2 Chemical-Induced Dynamic Nuclear Polarization (CIDNP)

The dynamics of the spin states in stable atomic hydrogen is an example of chemical spin 
polarization or, more generally, CIDNP that relies on the ability of nuclear spin interactions 
to alter the recombination probability in chemical reactions that proceed through radical 
pairs [16]. In photochemical systems, detected as enhanced signals in the NMR spectra of the 
reaction products, CIDNP has been used to characterize transient free radicals and their reac-
tion mechanisms. In certain cases, CIDNP also offers the possibility of large improvements 
in NMR sensitivity. The principal application of this photo-CIDNP technique, as devised by 
Kaptein [17] in 1978, has been in the studies of proteins and their chemical reactions.

10.3.3 Parahydrogen-Induced Polarization (PHIP)

PHIP is a technique used in magnetic resonance imaging. The technique relies on the incor-
poration of hyperpolarized H2 into molecules, usually by hydrogenation [18]. While in 
principle hyperpolarized proton sites can be used directly for imaging applications, the 
spin-lattice relaxation time of hyperpolarized protons is frequently too short for biomedical 
use (unless long-lived spin states are created), and polarization from nascent parahydrogen 
protons must be transferred intramolecularly to longer-lived 13C or 15N spins using spin-
spin couplings [19].

The CIDNP and PHIP methods are demonstrably successful, but they are often system 
specific.

10.4 Overhauser Effect

10.4.1 Metals and liquids

Historically this is the first DNP effect, proposed in 1953 by Albert W. Overhauser [20] 
and experimentally verified by Carver and Slichter in the same year [21]. The method was 
already described in Section 4.7 [22] and here we shall just give a brief overview.
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In non-magnetic metals the nuclear spins couple with the conduction electrons that 
have a fast spin-lattice relaxation time of order ≥ 10–10 s. The conduction electrons 
exchange the kinetic energy with the lattice phonons even faster, with τ of the order 
10–13 s. The nuclear spin-lattice relaxation obeys the Korringa 1/T -law, Eq. 1.126, at 
and below helium temperatures, and the nuclear Larmor frequency is shifted upwards 
(mostly) by an almost constant amount; this is called Knight shift and was discussed in 
Section 2.1.5.

The conduction electrons obey Fermi statistics, which means that at low temperatures 
most of the electrons have their spins paired; only close to the Fermi surface EF there are 
electrons thermally excited above the surface, with a corresponding hole below the surface. 
It is these electrons and holes that exhibit paramagnetism and that also couple with the 
nuclear spins. The equilibrium Fermi distribution functions in a magnetic field are, for the 
two orientations of the electron spin Sz = ± ½,
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where E is the kinetic energy of the electron; in equilibrium these distributions yield the 
temperature-independent equilibrium electron polarization
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Here ρ(EF) is the density of states on the Fermi surface and N is the number density of 
conduction electrons.

Electron spin resonance saturation tends to make disappear the electron polarization that 
corresponds to f+ = f− and which can be quantified by the saturation parameter s:
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The introduction of nuclear spins requires now to write the rate equations for their spin-up 
and spin-down populations n+ and n− (assuming nuclei with spin ½); this is beyond our 
present scope and can be found in Ref. [23], p. 367. These yield at the end the Overhauser 
effect
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−

n
n

s

kT
exp ,e n  (10.11)

where 0 < s < 1 describes the saturation. If the nuclear gyromagnetic factor is positive, the 
nuclear polarization is positive, and has the opposite sign if γn is negative; unlike DNP in 
solids with off-resonance saturation, only one sign of polarization is possible.
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In practice the Overhauser effect in metals is limited by the skin effect that attenuates the 
microwave field inside the metallic grains. Nuclear polarization enhancements of several 
hundreds have been observed with nanometric grains.

The Overhauser effect also works in liquids where paramagnetic centers can be mobile, 
such as Na dissolved in ammonia [22] and liquids with protons and other nuclei in diamag-
netic molecules and protons within free radicals [24].

10.4.2 Nuclear Overhauser Effect

The nuclear Overhauser effect (NOE) is the transfer of nuclear spin polarization from one 
spin bath to another spin bath via cross-relaxation. In nuclear magnetic resonance spectros-
copy, NOE can be used to help resolve the structures of organic compounds.

In the NOE technique, the magnetization on one of the spins is reversed by applying a 
selective pulse sequence; the sequence may select a particular chemical site of a complex 
organic molecule. At short times then, the resulting magnetization of another nearby spin 
evolves in a way described by the differential equations of Solomon [25], with a significant 
enhancement of the other spin in the spectrum.

The technique is sensitive to the distance between the spins and offers a powerful 
method for the study of complex biochemical molecules. Electron spins are not involved 
in the NOE studies.

10.5 DNP Using Nuclear Orientation Via Electron Spin Locking (NOVEL)

In some photochemical reactions yielding triplet-state paramagnetic centers the DNP 
mechanisms can be shown to work. A clean case is solid naphthalene doped with 
pentacene, where photo-excited triplet states of pentacene and the protons of naphtha-
lene were polarized using pulse sequences called nuclear orientation via electron spin 
locking (NOVEL) [26]. The effect was first observed in an Si single crystal doped 
with boron acceptors; the paramagnetic centers are the holes bound to these acceptors 
[27].

This NOVEL technique developed by the team of Wenckebach uses a microwave pulse 
sequence adapted from that of Hartmann and Hahn, which applies to the transfer of polar-
ization between two nuclear spin species and to the detection of the resonance of very rare 
nuclear spin species [28]. The NOVEL sequence consists of a 90° microwave pulse that 
orients the electron spins (polarized in the beginning along the steady field in z-direction) 
along the y-axis in the rotating frame; at the end of this pulse the microwave field is then 
phase shifted by 90° and has the effect of orienting the effective rotating field exactly par-
allel to the rotating polarization vector along the y-axis. This concerns only one spin packet 
of the inhomogeneously broadened line. By choosing the amplitude of the phase-shifted 
rotating effective field, one can make the nuclear spin resonance frequency in the rotating 
frame coincide with that of the electrons, which results in a rapid transfer of the electron 
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spin polarization to that of the nuclei. We note that this involves a rather high microwave 
field strength and therefore a high power dissipation.

For a complete mathematical description, with comprehensive illustrations, we refer to 
the recent book of Wenckebach [29], pp. 255–259.

10.6 Gas Targets

Gaseous polarized targets are much less sensitive to radiation damage than solid targets, 
which is why they can be used as internal targets in an accelerator or in a storage ring. 
Thanks to new optical pumping methods, their density has also increased so much that they 
can be used in extracted primary beams. We shall briefly describe here the magnetic spin 
selection, optical pumping and cryogenic stable atomic hydrogen techniques.

10.6.1 Spin Selection in an Atomic Beam

Historically this is the first method to obtain spin-polarized neutral hydrogen. A beam of 
neutral ground-state hydrogen atoms is formed at the orifice of an accommodator after 
dissociation by an RF discharge. The dissociator works at a pressure of several millibar 
and its nozzle may be cooled to 80 K [30]. The flow of H2 gas into the dissociator is up to 
5 mbar×l/s [31]. The atoms effusing from the exit orifice of an accommodator undergo an 
accelerating expansion into vacuum and cool down until reaching the radius at which the 
density is so low that the atoms undergo few collisions; this is called the ‘freezing radius’ 
because beyond this point the velocity distribution remains constant. The typical Mach 
numbers reached in this expansion are 2 to 5 and the mean velocity is 1000 m/s to 1500 
m/s, if the accommodator cools the atoms to about 35 K [32, 33]; [34]. Accommodator 
temperatures below 30 K result in the loss of density in the atomic beam and in an unstable 
operation; the flow in the accommodator with 3 mm diameter and 2 cm length is laminar 
and the heat transfer efficiency is better than 99.9% [34]. The most likely cause of poor 
accommodator performance below 35 K is the recombination on its surface that becomes 
covered with molecular hydrogen; the addition of a few percent of N2 and/or H2O in the 
hydrogen input flow helps getting a stable adsorbed surface layer that yields a high and 
stable atomic beam density at 35 K accommodator temperature [35].

Subsequently a narrow beam is formed by a skimmer with a possible collimator and with 
differential pumping, followed by the selection of the higher two hyperfine states (c and d) 
of the atoms by focusing them in a hexapole magnet using the Stern-Gerlach effect. The 
skimmer position and the pumping speed are critical parameters because the supersonic 
flow may result in a shock wave starting at the input orifice of the skimmer [36]. Obviously, 
the shock wave gives a higher density inside the skimmer and the loss of the molecular 
flow regime locally.

The flow of polarized atoms from the source is approaching 1017 s–1 and the atomic 
thickness of a pointlike jet target is in the range of 1012 cm–2 [37]. This, however, does not 
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compare favorably with experiments with extracted polarized beams and solid polarized 
targets. Therefore, the density of the atomic beam target must be increased by storing the 
atomic gas in a storage cell that works with the principle of a compression tube while also 
extending the target length along the beam axis. By cooling the storage cell to 100 K the 
thickness of proton and deuteron spin polarized atomic hydrogen has been increased to 
7 × 1013 cm–2 [38] while maintaining a high polarization above 0.8 for both H and D nuclei 
[39]. To reach this, a substantial R&D program targeted the atomic beam and spin selection 
stages, and the density and nuclear spin relaxation in the storage cell [40]. The polarized 
atoms make several hundred collisions with the cell walls (pure Al coated by Dryfilm) 
before escaping; they lose a minor amount of polarization in this process and thermalize to 
the cell wall temperature in a few collisions. During their sojourn in the cell, they undergo 
from 1.5 to 15 spin exchange collisions with other atoms in the gas phase and lose no more 
than 1.5% of their polarization.

The nuclear spin polarization of the HERMES target is measured by a Breit-Rabi 
polarimeter that uses a small amount of the stored atoms escaping through another pipe 
attached to the cell. These escaping atoms pass through another series of hexapole focusing 
magnets and adiabatic RF transitions that filter the spin states of the beam before measur-
ing their flux by a sensitive quadrupole mass spectrometer mounted behind a chopper [40].

The depolarization due to the electromagnetic fields generated by the intense bunches 
of electrons and positrons of the HERA storage ring was studied by the HERMES group. 
Only during the injection, with collimators open, a measurable effect on the target polar-
ization was observed, but during data taking with collimators closed the target polarization 
remained stable at 92% while the beam was decaying exponentially from 40 mA to 13 mA 
for 12 h [40].

The nuclear spin polarization of the HERA targets can be reversed rapidly by selecting 
the right transition in the atomic beam adiabatic transitions, and the polarization can be 
measured by the Breit-Rabi polarimeter in some 10 s [40].

10.6.2 Optical Pumping in Gas Phase

Optical pumping can be applied to ground state and metastable atoms and ions. When a 
transition of an atom is saturated by circular polarized light, the angular momentum of 
the polarized photons is transferred to the excited electron that gets polarized in the pro-
cess. The electron polarization is then transferred to noble-gas nuclei by a weak hyperfine 
interaction in the rubidium spin-exchange optical pumping (Rb-SEOP) method, or by a 
metastability-exchange (ME) collision in the ME-optical pumping (MEOP) method. The 
latter requires the creation of long-lived metastable atoms by an electric discharge; these 
have a much larger spin-exchange collision cross section and yield a higher pumping speed 
but apply only to 3He.

The first 3He targets polarized by optical pumping were based on the spin transfer by ME 
between the optically pumped 23S1 polarized 3He atoms and the ground-state 11S0 atoms. 
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The optical pumping in these early studies was made by circularly polarized resonance 
radiation from a helium discharge lamp directed along the magnetic field, absorbed by the 
3He atoms that were optically excited from the metastable 23S1 state to 23P states, followed 
by the spontaneous decay back to one of the 23S1 Zeeman sublevels [41]. A weak discharge 
maintained a suitable concentration of the metastable atoms and the optimum pressure was 
around a few millibar, which yields low target thickness. It was known in 1966 that also the 
vapor of alkali metals such as rubidium can be used for the optical pumping of dense 3He, 
but there was no suitable source of circular polarized light at that time [42].

Denser gaseous 3He-polarized targets have been developed using the technique of colli-
sional SEOP. This is based on the laser excitation of alkali-metal vapor, typically rubidium, 
via the strong resonance line connecting the Rb 5s2S1/2 ground state to the 5p2P1/2 excited 
states; such target can operate at several bar pressure at room temperature, and in 1987 
Chupp et al. showed that the nuclear spin polarization is not sensitive to 360 nA beam of 
18 MeV α-particles [43]. A review of the successful operation of such a target in SLAC 
experiment E142 is given in Ref. [44]. This development relied on the application of pow-
erful Ti:sapphire lasers at 795 nm and permitted to operate a two-chamber target cell at 
several bar pressure with 35% polarization of the 3He nuclei.

Further improvements were made by introducing powerful spectrally narrowed laser 
diode arrays whose emission linewidth of 2 nm matches better the pressure-broadened 
absorption linewidth of 0.3 nm in Rb vapor [45]. This and the use of a mix of K and Rb 
vapor have led to over 70% polarization of the 3He nuclear spins [45]. The polarization of 
the 3He nuclei at the 30 mT field was measured by NMR calibrated with water filling the 
target cell.

The high-power laser diodes at 1,083 nm wavelength also improved the performance 
of the MEOP of 3He. These and the application of higher magnetic field (up to 120 mT 
instead of a few mT) permitted to increase the cell pressure to 32 mbar while obtaining 
70% nuclear spin polarization [46]. The polarized gas has a long relaxation time in con-
tact with walls that are suitably coated, so that in can be compressed to pressures above 
atmospheric and then transferred to an experiment in a particle beam or to a patient in 
an MRI set-up [47]. Transferred targets were successfully used in a tagged photon beam 
in the Mainz Microtron (MAMI); the target polarization was continuously monitored by 
pulsed NMR [48]. This was accurately calibrated by a flux gate magnetometer that mea-
sured the nuclear spin magnetization change after reversing the polarization by adiabatic 
fast passage [48].

Optical pumping does not enable to produce opposite sign of polarization, but because 
the guide field has the strength of only a few mT, the field orientation can be reversed in 
most experiments, and also transverse, longitudinal and any intermediate target spin orien-
tation can be easily obtained.

Alkali-SEOP techniques can also be used for polarizing the nuclei of atomic hydrogen 
and deuterium at a low density. This technique can be used in polarized proton and deu-
teron ion sources, which are beyond our present scope.
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10.6.3 Stable Atomic Hydrogen as Polarized Electron Target

This was already discussed in Section 10.1.3, but we wish here to point out that the stable 
atomic hydrogen can also be used as a polarized electron target; such targets traditionally 
use ferromagnetic foils magnetized to saturation. These, however, have more unpolarized 
than polarized electrons, and their contribution and that of the orbital moments depends on 
the applied external field. Therefore, the measurement of the effective electron polarization 
of a magnetized foil requires probing it by particle scattering.

In stable atomic hydrogen all electrons are polarized to very near 100%, if the stabili-
zation cell temperature is such that the vapor pressure of the helium coating is sufficiently 
low. Without 3He the nuclear spin polarization remains low, and in most applications 
requiring polarized electrons the scattering off the electrons can be kinematically separated 
from that off the protons.

Stable atomic hydrogen-polarized electron target was proposed for the measurement 
of electron beam polarization by Møller scattering in intense high-energy electron beams 
with a theoretical accuracy of about 0.5% [49, 50]. The team of the P2 experiment at Mainz 
MAMI plans to apply this technique for their beam polarization measurement [51].
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11
Design and Optimization of Polarized Target 

Experiments

The figure of merit is defined for some scattering applications; this figure permits the 
objective comparison of various target types and polarization methods. The optimization 
of the polarized target operation in particle physics experiments is briefly discussed before 
treating the sources of possible false asymmetries due to the target.

Finally a series of uses of polarized target techniques beyond particle and nuclear phys-
ics experiments is presented. These include notably the coherent small-angle  neutron scat-
tering (SANS) used in the studies of biological macromolecules, time-resolved SANS, 
pseudomagnetism, nuclear magnetic ordering, dynamic nuclear polarization (DNP) 
enhancement of high-resolution NMR spectroscopy, particularly in solid state using the 
magic angle spinning (MAS) techniques. The sensitivity and contrast enhancement are 
briefly discussed for magnetic resonance imaging (MRI) techniques. These use vari-
ous DNP techniques and radical-free injectable polarized fluid methods, as well as the 
 dissolution DNP (dDNP) techniques.

11.1 Particle and Nuclear Physics Experiments

11.1.1 Figure of Merit for an Experiment with a Single Target

As described in Chapter 7, the optimization of the particle-scattering experiment consists 
of optimizing the statistical accuracy to which the desired polarization asymmetry can be 
determined during the allocated beam time. The target asymmetry

 A
0

σ
σ

= D  (11.1)

is determined, in each kinematical bin, from the number of counts N± with target polariza-
tion along or opposite to the magnetic field:
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Here Φ± are the integrated beam fluxes through the target with average polarizations, P± 
and N± are the corresponding number of counts in the bin, a is the acceptance of the detector 
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in the kinematical bin, σ0 is the unpolarized cross section, Δσ is the cross-section difference 
with opposite orientations of the target nuclear spins, nt is the target thickness (number of 
nucleons or nuclei per cm2), Pb is the beam polarization and f is the target  dilution factor:
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where the indexes p refer to the polarizable nucleons and i to unpolarizable background 
nucleons. Clearly f is different for each kinematic bin as the cross sections depend on the 
kinematics.

By scaling the numbers of counts by the integrated beam fluxes, we get an equation from 
which the asymmetry A can be solved by iteration:

 
Φ − Φ
Φ + Φ

=
−

+ +
+ + − −

+ + − −

+ −

+ −

N N
N N

fP A
P P
f P A P P

/ /
/ / 2 ( )

.b
b

 (11.4)

The solution converges fast because the mean target polarizations are nearly equal but 
opposite so that P P++ − ≪1 and often A is also small. Based on this equation and on only 
the counting statistics, an estimate for the statistical error of the asymmetry was obtained 
in Chapter 7:

 A
P a

1 1
2

.
t b 0

δ
σ

≅
ΦM

 (11.5)

Here we have defined the figure of merit of the target

 f P n P P P;
2

,t t= = −+ −

M  (11.6)

which can be maximized so as to guide in the choice of the target material and thickness. 
The target dilution factor f is to be understood here as a mean value of Eq. 11.3 that covers 
the kinematic range of the experiment.

If the target length is determined by the space available or by the detector requirements, 
rather than by beam attenuation or multiple scattering of the beam or the secondary par-
ticles, the choice of the material can be further simplified by writing the target nucleon 
thickness in the terms of its average density, length and nucleon mass:
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t t
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 (11.7)

where the liquid helium coolant filling the voids between the target beads must also be 
taken into account. The figure of merit now reads

 f P L
mt t
t

n

ρ=M  (11.8)
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and the material-dependent part can be determined for a substance once its filling factor 
and average polarization are known.

The polarization may evolve during the data taking, because its frequent reversal is often 
required for reducing systematic errors due to the slow drift of the beam or the detector 
acceptance, and possibly because of the radiation damage of the target material. The aver-
age polarization in Eq. 11.6 is then obtained from the square roots of the time averages 
of the squared polarizations, which can be determined when the time evolution of the 
polarization during DNP, and the dose dependence of the reduction of the polarization are 
known.

In a high-intensity beam, the polarization of the target may be reduced by the direct heat-
ing of the material by the beam and by the radiation damage, which gradually accumulates 
during the experiment. In this case the figure of merit of the experiment also follows from 
the minimization of the statistical uncertainty of the target asymmetry of Eq. 11.5, which 
requires the maximization of

 t I f P .t exp
2 2Φ =M  (11.9)

Here texp is the effective duration of the data taking excluding time needed for target anneal-
ing or change, I is the beam intensity and the time average of the polarization needs the 
knowledge of the polarization build-up during reversal and the reduction of polarization 
due to the accumulated dose and due to the material heating that depends on the intensity 
I. It is clear that these parameters can only be obtained by direct measurement, and that 
also the cooling system will strongly influence the maximization of expression 11.9. These 
factors were discussed in Section 7.5.

If multiple scattering limits the length of the target, the best material is one that has the 
highest material-dependent figure of merit and has a low relative number of heavier nuclei 
so that the length can be increased. The criteria related with multiple scattering unfortu-
nately cannot be written in simple analytic form and the judgement between materials 
of roughly equal and high figure of merit must be based on their relative heavy-element 
 contents. The parameter relevant for multiple scattering is the radiation length X0, which 
was discussed in Section 7.1.1.

If some of the heavy nuclei also become polarized, their contribution to the scattering 
asymmetry must be estimated. This requires the estimation or measurement of their polar-
ization. The errors related with these procedures are usually taken into account in the sys-
tematic error analysis, because they are usually dominated by the incomplete knowledge of 
the nuclear structure of the heavy nuclei.

The statistical accuracy can be improved by taking more data to the point that other 
errors begin to dominate. Among these are the accuracy of the beam normalization, the 
drift in the acceptance a and variations in the effective target thickness nt due to the micro-
wave power for DNP. These can give rise to false asymmetries that can be evaluated and 
optimized based on Eq. 11.2.
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11.1.2 False Asymmetry Estimation and Mitigation

Beam Normalization
We focus here on spin asymmetry measurements with extracted beams and solid polarized 
targets.

Accurate spin asymmetry measurements require high statistics and therefore long exper-
imental runs. The stability of the beam source and of the beam monitoring system therefore 
becomes a major concern.

Beam normalization is often the leading source of false asymmetry, because the beam 
control and counting cannot be done to much better than 5% over several month periods of 
time. The leading causes for this are the limitations in the stability of the accelerator and 
of the beamline components, in addition to the drifts in the stability of the beam detector 
and monitor systems.

Given the uncertainty of the beam normalization over extended run periods, the main 
method of mitigation is the frequent reversal of the target polarization. If the beam stability 
and its main causes of instability are monitored, we can use the spectrum of its time variations 
to optimize the frequency of the polarization reversal. This will be discussed in Section 11.1.2.

Another way to eliminate the beam normalization errors is to make the experiment with 
opposite polarizations with two oppositely polarized targets placed in the same beam. This 
will be discussed in Section 11.1.3.

In elastic scattering experiments, the kinematics of the reaction can be fully determined 
so that the elastic peak due to scattering off protons is well resolved from the quasi-elastic 
background due to scattering off nucleons in complex nuclei, because the elastic peak in 
the latter case is much broadened due to the Fermi motion inside the nuclear potential well. 
This background is unpolarized and can therefore be used as a method of beam normal-
ization. Obviously, the complex nuclei should be consist of as few as possible other nuclei 
than spin 0 species such as 12C and 16O.

Acceptance Drift
The parameter ‘acceptance’ = a in Eq. 11.2 consists of the geometric acceptance of the 
detector in each kinematic bin and of the efficiency and dead time parameters of the detec-
tor. While the geometric acceptance stays constant, the detector threshold and efficiency 
depend on many poorly controlled parameters. Among these are notably the efficiency drift 
of gas-filled tracker detectors due to the variation of the ambient temperature and humidity, 
and the dependence of the dead time on the beam intensity.

Frequent polarization reversal is again an effective countermeasure to mitigate the effect 
of the slow drift of the acceptance, because acceptance has, in principle, no correlation with 
the sign of the target polarization.

Target Thickness Variation
The heat load distribution and its variation with the microwave power and beam current 
influence the coolant density in the target volume. This can give rise to a false asymmetry 
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if the applied heat load is systematically different for the positive and negative polarization 
states of the target. The thickness variation depends on the cooling method:

• In evaporative cooling methods the higher heat load entails higher quality factor (vapor 
fraction) of the coolant fluid, both spatially and in time.

• In dilution refrigerator the higher heat load leads to spatially slightly higher coolant 
density owing to osmotic pressure, and higher overall heat load leads to slightly lower 
coolant fluid density because of higher solubility of 3He in the dilute phase at the higher 
temperature.

In the case of cooling by dilution refrigerator, the target is always submerged in the 
dilute phase with 3He concentration close to its solubility limit. The temperature depen-
dence of the phase diagram is discussed in Appendix A5.1. The density of the coolant 
fluid can be monitored by recording the coolant temperature, in principle. In practice, 
however, this is not accurate during DNP because the thermometer sensors are heated 
up by the microwave power losses in them, thus monitoring bolometrically the micro-
wave field rather than the fluid temperature. The simplest way to measure the coolant 
temperature consists of turning off the microwaves and recording the transient in the 
thermometer reading, which can then be extrapolated back to the moment of power 
turnoff. The 3He vapor pressure thermometer bulb (used for TE calibration temperature 
measurement) is less sensitive to microwave power absorption than resistance ther-
mometers, and it may serve as a monitor of the coolant temperature once the heating 
effect is calibrated.

During frozen spin operation, the coolant temperature can be accurately measured by 
resistance thermometers and its effect on the coolant density is also smaller because the 
solubility flattens below 50 mK temperature.

Because the vapor density is much lower than the liquid phase density in evaporative 
cooling both by 4He and by 3He, the likelihood of false asymmetry from the coolant of 
the target is higher in the evaporative cooling methods. Therefore, it is recommendable to 
monitor the amount of coolant in the target in order to be able to correlate and correct any 
possible false asymmetry due to the effective density of the coolant.

In 3He refrigerators the coolant density in the target volume can be monitored by record-
ing the condensation pressure while keeping the amount of gas in the closed-loop system 
constant. This obviously requires that the condenser operates in steady conditions and has 
a small volume compared with that of the target cavity.

In continuous-flow 4He refrigerators, the monitoring of the amount of coolant is not 
possible in this way because the cooling circuit is open. Therefore it is important to keep 
the microwave power absorption in the target equal in both polarization states of the target, 
and to monitor all parameters of the refrigeration system so as to keep the as constant as 
possible while reversing the polarization by DNP.

The target thickness can, in principle, be also monitored by using a scattering  reaction 
with high statistics and no spin effects, in parallel with the polarization asymmetry 
measurement.
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Dummy Target Tests
The sources of false asymmetries are often studied by replacing the polarized target with 
an unpolarized dummy containing polyethylene or graphite beads. The data collected with 
such a target should therefore yield zero asymmetry, and in the data with the graphite target 
the elastic peak should be absent.

11.1.3 Methods and Frequency of Polarization Reversal

Reversal by DNP
It is often stated that DNP has the benefit of enabling the reversal of the target spin polar-
ization with nothing but a small change in the saturating microwave frequency. This is 
true despite of the fact that the microwave power may be systematically slightly different 
for the two polarization states, thus producing a small false asymmetry effect on the back-
ground due to scattering off the coolant nuclei.

The speed of polarization depends on the spin-lattice relaxation time of the electron 
spins and on the power and frequency of the applied microwave irradiation, as was dis-
cussed in Chapter 4. Zero-crossing takes place typically in a few minutes, while 70% of 
the final polarization is reached in 30 minutes at 0.5 K and 10 minutes when using 4He as 
a coolant at 1 K.

The polarization speed depends on the density of the paramagnetic electrons in the 
 target. In heavily irradiated targets, the polarizing time constants also depends on the radi-
ation damage accumulated during the experiment.

Reversal by Spin Rotation
In some experiments the magnetic field can be reversed without noticeable effects on the 
kinematics, or with effects that are well controlled and compensated. This is often the case 
with neutral beam particles such as neutrons and gammas, in particular, when the field is 
axial with the beam and when also the scattered particles are neutral. Then the target spin 
can be reversed as rapidly as the field can be rotated.

The field can be most easily rotated by powering a magnet that produces a field orthog-
onal with the main field. If the target is operating in the frozen spin mode, the transverse 
field can have a value of about 0.5 T, where the spin-lattice relaxation time at 50 mK tem-
perature is typically around 200 h (see Eq. 5.97 and Figure 5.8). Eddy current heating limits 
the rotation speed so that it is usually accomplished in about 10 minutes.

The field rotation can be done with either positive or negative polarization of the tar-
get. Often both polarities are used in order to compensate systematic effects due to the 
change of the field direction. In the case of negative polarization of protons, care must 
be taken to avoid superradiance of the NMR hybrid resonant circuits, as was discussed in 
Section 6.3.6. If superradiance is suspected, it can be avoided by making the magnetic field 
 sufficiently inhomogeneous during its ramp down and up.

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108567435.012
https://www.cambridge.org/core


442 Design and Optimization of Polarized Target Experiments

With target in the frozen spin operation mode, the magnetic field can be rotated in any ori-
entation that the experiment may require, as long as the field value is about 0.3 T or higher. 
The superconducting magnet system of Saturne II Nucleon-Nucleon scattering experiments 
was briefly described in Chapter 9; this system consists of three coils and permits the ori-
entation of the target spin in three orthogonal directions [1]. The orientability of the target 
spin makes it possible, in a single experiment, to perform complete sets of measurements 
allowing unique determination of the spin-dependent scattering amplitudes in two-body 
reactions of the nucleons, in this case polarized protons and neutrons [2]. The polarization 
was also reversed by field rotation in the cases where the experiment permitted it.

CERN PS199 experiment using antiproton beams from the LEAR ring was designed to 
measure the spin-dependent scattering amplitudes in the pp system [3, 4]. The 12 cm long 
target was polarized in the 2.5 T homogeneous vertical field of an iron-yoke magnet. After 
reaching 90% polarization, this main field was lowered to rotate the field along the axis of 
the target, obtained by powering a thin holding coil wound around the thin-walled vacuum 
inner chamber of the target refrigerator [5]. The holding coil could generate a 0.3785 T 
field, which was needed for transporting the low-energy antiprotons to the target along the 
axis of the refrigerator, but could also be used for polarization rotation.

Polarization Reversal by Adiabatic Passage in Rotating Frame (APRF)
The adiabatic passage in the rotating frame can be done as fast as in a few seconds in a 
small target. This is most easily accomplished by a transverse field coil driven by a constant 
frequency RF source, while sweeping the main field through the resonance condition with 
the Larmor frequency. The transverse RF field does not need to be very homogeneous, but 
its field needs to cover well enough the target volume. In the case of polarized protons, this 
limits the length of the target to about 5 cm because otherwise the coil itself has resonant 
frequencies that are too close to the Larmor frequency.

The efficiency of reversal by APRF is limited by the speed at which thermal mixing 
between the Zeeman and dipolar reservoirs can be obtained, and by the fact that there are 
electron spins and possible other nuclear spin species in the target material.

Using classical equations of motion for the magnetization due to free spins, Abragam 
derives the adiabatic condition [6]

 A
B

B sin
1eff

2

0

γ
θ

= >>�
 (11.10)

which is strongest at resonance where the effective field is perpendicular to the steady field 
so that sinθ =1 and Beff = B1. This ignores any relaxation phenomena and complications 
arising from the contact with the paramagnetic electron spin system.

The internal thermal equilibrium of the Zeeman and dipolar reservoirs is established in 
a time scale of T2, the decay time of the free-precession NMR signal, whereas the Zeeman 
and dipolar reservoirs relax towards the lattice temperature at very much slower rates T1Z 
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and T1D ≈ T1Z/3, respectively. When the magnetic field is changed, the Zeeman reservoir 
is cooled or heated if the field change happens at a constant entropy, whereas the dipolar 
reservoir is not influenced by the field change. Similarly, if an adiabatic demagnetization or 
magnetization is made in the rotating frame at high enough effective field, the dipolar res-
ervoir is unaffected whereas the Zeeman reservoir is cooled or heated. The two  reservoirs 
reach a common temperature when the effective field has a low enough value, called mix-
ing field.

Goldman [7] and Abragam and Goldman [8] discuss the quasi-equilibrium of the 
spin systems at high fields and make the reasonable assumption, well verified by several 
types of experiments, that the systems can be described by the density matrix with two 
temperatures:

 ρ
β ω β

β ω β{ }=
− − ′

− − ′

I

I

exp( )

Tr exp( )
.z z D

z z D

0

0

H

H
 (11.11)

In the high field HD  is replaced by the so-called secular part of the dipolar Hamiltonian 
H ′D , which has the important property that it commutes with the Zeeman Hamiltonian. The 
reasons for this were discussed in Chapter 2. In the presence of a transverse RF field, the 
Hamiltonian in the rotating frame becomes

 I I( )eff z D x0 1ω ω ω= − − + ′ +H H� �  (11.12)

where ω1 = B1γ is the amplitude of the transverse rotating field. When all of the three terms 
of Eq. 11.12 are of the same order of magnitude, the relaxation towards a common spin 
temperature happens fast, with a time constant of the order of T2, which is roughly the 
inverse of the dipolar linewidth and is of the order of 1 ms. This relaxation also depends on 
the magnitude of the transverse rotating field in a complicated way.

Let us now perform adiabatic demagnetization in rotating frame (ADRF) from such a 
large effective field that no thermal mixing occurs, until arriving to the mixing field

 b B ,m
m m

0
0ω

γ
ω ω

γ= + =
−  (11.13)

where the relaxation between the Zeeman and dipolar interaction energy reservoirs is 
 reasonably fast in comparison with the spin-lattice relaxation. The relaxation takes place 
at constant total energy, and the final inverse temperature, in the high-temperature approx-
imation, is analogous with that of Eq. 1.121:
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where the second term on the right describes again the non-adiabaticity due to the mix-
ing. The losses in entropy can be of the order of 1% in favorable cases. If the effective 
field is further reduced so slowly that the dipolar and Zeeman temperatures are always in 
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good equilibrium with each other, the common inverse temperature undergoes reversible 
changes with the effective field:
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 (11.15)

where b ( ) /0ω ω γ= −  and where it was taken into account that the rotating field B1 must 
be small in comparison with both the local field and the mixing field.

The APRF can be stopped at any effective field and the transverse field can be adiabat-
ically reduced to zero. If this is done at the frequency ω0, all available Zeeman order is 
transformed to dipolar order, and if the initial polarization is sufficiently high, magnetic 
ordering may take place in the nuclear spin system. This is very interesting in its own right, 
but polarized target materials are not optimized for such because usually the electron spin 
density is too high and the shape of the target is not an ellipsoid. These would cause the 
smearing of the transition and make it difficult to interpret the domain structure of the mag-
netic phase. However, such a transition is likely to cause loss of reversibility in the APRF.

If the frequency or field sweep is continued through zero effective longitudinal field b, 
the Zeeman temperature will be adiabatically reversed. In this process there is no adiabatic 
loss equivalent to that of the field flip given by Eq. 1.134, because in the rotating frame 
one can proceed adiabatically through zero effective longitudinal field without losses due 
to relaxation, provided that the spin-lattice relaxation times are much longer than the time 
spent in the passage.

The above formulas are derived using the high-temperature approximation because there 
is no equivalent and simple model for the APRF covering the case of low temperatures. 
Thus these theoretical results are at best qualitatively correct, with no clear way of optimi-
zation for the strength of the rotating field and the field sweep rate.

In practice the strength of the transverse field and the sweep rate of the steady field are 
experimentally optimized so that the losses due to relaxation are minimized. The polar-
ization loss in the reversal by APRF is then reduced to that due to the loss of entropy 
when performing the thermal mixing, and to the loss due to other spins whose temperature 
remains untouched during the passage. At very high polarization the above results based 
on the high-temperature approximation are qualitatively valid, but nuclear magnetic phase 
transition phenomena may reduce the efficiency of the polarization reversal.

The reversal can be performed starting from positive or negative polarization and spin 
temperature, and the sweep of the frequency or field can be started from above or below, 
with approximatively same results. To reduce losses due to thermal mixing, however, it 
is best to perform thermal mixing at positive Zeeman temperature when the initial polar-
ization is positive, and at negative Zeeman temperature when the initial polarization is 
negative.

To our knowledge the APRF reversal has never been applied in polarized proton targets 
during operation in a particle physics experiment. Among the rare available reports, those 
of Patrick Hautle are probably the most systematic. He describes the problems discussed 
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above and finds the experimental reversal efficiency Pfinal /Pinitial = – 0.36 for protons in 
1-butanol doped with 4 × 1019 spins/cm3 of porphyrexide [9, 10]. This best efficiency was 
reached at A = 20. The experimental results of Hautle [11] confirm earlier work of Parfenov 
and Prudkoglyad [12].

The foregoing discussion applies to spin ½ nuclei. The tests were performed with a 
frequency sweep rather than field scan. For deuterons with a quadrupole broadened NMR 
line, an additional complication arises because in a single APRF through the resonance line 
a part of the spins are reversed twice. Hautle remedied this by a second passage that was 
stopped in the middle of the deuteron resonance line [9, 10]. This technique permitted to 
reach reversal efficiencies as high as Pfinal /Pinitial = – 0.92. The optimization of the frequency 
sweep rate and of the transverse field strength yielded best reversal efficiencies in the range 
0.36 T/s ≤ dB/dt ≤ 1.28 T/s and RF field amplitudes around 2B1 = 0.1 mT.

The reports on the APRF reversal of proton polarization fail to take into account the 
internal field due to the magnetization of the highly polarized proton spins. This is of the 
same magnitude as the dipolar field and is higher than the rotating field due to the RF 
drive coil. When the magnetization is negative, it induces a large current in the coil and 
may lead to superradiance unless the resonance of the tuned circuit is highly damped. The 
superradiance will happen once in each reversal, irrespective of the direction of the sweep 
or initial sense of polarization. This will limit the final polarization to the value at which 
the superradiance conditions are met, as was described in Chapter 6. It remains to be 
experimentally verified if superradiance can explain the poor results of APRF in polarized 
proton targets.

While for protons the classical adiabatic condition A = 20 for best efficiency seems to 
verify Eq. 11.10, the loss of polarization is higher than predicted and remains unexplained. 
On the other hand, the reversal efficiency for deuterons is more in conformity with the pre-
diction, while it is achieved with A < 1 in contradiction with the classical picture of APRF. 
These facts remain to be clarified by further experimental and theoretical work.

Optimization of the Reversal Frequency
The accuracy of the beam normalization, the drift in the acceptance a and variations in the 
effective target thickness nt were discussed above and it was stated that frequent polar-
ization reversal is the best mitigation strategy. However, if the period of operation with a 
given polarity is pushed too short, the mean polarization of Eq. 11.6 remains low, which 
limits the accuracy of asymmetry measurement. Thus there must be an optimum reversal 
frequency.

In polarization asymmetry measurements of inelastic and inclusive reactions, there is no 
elastic peak that can be normalized with the unpolarized background scattering events off 
complex nuclei. The experimental asymmetry is therefore limited by the dilution factor of 
Eq. 11.3 and it may remain buried in the ‘noise’ due to the drift of the above parameters.

Chabaud and Kuroda developed a time-dependent analysis in which the slow drift 
was modelled by a polynomial modulated by the target polarization via the scattering 
 asymmetry in each kinematic bin [13]. The polynomial was chosen so that it does not fit 
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away the polarization asymmetry but permits to detect the rather rapid change of the polar-
ization sign at each reversal, even when buried in the statistical noise.

The above method is based on the assumptions that the drift is multiplicative and con-
tinuous in time. Unfortunately it fails to yield a reliable estimate of the residual error in 
the resulting asymmetry. This is mainly due to the fact that the fitting process is equivalent 
to a non-linear filtering operation. Moreover, the polynomial is likely to contain Fourier 
components at the frequency of polarization reversal; these are indistinguishable from the 
‘signal’ due to the polarization reversals.

In order to optimize the polarization reversal frequency and to obtain a well-understood 
estimate for the residual error in asymmetry, it was proposed to use the optimum linear fil-
ter theory [14],which is well known from communication theory [15]. The optimum linear 
filter has a frequency response function shaped like the complex conjugate of the Fourier 
transform of the signal, weighted with the reciprocal of the noise power spectrum. Thus, as 
the signal is the replica of the time evolution of the target polarization, it is just required to 
experimentally find the noise power spectrum in order to compute the filter. The remaining 
optimization consists of placing the polarization signal optimally in the frequency domain, 
so as to minimize the resulting error in the estimate of the polarization asymmetry.

The noises due to the drifts of the counting rate signal are modelled by multiplicative and 
additive components and by statistical fluctuations. The time sequence of counts in each 
kinematic bin is approximated by a continuous signal

 � ε= + ⋅ + +N t
N
t

n t n t P t( ) [1 ( )] [1 ( ) ( )],r

r
t1 2

 (11.16)

where Nr is the total number of counts in an experimental run lasting during the time tr 
of the run, n1(t) is the multiplicative part of the noise (mainly the drift of the counting 
efficiency and of the acceptance) and n2(t) is the additive part of the noise coming from 
statistical fluctuation and fluctuation of the target density. The experimental asymmetry ε is 
modulated by the target polarization P(t), which is assumed to evolve exponentially during 
each reversal period:
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t /= − τ

∞
−  (11.17)

where τ is typically 5 min to 10 min in materials such as propanediol with PD-Cr(V) com-
plexes. It turns out that if the asymmetry signal is small, all noise sources can be considered 
to be additive.

The optimum filter operation consists of pre-filtering the raw data with the reciprocal of 
the noise power spectrum, followed by the calculation of the cross correlator of the count-
ing asymmetry and polarization signals:
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Here second-order terms are assumed to be small and the noise signal is
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 n t n t n t n t n t( ) ( ) ( ) ( ) ( )1 2 1 2= + +  (11.19)

which is Gaussian if both n1(t) and n2(t) are Gaussian. With sub-runs of length Δt and 
number of counts ΔN, the statistical counting noise is white with amplitude and bandwidth

 

D

D

D

G
B

t
N

N

B
t

;

1 .

n

n

n

1

2
1σ

= = =

=

−�

 (11.20)

Furthermore, if the drift of the counting efficiency can be represented by a noise with 1/f 
spectral density, the total noise spectrum is
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The RMS variation of the estimate for the polarization asymmetry is then [14]
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where T is the length of time between polarization reversals and
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is the frequency at which the 1/f -noise is equal to the white statistical noise.
The minimization of Eq. 11.22 with respect to the reversal period T, while keeping the 

total number of counts Nr constant, can now be obtained by requiring that its partial deriv-
ative with respect to T is zero. To do this we find first write
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and write the nominator of Eq. 11.22 as
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These yield
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which can be solved numerically for x. This was done in Ref. [14] using the experimental 
conditions of Ref. [16] in intense secondary beams of π ± and p at 8 GeV/c at CERN PS, 
with T0 ≈ 100 minutes. The solution shown in Figure 11.1 suggests that the optimum rever-
sal period should be about T = 45 minutes, while the experiment was run with reversals 
each 5.9 h on the average. It is clear that this was sub-optimal but, on the other hand, the 
target operation was manual rather than automated as required when reversing the polar-
ization each 45 minutes.

Many inclusive spin asymmetry measurements have taken advantage of the shortened 
polarization reversal periods. There is, however, the technique of using two oppositely 
polarized targets placed in the same beam. In this case the slow drift of the beam and accep-
tance can be eliminated to a large extent, which will be described below.

11.1.4 Multiple Targets in the Same Beam

If the scattering events are reconstructed so that the event vertex can be located in the cell 
of the polarized target, two target cells with opposite polarizations can be placed in the 
same beam so as to eliminate to a large extent the effects of the drift in the beam and in the 
acceptance. This technique was used for the first time by the European Muon Collaboration 
(EMC) in their investigation of deep inelastic scattering of polarized muons on polarized 
protons in 1984 and 1985 [17],[18]. The M2 muon beam of the CERN SPS accelerator was 

Figure 11.1 Polarization reversal interval T as a function of T0, which is the intercept of the 1/f noise 
with the statistical noise (see the text for the precise definition). Reprinted from Ref. [14] with minor 
improvements, with permission from Elsevier
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 11.1 Particle and Nuclear Physics Experiments 449

instrumented with a fast beam tracker that allowed the beam phase space cuts to be made 
so that the same beam traversed the two target cells. The cells were of 360 mm long and of 
1 L volume; they were separated by a 220 mm gap. The vertex distribution in the two cells 
along the beam direction is shown in Figure 11.2.

The spin-dependent differential cross sections give rise to the free proton asymmetry

 A d d
d d
σ σ
σ σ

=
−
+

↑↓ ↑↑

↑↓ ↑↑
 (11.27)

and the measured event yields from the two target cells are related with this by

 σ σ= Φ − = Φ −N n a f P P A N n a f P P A(1 ) , (1 ),u u u 0 b u d d d 0 b d  (11.28)

where the subscripts u and d refer to the upstream and downstream target halves, n is 
the number density of the target nucleons, Φ is the beam flux, a is the acceptance of the 
detector system, σ0 is the unpolarized cross section, f is the fraction of the event yield from 
the polarized protons of the target, Pb is the beam polarization and Pu(d) are the polariza-
tions of the upstream (downstream) target halves. As the polarization of the positive muon 
beam was fixed and opposite to the beam direction, it amounted between –0.77 and –0.82 
depending on the energy that was varied from 100  to 200 GeV.

For an experimental run with Pu initially in the direction of the beam and Pd opposite the 
measured asymmetries Am are
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′ =
′ − ′
′ + ′

 (11.29)

Figure 11.2 Event vertex distribution along the beam direction in the double-cell polarized target 
of the EMC [18]. The positions of the target edges and the applied cuts are shown. The slope of the 
number of counts in the two targets is due to the their different acceptances seen by the scattered 
muon spectrometer
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where the unprimed (primed) quantities refer to the event yields before (after) the reversal 
of the polarizations of the target halves. The free proton asymmetry A is related to the 
measured asymmetries by

 ( )= + ′ = − + + ′ + ′A A A Af P P P P P1
2
( ) / 4.m m m b u d u d  (11.30)

The measured asymmetries were always less than 0.02 so that the experiment requires 
high statistics and stable equipment, even if the false asymmetries exactly cancel from Eq. 
11.30. However, if the acceptance drifts slightly, a false asymmetry may show up if the 
ratio of the downstream and upstream acceptance ratios before and after reversal

 K
a a
a a
/
/

u d

u d

=
′ ′

 (11.31)

deviates from unity. This turned out to be the leading systematic source of error in the 
EMC result on the Ellis-Jaffe sum rule [19], and requires the precise monitoring of the 
acceptances in the improved experiments in order to be able control and correct them. 
Such improvements were implemented by the Spin Muon Collaboration along with their 
new 50% longer polarized target [20]: the contribution of the acceptance drift to the errors 
of the integrals of the spin structure functions was reduced by a factor of almost 4 by more 
frequent polarization reversals and by introducing the field rotation as an additional method 
of reversal. The new magnet system permitting the field rotation included dipole coils with 
0.5 T transverse field, which also allowed target operation with transverse spin orientations 
[21].

The technique of placing several different targets in the same muon beam was also used 
for the measurement of precise deep-inelastic cross-section ratios on nucleons in nuclei of 
different sizes, in order to verify the differences in the nucleon structure functions between 
the quasi-free nucleons of deuteron and those bound inside heavier nuclei [22].

The two-cell target method was developed further by the CERN COMPASS collabo-
ration by splitting the SMC target into three sections, with a central section twice longer 
than the end sections [23]. The central section was polarized in direction opposite to that 
of the end sections. In this way the mean acceptances of the oppositely polarized sections 
were more equal, and the adverse effects of the slow drift were reduced beyond what was 
possible with the two-cell targets.

11.2 Spin Filtering of Neutron Beams

Spin filtering of a neutron beam by polarized protons was one of the early applications of 
the dynamically polarized LMN targets [24]. In the neutron beam energy interval 10 eV to 
100 keV, this is the most efficient technique, because the neutron-nucleus cross sections are 
large and they have a large and calculable spin-dependent part determined by the s-wave 
scattering. In s-wave neutron-nucleus scattering, the total cross section can be written in 
the general form
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 P Pn N P0σ σ σ= −  (11.32)

where σ0 is the total cross section with unpolarized particles, Pn(N) are the polarizations of 
the neutron (nucleus) and σP is the so-called polarization cross section:
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+ +
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−− + + −  (11.33)

Here I is the spin of the target nucleus and a±, σc± are the scattering lengths and capture 
cross sections for neutron-nucleus collisions with total spin I + ½ and I – ½, respectively.

The transmission of the target for an unpolarized incident neutron beam is

 σ=
+

= σ+ − −T
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0  (11.34)

and the transmitted beam polarization is
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−
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=+ −
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P n ttanh ( )n N P
 (11.35)

For 1 eV to 10 keV neutrons scattering on polarized protons has σ0 = 20.4 b and σP = 16.7 b.1  
Targets of a few cm thickness can thus polarize transmitted neutrons almost completely by 
spin filtering without losing more than 90% of the beam intensity [24].

At very low neutron energy the cross sections entering in Eqs. 11.34 and 11.35 are
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Here σinc is the incoherent scattering cross section and σc0 is the unpolarized capture cross 
section. For slow neutrons with energy ≪ 1 eV on polarized protons, we have
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 (11.36′)

The main advantages of polarizing filters are [25]:

• They can accept wide beam divergence.
• They can be designed to have high transmittances and polarizing efficiencies.
• The thickness of the polarizing filter controls the above parameters via Eqs. 11.34 and 

11.35.
• They operate efficiently over a broad neutron energy range.

1 The unit barn (b) is used for the cross sections in nuclear physics; 1 b = 10–28 m2.
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For these reasons the polarized proton filters are the only means of polarizing truly white 
neutron beams such as those in the spallation neutron sources. These filters are usually 
cooled by evaporation of 4He because 3He has a large absorption cross section for slow 
neutrons.

Other materials for neutron spin filtering include samarium, 3He and TiH2. The samar-
ium filter [25] is based on selective neutron absorption by brute force polarized samarium 
nuclei in a saturated ferromagnet cooled to LHe temperatures. The brute force polarized 
3He and TiH2 were briefly discussed in Chapter 10. More recently optically pumped 3He 
has been proposed for neutron spin filtering [26].

Fast polarized neutrons are used for the studies of nuclear structure and resonances. DNP 
may be used for polarizing the spins of the target nuclei used in elastic and inelastic scat-
tering experiments. In these studies often very thin targets are required, whose preparation 
was briefly discussed in Chapter 7.

For ultracold and cold neutrons in the wavelength range 4–20 Å multilayer magnetic 
supermirrors are the most efficient way of getting the neutron beam highly polarized [27–
29]. Such slow polarized neutrons are useful for solid-state research, in particular, for the 
material studies using coherent scattering, which is the topic of next section.

11.3 Coherent Slow Neutron Scattering

11.3.1 Born Approximation and Fermi Pseudopotential

Neutrons thermalized at 293 K have the de Broglie wavelength

 λ = = =
h

m v

h
kT3

0.147nm,
2  (11.37)

which is in the range of atomic distances in solids and in complex molecules. Thermal and 
cold neutrons are therefore suitable for the structural studies of large molecules such as 
proteins, carbohydrates, lipids, enzymes and biopolymers such as RNA and DNA. In com-
paring with X-rays and electrons, the fact that all biomolecules contain hydrogen makes 
the neutrons particularly suitable for these studies due to the fact that protons scatter neu-
trons very efficiently, while neutrons are almost insensitive to the atomic electrons and feel 
much less the heavier nuclei.

The Born approximation describes well the slow neutron scattering by a nuclear poten-
tial, by considering the incoming neutron as a plane wave and by taking into account that 
the interaction potential well is shallow. In this case the scattering amplitude is [8]

 f M i V d rk k r r( )
2

exp ,2
3∫θ

π (( ( ) ) )= − − ′ ⋅ ′ ′ ′
�

 (11.38)

where M is the neutron mass, k is its incoming wave vector and k′ is the outgoing wave 
vector. Moreover, when the neutron wavelength of Eq. 11.37 is very long in compari-
son with the size of the scattering potential well, the scattering becomes isotropic and the 
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scattering amplitude of Eq. 11.38 has negligible imaginary part for nuclei below mass 17, 
with the exception of 3He and 6Li.

If in addition the interaction potential is approximated by the Fermi pseudopotential

 V
M

ar r( ) 2 ( ) ,F

2π δ= �  (11.39)

the scattering amplitude becomes

 f M i V d r ak k r r( )
2

exp .F2
3∫θ

π )( ( ) ) (= − − ′ ⋅ ′ ′ ′ = −
�

 (11.40)

If furthermore the nuclear spin is considered, the scattering amplitude can be expressed in 
operator form as

 a b BI s2 ,= + ⋅  (11.41)

where I is the nuclear spin operator and s is the neutron spin operator; b, B are constants 
determined by the two eigenvalues b+ and b– of the operator I·s in the states J± = I ± ½ [8]:

 =
+ +

+
=

−

+
+ − + −b

I b Ib
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B
b b
I

( 1)

2 1
;

2 1
.  (11.42)

If the neutron can be absorbed by the nucleus, the scattering amplitude can also have an 
imaginary part, but in the case of cold neutrons the absorption cross section is small for all 
light nuclei with the exception of 3He and 6Li.

There is no theoretical method to determine these amplitudes accurately from nuclear 
models, but they have been experimentally measured for most nuclei. Table 11.1 lists the 
parameters b and B for nuclei of interest in biochemical molecules. More recent tables of 
neutron scattering lengths for a wide range of nuclei are available in Ref. [30].

In targets with many dense clusters of nuclei scattering in the forward direction has an 
enhancement due to the coherence of the waves scattered from nearby nuclei. The scatter-
ing amplitudes of the clusters and solvent are obtained by adding the spherically symmetric 

Table 11.1 Parameters b and B that determine the spin-dependent 
scattering amplitudes of slow neutrons on various nuclei common in 
biological macromolecules, from Ref. [31].

Nucleus I b (10–15 m) B (10–15 m)
1 H ½ 3.74 29.12
2 H 1 6.67 2.85
12 C 0 6.65 0
13 C ½ 6.29 –0.6
14 N 1 9.37 1.4
16O 0 5.80 0
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elastically scattered waves. In such forward elastic scattering, the recoil mass is that of the 
whole crystal or cluster in the case of cold neutrons. For faster neutrons, phonons may be 
created but these are not of interest in the study of macromolecular structures.

11.3.2 Spin Contrast Variation in Small-Angle Neutron Scattering

Polarization of Nuclei in Large Biomolecules
It is not self-evident that proton or deuteron spin polarization can diffuse rapidly from 
nuclei in the solvent matrix into the large biomolecules, even if the liquid solution pre-
serves its random distribution in the sample vitrification process.

Stuhrmann and coworkers polarized dynamically various samples containing an enzyme 
(hen egg white lysozyme) dissolved in a mixture of heavy water and deuterated propane-
diol doped with deuterated HMPA-Cr(V), containing about 7% of unsubstituted protons 
[32]. The conclusions were based on the analysis of the proton NMR signal shape and time 
evolution, and on the tests of the spin temperature equilibrium between the deuteron and 
proton spin systems. It turns out that the dense clusters of the 700 protons in the lysozyme 
structures are polarized at almost the same speed as the unsubstituted hydrogens of the 
solvent, and that the protons reached the same spin temperature as the solvent deuterons, 
within the experimental accuracy.

Nuclear Spin-Dependent Amplitudes
Using the scattering length operators of Eq. 11.41, we may define two scattering ampli-
tudes for a macromolecule [33, 34]
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where U is the invariant and V is the polarization-dependent amplitude, Q = k – k′ is the 
momentum transfer vector and rj is the position of the nucleus j. The macromolecule has 
M nuclei of which N have a non-zero spin. The corresponding parts of the macromolecular 
structure ρ(r) are
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The elastic coherent scattering cross section is given by
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where the polarization Pn of the incident neutron is along the same common axis as that of 
the targe1t nuclei Ij, i.e. along the static magnetic field.

While the s-wave scattering of the neutron on a single nucleus is isotropic, the elastic 
coherent scattering is strongly peaked in the forward direction, because the sums of Eqs. 
11.43 get large under the condition that Q be small. It is these forward peaks in the polar-
ized scattering functions that are of interest in the study of macromolecules.

Assuming that only one nuclear species with polarization P is contributing to the ampli-
tude V(Q) of Eq. 11.43, the coherent scattering can be expressed as

 = + +S S P PS P SQ Q Q Q( ) ( ) ( ) ( ) ,U n UV V
2  (11.46)

where SU , SUV and SV are the basic scattering functions of spin-contrast variation; SU(Q) is 
the scattering function of the unpolarized target with structure ρU (r). The polarized nuclei 
with structure ρV (r) give rise to SV (Q), and the cross-term SUV (Q) is due to the convolution 
of ρU (r) with ρV (r).

The experimental determination of the basic scattering functions involves a series of 
measurements of S (Q) with different P and Pn; SU (Q) is first measured with the zero polar-
ization of the target P = 0. As the spin of the neutron beam can be quickly inverted by a 
flip coil, the functions with opposite neutron polarizations Pn and –Pn are then measured:
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 (11.47)

From the difference of these we obtain

 S
S S
P P2

.UV
n

=
−↑↑ ↑↓  (11.48)

The sum of these yields

 S S S P S2 2 ,U V
2

 + = +↑↑ ↑↓  (11.49)

from which SV can be extracted because SU was already determined from the measurement 
of the scattering function with unpolarized target.

The experimental scattering functions were determined for several large biomolecules, 
from which the proton spin densities and molecular sizes were directly determined. The 
scattering functions determined for the biomolecules using different deuterated labels 
yielded important information for the relative positions of the labels and therefore the 
shapes of the molecules.

Dynamically polarized protons of a crystal of lanthanum magnesium nitrate (LMN) 
142Nd3+ were first time studied by polarized slow neutron diffraction by Hayter, Jenkin 
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and White in 1974 [35]. The positions of the H atoms were obtained from a limited set of 
reflections. The non-uniform proton polarization was one of the reasons for the unexpect-
edly poor quality of the polarized proton-density map [36]. The work on LMN crystals was 
not pursued at that time.

In the mid-80s, several groups embarked on experiments of polarized SANS from 
dynamically polarized proton spins. Demonstration-quality results were obtained in crown 
ethers by Kohgi et al. [37], polymers by Glättli et al. [38] and biological macromolecules 
by Knop et al. [33, 39]. All of them took advantage of the new type of glassy polarized 
target materials using stable Cr(V), which had been developed for high-energy physics 
experiments. Its preparation for the purpose of neutron scattering from hydrophilic mac-
romolecules is simple. A small amount of EHBA-CrV together with the biological mac-
romolecule of interest is added to a glycerol/water mixture and rapidly frozen to a glassy 
platelet in a liquid-nitrogen-cooled copper mould.

Most of these tests were made using 4He evaporation refrigerators, which eliminates the 
neutron absorption by 3He. Knop and coworkers used first a fast-loading dilution refrigera-
tor with quartz inserts to reduce the amount of 3He in the beam path through the target, and 
then developed a dilution refrigerator with a 4He-filled sample cell [40]. The advantage of 
a dilution refrigerator is that it enables spin freezing and selective depolarization of protons 
or deuterons.

The recent progress in the applications of SANS using polarized targets is reviewed by 
Stuhrmann [41, 42].

Time-Resolved Small-Angle Neutron Scattering (SANS)
The paramagnetic molecules used for DNP may be rather large and it is often asked how 
the nuclear spins in these molecules behave during DNP and when the polarization is fro-
zen. This was discussed in the terms of the diffusion barrier in Chapter 5. Van den Brandt 
and coworkers addressed the issue in the case of EHBA-Cr(V) by developing a technique 
to follow the time evolution of the small-angle scattering during the reversal of polariza-
tion in glassy glycerol-water samples of different degrees of deuteration [43]. The time 
constants that describe the build-up of polarization around the paramagnetic center and 
the subsequent diffusion of polarization in the solvent were determined by analysing the 
temporal evolution of the nuclear polarization, which in turn was obtained by fitting a core-
shell model to the time-dependent SANS curves. The results on the spin dynamics obtained 
using the scattering function of a core-shell could be independently confirmed by evalu-
ating the integrated SANS intensity. A thermodynamic one-center model was presented, 
which is able to reproduce the observed dependence of the proton polarization times on the 
proton concentration of the solvent.

The simultaneous global fitting of typically 200 time-resolved differential cross-section 
data sets provided the time dependence P(t) of the close proton polarization. Two time 
constants could be identified in the dynamics of the polarization process. The short time 
constant τ1, typically of the order of 1 s, can be related to the relatively fast polarization 
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build-up of the protons close to the paramagnetic center, whereas the long-time constant 
τ2 ∼10 s was interpreted as describing the slower build-up of the polarization of the distant 
bulk protons of the solvent [43]. A thermodynamic model expressing the flow of polar-
ization between three reservoirs coupled in series is able to reproduce the concentration 
dependence of the experimental time constants.

Paramagnetic electron spin centers may also occur naturally in biomolecules, and these 
may be used for DNP in order to complement EPR results with time-resolved SANS. A 
differentiation between dynamic polarized protons close to tyrosyl radical sites in a large 
biomolecule bovine liver catalase and those of the bulk was achieved by time-resolved 
polarized neutron scattering [44]. This was possible despite of the polarization of 3% 
reached with the low concentration of the tyrosyl radical. Three radical sites, all of them 
being close to the molecular center and the haem,2 appear to be equally possible. Among 
these is tyr-369, the radial site of which had previously been proven by EPR [44].

Future Neutron Beams for Molecular Studies
The spallation neutron sources produce intense pulses of neutrons from high-energy proton 
bunches hitting a liquid mercury jet target. The produced neutrons can be slowed down 
in moderators operating at different temperatures, before collimating them into neutron 
guides. The velocity of each neutron can be obtained from the time of flight between the 
pulse and the detector. Such pulsed neutron beams have the advantage that the velocity of 
the neutrons in the beam can be recorded, event by event. Thus the intensity is not reduced 
by a velocity selector. Moreover, as the beam velocity range can be rather wide, the range 
of momentum transfer Q can also be wide. This gives an extra parameter that may be used 
in the studies of molecular structures.

These pulsed neutron facilities are predicted to gain considerable importance in time- 
resolved SANS in the future [45]. An example is the iMATERIA spectrometer at the 
J-PARC spallation neutron source, which features a polarized target with a 7 T magnet 
and 1.2 K 4He refrigerator [46]. The facility is planned for the studies of microstructures of 
polymers and elastomers.

11.3.3 Pseudomagnetism

When polarized particles (neutrons, electrons or photons, for example) pass through a 
polarized target, the interaction of the particle with the matter can also be described as 
waves that become superposed and therefore interfere. This was predicted for neutrons 
by Barychevskii and Podgoretskii [47] who found that slow polarized neutrons will pre-
cess substantially differently about the nuclear polarization vector when the polarization 
is non-zero.

2 Haem are recognized as the components of haemoglobin but are also found in a number of other biologically important haemo-
proteins such as catalases and myoglobin. Haem is a coordination complex consisting of an iron ion coordinated to a porphyrin 
and one or two axial ligands.
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As was described in Section 11.3.1, only isotropic s-wave scattering is substantial for 
thermal neutrons, whose wavelength is several orders of magnitude longer that the range of 
the nuclear force. Following Tsulaia [48], the propagation of slow neutrons through matter 
can be described by an index of refraction n

 ∑π
= +n

k
N A1

4
(0) ,

i
i i

2
2  (11.50)

where k = 2π /λ is the wave vector, Ai (0) is the amplitude of the non-spin-flip forward elas-
tic scattering of nuclear species i and Ni is the number density of such nuclei.

The Fermi pseudopotential of Eq. 11.39 can be written, using the amplitudes of Eq. 
11.42
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where M is the reduced mass of the neutron-nucleus system, f  + and f  – are the amplitudes 
for the cases of total angular momentum J = I ± ½, respectively.

The angular brackets of Eq. 11.51 express the total scattering amplitude
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from where one can immediately see that when the neutron and target spins are parallel, we 
have the forward scattering amplitude

 = +A f(0) ,1  (11.53)

while in the non-flip forward scattering of a wave whose polarization is antiparallel with 
the polarization of the target nuclei, the scattering amplitude is
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 (11.54)

Therefore the index of refraction of Eq. 11.50 has different values for the two spin states of 
the neutron-nucleus system:
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Given the fact that both of these deviate little from 1, we may linearize and write them as
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with the difference
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It follows from the above that a neutron propagating at velocity v through a nuclear polar-
ized medium will see its spin component perpendicular to the nuclear polarization precess 
at angular frequency that differs from the precession due to the magnetic induction by

 ω π ( )= =
+

−+ −k nv kv N
k

I
I

f f4
2 1

.n 2D D  (11.58)

The change in the state of polarization of the particles, passing through the target is 
described phenomenologically in terms of their precession in an additional pseudomag-
netic field3 B* :

 B .n n
*ω γ=D  (11.59)

Such neutron spin rotation, while moving in matter with polarized nuclei, is caused by 
strong interactions, and can be substantially faster than that caused by the sum of the exter-
nal and internal magnetic fields.

The outline presented above for the example of a beam of slow monoenergetic neutrons 
passing through a polarized nuclear target can be generalized to beams of other particles. 
Results of experiments with neutrons, electrons and γ-ray quanta have been presented by 
Pokazan’ev [49].

The concept of a nuclear pseudomagnetic field and the phenomenon of neutron spin 
precession in matter with polarized nuclei were experimentally verified first time by 
Abragam’s group in France in 1972 [50]. The accumulated results were reviewed by Glättli 
et al. in 1979 [51]. Abragam and Goldman have reviewed the method and the pseudomag-
netic moments of more than 30 nuclei in Chapter 7 of Ref. [8].

The neutron precession in a nuclear spin polarized sample has evolved into a conve-
nient tool for measuring spin-dependent scattering lengths of slow neutrons on nuclei. The 
method is, according to Glättli et al. [51], straightforward when

• the sample has only one nuclear species with non-zero spin;
• the number density of the nuclei with spin is at least 1022 cm–3;
• the sample does not absorb thermal neutrons too strongly;
• nuclear polarization > 1% can be obtained and measured.

3 We use the SI units; the original papers by Abragam and coworkers are written with CGS units, where the magnetic field H is 
used instead of the magnetic induction B (see Appendix A.1.2.).
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11.4 Solid-State Physics, Chemistry and Biomedical Applications

DNP was developed originally for the needs of particle and nuclear physics, but it was 
soon realized that it enabled new research and expanded the existing methods in solid-state 
physics, chemistry and biomedical chemistry. Among these are nuclear magnetic transi-
tions in solids, high-resolution NMR spectroscopy in solids and sensitivity enhancement in 
NMR and MRI using rare nuclei.

The overview below is brief and does not attempt to give exhaustive coverage because 
the topics are currently rapidly expanding. Moreover, these topics are not in the main focus 
of this book.

Chemists use the generic term hyperpolarization to describe all methods to enhance spin 
polarization beyond its thermal equilibrium value.

11.4.1 Nuclear Dipolar Magnetic Ordering

We briefly include this topic for two reasons:

(1) The polarization reversal by adiabatic passage in rotating frame (APRF) meets with 
the conditions under which nuclear dipolar ordering has been observed in several sin-
gle crystal materials.

(2) The poor success of APRF in polarized proton targets remains to be explained and, if 
possible, cured.

Magnetic ordering of nuclear dipole moments has been predicted to happen at a criti-
cal temperature Tc when the thermal energy per spin is of the same order as the dipolar 
energy:

 k T B .B c locγ≅   (11.60)

The transition temperature is therefore in or near the range of 10–7 K to 10–6 K for most 
solids with a high density of nuclear spins. As DNP in a 2.5 T field can yield spin tempera-
tures of a few mK (see Chapter 4), adiabatic demagnetization to 0.25 mT field will then 
yield a spin temperature of a few 10–7 K, comfortably in the required range of the dipolar 
fields in solids.

In Section 11.1.3 we discussed briefly the loss of polarization of protons upon reversal 
by adiabatic passage in the rotating frame. Magnetic ordering during the passage can cause 
loss of entropy and therefore loss of polarization that has been observed in many exper-
iments. The conditions under which this can happen in a polarized target are, however, 
so poorly defined that the possible magnetic phase transition is likely to be too diffuse to 
detect in anything else than in the loss of entropy that occurs due to the relaxation of the 
dipolar energy when the effective field in the rotating frame is perpendicular to the main 
steady field. The relation between entropy and polarization was discussed in Sections 1.3.2 
and 1.3.3.
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Abragam and Goldman [8] discuss the conditions required for the unambiguous obser-
vation of the magnetic phases in the rotating frame, listing the problems that needed to be 
addressed beyond the straightforward polarized target techniques:

• The samples need to be oriented single crystals.
• The sample must be spherical or ellipsoidal so that the demagnetizing field is 

homogeneous.
• The concentration of the paramagnetic dopant must be low because ordering may not be 

observable within the dipolar field of the unpaired electron.
• The external steady field must be much more homogeneous than 10–4 so that the demag-

netization to zero effective field is met in the whole sample.
• The DNP must yield a high and homogeneous nuclear spin polarization.

Once the sample material and the suitable paramagnetic center and its concentration have 
been optimized, the nuclear dipolar ordering consists of obtaining a high DNP in the sam-
ple, followed by ADRF to zero effective magnetic field. The rotating field can then be 
reduced to zero and one may begin magnetic measurements or neutron diffraction exper-
iments (in the case of ordering in the 1H spins) in view of studying the magnetic phase 
diagram.

Antiferromagnetic and ferromagnetic phases in the rotating frame have been observed 
in spin systems of 1H, 6Li, 7Li and 19F nuclear spins. These were chemically bound in single 
crystals of LiH, LiF, CaF2 and Ca(OH)2. The two last ones also contained 43Ca spins. The 
paramagnetic F-centers, created by various radiation sources, were used in LiH and LiF. 
CaF2 was doped with U3+ or Tm2+ to get DNP by solid effect [8]. Ca(OH)2 was doped with 
paramagnetic OH– centers created by electron irradiation [52].

The nuclear magnetic ordering in the rotating frame was first observed in CaF2 by the 
group of Abragam in Saclay in 1969 [53]; [54]. A transition to ordered state was observed 
in the NMR dispersion signal when ADRF was performed to zero effective field, with initial 
polarizations –P ≫ 0.3. It was not possible to determine the transition temperature in these 
early experiments, but it was found that when the steady field was along the |100| crystal 
axis, antiferromagnetic order resulted at T < 0, whereas a ferromagnetic order with sandwich 
domain structure was found for |111| direction. For positive temperatures a transition to helical 
order was found with field along the |111| axis. Neutron scattering experiments at Saclay with 
LiH similarly revealed an antiferromagnetic transition, with TN = –1.1 µK [55]; [56]; [57]. 
The Leiden group [52] studied Ca(OH)2 and found a transition to ferromagnetic state with  
Tc = –0.9 ± 0.2 µK [58]. This was also obtained at initial polarizations –P > 0.3 before ADRF.

In glassy polarized target materials, the observation of a possible magnetic phase transi-
tion is obscured by the high electron spin concentration and by the shape of the sample. The 
latter, however, can be cured by preparing a spherical sample 3–5 mm in diameter using 
the mould techniques developed by Stuhrmann and coworkers (see Chapter 7). In analogy 
with the spin glass transition in dilute electron spin systems, one could possibly observe a 
transition in the nuclear spin glass state in a polarized proton target material, by ADRF to 
zero effective field.
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11.4.2 DNP MAS NMR Spectroscopy

MAS is a powerful technique that enables narrow NMR signals to be measured with 
high-resolution in solid samples, where the motional narrowing is absent. The high- 
resolution NMR technique relies on pulsed NMR, the details of which are beyond the 
scope of this book.

The dipolar broadening is due to the terms A and B of Eqs. 2.11a and 2.11b, which need 
to be averaged over the internuclear polar angles θjk to get the dipolar lineshape in a solid 
powder sample. In the case of rapid molecular rotation in a solid, Gutowsky and Pake have 
shown that the average of the angular factor 1 3cos jk

2θ−  should be replaced by [59]

 1 3cos 1 3cos
3cos 1

2
,jk av

jk2 2
2

θ θ
η( )− = − ′

−







  (11.61)

where θ′ is the angle the molecular rotation makes with respect to the static field and ηjk is 
the angle between the rotation axis and the internuclear vector rjk. Such a linewidth transi-
tion occurs in solid ammonia around 40 K, for example. This led Lowe [60] and Andrew 
[61] to propose the rotation of the entire sample about an axis that makes the angle θ′ with 
respect to the magnetic field so that

 '1 3cos 0,2θ− =  (11.62)

which would make the dipolar broadening vanish. The angle arc cos 1 / 3  = 54.7° became 
soon known as the magic angle, and it was quickly understood that it could eliminate 
broadening due to chemical shift anisotropy and first-order quadrupole splitting as well. 
A thorough introduction to MAS and also to pulse sequences for spin-flip narrowing is 
presented by Slichter in Chapter 8 of Ref. [62].

Beyond this, the second-order quadrupole splittings and other second-order broadenings 
can be eliminated by rotating the sample simultaneously about two axes inclined at the 
zeros (= magic angles) of the l = 2 and l = 4 Legendre polynomials [63].

In pulsed NMR the free-induction decay signal is Fourier transformed to get the spec-
trum of the Larmor frequencies of the chemically shifted absorption signals. The rotation 
frequency of the sample is seen as sidebands to each of the narrow lines of this spectrum. 
Therefore, a high spinning speed is desirable to avoid overlap of the chemical shift spectra.

The MAS NMR is particularly applicable to large complex chemical entities of struc-
tural biology, which cannot exhibit motional narrowing and which also escape X-ray stud-
ies. Also a wide range of topics in the materials science, in particular soft materials, have 
profited of the new method. The first pioneering work was done on 13C spectroscopy of coal 
in Delft in 1985 [64].

MAS uses miniature gas turbines to rotate the sample at speed up to 100 kHz or even 
higher. The gas also cools the sample and acts as a gas-dynamic bearing for the rotor, 
similar to turbine expanders of liquefiers. The gas may be N2 cooled by an LN2 bath or a 
cryocooler, or He cooled by a cryocooler or by exchanger using evaporation from an LHe 
bath. In the former case temperatures down to 100 K are easily controlled, limited by the 
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increasing viscosity of N2 and by irregular operation when the gas begins to liquefy, while 
with He temperatures down to 30 K or even 10 K are available. In the latter case the elec-
tron spins are almost completely polarized similar to polarized targets, in particular when 
14 T field is applied.

The field sweep of the high-field magnets is produced with a separate sweep coil system. 
The sweep must be done very slowly because the metallic mandrels and other support 
structures, in addition to the conductor itself, have eddy currents that decay slowly. These 
distort the field and destroy its homogeneity until the currents have decayed.

The cooling of the rotating sample is mainly by conduction through the probe cell 
walls and by forced convection of the turbine gas. As rather large temperature differences 
can be used, the microwave power absorption can be several W/cm3, which is required 
for the solid effect or differential solid effect transitions to be well saturated. In the 
case of the use of cross-effect or Overhauser effect, less power is required because the 
first-order allowed transition is more easily saturated. Although the frequency modula-
tion effects are not well understood, experimental findings suggest that the above DNP 
mechanisms all profit from the frequency modulation. On the other hand, any anisotropy 
in the g-factor or hyperfine splitting also turns into an effective modulation of the transi-
tions, because the axis of rotation is not parallel to the steady field. But the rotation alone 
cannot produce nuclear polarization, because the anisotropy is small and the magnetic 
field is very high, in contrast with the spin refrigerator that was briefly described in 
Section 10.2. On the other hand, in the theoretical estimates of microwave-induced DNP, 
the sample rotation certainly plays a significant role and cannot be ignored. Therefore the 
experimental effect of the sample rotation speed Ω is an interesting item to be studied 
and understood.

The microwave source can be gyrotron (for highest power), EIO or BWO; these were 
described briefly in Chapter 9. In the case of a gyrotron and EIO, the sources are tunable 
electrically only over a small range, which requires that the magnet system must include 
a sweep coil to be able to match the field to the resonance conditions required by the par-
ticular free radical used in the experiment. However, an electrical control of the frequency 
is required for the modulation of the microwave frequency, in order to make use of the 
beneficial effects of the modulation. This was discussed in Chapters 3 and 4 from the point 
of view of polarized target applications.

In the present DNP MAS systems, the microwaves are launched to the probe directly 
from the waveguide, with no reflecting structures. As a tunable resonating cavity is imprac-
tical at millimeter wavelength, similar to the polarized targets, the best solution is to use 
a multimode cavity with a suitable coupling structure such as a horn antenna. The present 
systems launch the microwaves directly from a corrugated oversized waveguide.

As the MAS DNP applications have expanded rapidly, equipment have become com-
mercially available from several sources.4 A recent review gives a good overview of the 
subject [65].
4 Bruker Inc. delivers complete systems for DNP MAS NMR up to 593 GHz (21 T). Gyrotrons and other millimeter wave sources 

are also available from CPI International Inc. (ancient Varian) and Thales Group (ancient Thomson CSF).
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A major development has taken place in the free radicals that are usable in the conditions 
of high temperature (10 K to 100 K) and high field (5 T to 21 T) of the MAS DNP. These are 
also likely to profit future polarized target materials. The concentrations are in the range 
of 10 mM to 40 mM,5 which corresponds to the number density range 6 × 1017 cm–3 to 
2.8 × 1018 cm–3. In the lower limit the cross-effect, solid effect or differential solid effect is 
likely to dominate in DNP, whereas in the higher limit the cross-effect or solid effect should 
be effective, depending on the linewidth of the radical in the solid. Dynamic cooling of the 
spin-spin interactions would require about 10 times higher number density of the free rad-
icals, as was discussed in Chapter 7. Such high electron spin density may not be desirable 
in the MAS NMR samples.

The free radicals are called by the generic name ‘polarizing agent’ (PA) by the chemists. 
Among these are notably BDPA- and trityl-based radicals, including notably sulphonated 
BDPA (SA-BDPA) and sulphonamide BDPA (SN-BDPA), and trityl derivatives OX063 
and CT-03. The latter are water soluble and relatively stable in air, which greatly facilitates 
their use in biochemical samples.

Among the nitroxide radicals, TEMPO was the first one to demonstrate the enhancement 
of 1H and 13C by DNP under NMR conditions of 5 T field and at a temperature below 100 K 
by the group of Griffin at MIT magnet laboratory [66, 67]. The group went on to introduce 
biradicals that combine two interconnected TEMPO molecules by adjustable-length glycol 
chains, a whole series of new radical pairs was developed to match the requirements of 
cross-effect DNP that works with low enough electron spin concentration. The most suc-
cessful of these is called TOTAPOL [68].

Beyond these, a wide range of biradicals, triradicals and more complex mixtures have 
been developed. These are reviewed by the group of Corzilius in Ref. [65].

11.4.3 MRI Sensitivity and Contrast Enhancement

Overhauser effect can be, in principle, used for nuclear spin polarization enhancement in 
liquid state in situ inside an imaging magnet. This was demonstrated inside the bore of a 
1.5 T MRI magnet where proton polarization in a water sample was enhanced by a factor 
up to 98 before letting it flow into a chamber where water was in thermal equilibrium at RT. 
The polarization was preserved and imaging could be demonstrated with high resolution of 
the contrast in the polarization [69].

Pure water with polarized protons has been proposed already earlier as a contrast-agent-
free contrast medium to visualize its macroscopic evolution in aqueous media by MRI by 
McCarney et al. [70]. The method is called remotely enhanced liquids for image contrast 
and it utilizes the proton signal of water that is enhanced outside the sample in contin-
uous-flow mode and immediately delivered to the sample to obtain maximum contrast 
between entering and bulk fluids. The approach features enhancement of the proton MRI 
signal by up to two orders of magnitude through the Overhauser effect under ambient 

5 1 M = 1 mol/L is the unit used by chemists to indicate the number density of the solute molecules in the solution.
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conditions at 0.35 T by using spin-polarized electrons of TEMPO molecules that are cova-
lently immobilized onto a porous, water-saturated gel matrix. The continuous polarization 
of radical-free flowing water allowed to distinctively visualize vortices in model reactors 
and dispersion patterns through porous media. A proton signal enhancement of water by 
a factor of −10 and −100 provided for an observation time of 4 s and 7 s, respectively, 
upon its injection into fluids with a relaxation time T1 = 1.5 s [70]. The team used an aga-
rose-based porous media that was covalently spin labelled with the stable nitroxyl radicals 
TEMPO. The loading of solvent-accessible radical is sufficiently high and their mobility 
approximates that in solution, which ensures high efficiency for Overhauser mechanism 
induced DNP without physically releasing any measurable radical into the solution. Under 
ambient conditions at 0.35 T magnetic field, the DNP enhancement efficiency of proton 
signal of stagnant and continuously flowing water compares favorably with the perfor-
mance of freely dissolved radicals [71].

Ebert et al. [72] have implemented a similar flow system into a mobile DNP polarizer, 
where radicals are immobilized in a gel matrix and the hyperpolarized radical-free fluid is 
subsequently directly pumped into the MRI scanner. They showed that even at flow con-
ditions, the NMR signal is enhanced due to Overhauser DNP in the 0.35 T magnet as well 
as in the MRI scanner (4.7 T) at a distance of 1.4 m. Acquired images demonstrate the use 
of enhanced and the inverted NMR signals, which provide an excellent MRI contrast even 
for small enhancements.

Such enhanced signals may also prove useful when using 13C, 15N or 31P nuclei for MRI; 
clearly this requires the gel technique to be adapted to the fluid in question.

11.4.4 Dissolution DNP

dDNP is a method to create solutions of molecules with nuclear spin polarization close to 
unity. The many orders of magnitude signal enhancement have enabled new applications, 
particularly in in vivo MR metabolic imaging. The method relies on solid-state DNP at 
low temperature (1 K, 5 T), followed by rapid dissolution to produce the room temperature 
solution of highly polarized spins. The technique was recently reviewed by Ardenkjaer-
Larsen [73] who has originally developed the method to get the sample from 1 K to the 
liquid state in a matter of seconds.

dDNP is mainly used for low abundance NMR-active nuclei such as 13C, 15N in mole-
cules of interest, thereby enhancing the signal-to-noise ratio by up to three orders of mag-
nitude. The signal enhancement makes it possible to study biochemical phenomena and 
diseases in real time in vivo by 13C NMR/MRI.

Typically, a sample containing the metabolite of interest (e.g. pyruvate, lactate) and sta-
ble radical is frozen, and then irradiated by microwave radiation in the DNP apparatus 
at ≤1.2 K for approximately 1 h. The sample is then rapidly melted and transferred to an 
automatic injection device using a heated buffer solution (e.g. water), where it can be intro-
duced into the tissue, organ or cell culture to be studied. The whole process from the end 
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of DNP until sample melting and dissolution takes about 10 s. The hyperpolarized signal 
can then be observed for up to 5 minutes after the dissolution process has been initiated.

In ETH Zurich dDNP has been developed for operation at 7 T static magnetic field and 
a temperature of 1.4 K [74]. The equipment was optimized for trityl-based samples. In 
[1-13C]-pyruvic acid polarization levels of about 56% of 13C are achieved compared to 
typical polarization levels of about 35%–45% at a standard field of 3.4 T. At the same time, 
the polarization build-up time increased significantly from about 670 s at 3.4 T to around 
1300 s to 1900 s at 7 T, depending on the trityl derivate used. Adding trace amounts of Gd3+ 
to two samples was studied, yielding in one trityl compound no benefit, while the other 
profits significantly, boosting achievable polarization by 6%.

In the AMRIS Facility of National High Magnetic Field Laboratory in Gainesville, FL, 
a dDNP polarizer operating at 5 T/140 GHz has been built for in vivo, ex vivo and in vitro 
MRI and spectroscopy (MRI/S) studies. The custom-built microwave source features a 
tunable diode microwave source, which also allows for solid-state studies of the polariza-
tion dynamics. It has been designed as a platform for both methodology development and 
in vivo metabolic studies via MRI/S at both 4.7 T and 11 T, and ex vivo/in vitro studies at 
14 T.

As most free radicals are likely to interact unfavorably with biochemical substances, it 
is highly desirable to remove them in the process of dissolution, in which case also con-
centrations in the range of polarized targets can be utilized. This can be realized by the use 
of radiolytic free radicals that react and anneal away quickly upon warmup of the sample.

To this end, Capozzi and coworkers used free radicals generated by UV-light irradiation 
of a frozen solution containing a fraction of pyruvic acid. They have demonstrated their 
dDNP potential, by providing up to 30 % [1-13C]pyruvic acid liquid-state polarization [75]. 
Moreover, their labile nature has proven to pave a way to nuclear polarization storage and 
transport. Herein, different from the case of pyruvic acid, the issue of providing dDNP 
UV-radical precursors (trimethylpyruvic acid and its methyl-deuterated form) not involved 
in any metabolic pathway was investigated. The 13C dDNP performance was evaluated for 
hyperpolarization of 13C6 labelled deuterated glucose. The generated UV radicals proved to 
be versatile and highly efficient polarizing agents, providing, after dissolution and transfer 
(10 s), a 13C liquid-state polarization of up to 32 %.

Complete equipment for dDNP have become recently available under the trade name 
Spinlab.6 In-house developed dDNP equipment exist in numerous laboratories:

• Technical University of Denmark, Center for Magnetic Resonance led by Prof. J.H. 
Ardenkjaer-Larsen (dDNP);

• ETH Zurich, group of Prof. B. Meier (solid-state NMR, dDNP);
• EPF Lausanne, group of Prof. L. Emsley, Laboratory of Magnetic Resonance (solid-state 

NMR, dDNP);
• PSI Villigen, LMD Department, group of B. van den Brandt (dDNP, polarized targets);
• National High Magnetic Field Laboratory, Gainesville (FL) (dDNP, MRI imaging).

6 Supplier: GE Healthcare.
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It is impressive that the number of research teams using DNP for the purposes of biochem-
istry and biomedical applications now compares with the number of teams active in polar-
ized targets for particle and nuclear physics, and that complete equipment for MAS DNP, 
DNP-MRI and dDNP have become commercially available.
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Appendices

A.1 Units, Variables, Symbols and Constants

A.1.1 International System (SI) of Units Compared with CGS Gaussian Units

The International System [1, 2] defines units for length (m), mass (kg), time (s), current 
(A), temperature (K), amount of substance (mole = mol) and luminous intensity (candela = 
cd). All other units are then expressed using these basic definitions and rules derived from 
constitutive relations. For mechanical and electrodynamic relations alone, four basic units 
(m, kg, s, A) are defined, and these constitute a self-consistent base of units for the vari-
ables needed in the description of the laws of nature.

In the CGS Gaussian system (also called CGS Electromagnetic system), the units of 
length (cm), mass (g) and time (s) are defined; the charge unit (esu) is linked to these based 
on the Coulomb force between two charges, and on the definition that the dielectric con-
stant (permittivity) of free space is chosen to be unity. Other units are then derived from 
this set, in a way similar to the SI units. The charge unit in SI system, 1 coulomb = 1 A·s, 
is converted to CGS Gaussian unit by a multiplying factor, which amounts to 10 times the 
velocity of light in vacuum expressed in m/s, i.e. 10 c/(m/s).

There is the fundamental difference that the CGS Gaussian system is three dimensional 
[1, 2], and therefore cannot be compared with the SI units, which has four dimensions 
when mechanical and electrical quantities are considered.

Table A1.1 lists the conversion factors for the main units in the SI and CGS Gaussian 
systems. It should be noted that the magnetic flux density and magnetic field are in CGS 
Gaussian units, which cannot be compared and converted directly to the corresponding 
SI units. This follows from the fact that the constitutive relations of electric polarization 
and magnetic induction are different in the two systems. Therefore, the relations linking 
mechanical forces and electromagnetic variables and other basic electromagnetic and elec-
trodynamic relations are also different in the two systems.

We notice that the velocity of light enters in the conversion factors between some of the 
electromagnetic units in the two systems. This follows from the definition that the perme-
ability of free space is also defined as unity in the CGS system.

The electromagnetic equations in vacuum, derived in the SI units, can sometimes be 
transformed to the CGS Gaussian system by substitutions, and vice versa, but these depend 
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on the way how the equations are written. It is therefore best that the equations are re- 
derived from the basic constitutive and other basic electromagnetic relations in the other 
systems of units. The main relations are listed below:

Table A1.1 Comparison of units in the International System and CGS Gaussian system.

Quantity SI unit In CGS Gaussian units

Energy 1 joule (J) = 107 erg (erg = g·cm2·s–2)
Force 1 newton (N) = 105 dyne (dyn = abampere2 = g·cm·s–2)
Charge 1 coulomb (C) = 2.99792458 · 109 esu
Current 1 ampere (A) = 0.1 abampere
Electric potential 1 volt (V = J/C) = 1/299.792458 statvolt (statvolt = erg/esu)
Electrical resistance 1 ohm (Ω) = 1/29.9792458 statvolt/abampere
Magnetic flux density 1 tesla (T) = 104 gauss (= dyne/esu)
Magnetic field 1 A/m = 10–3· 4π oersted

SI system CGS Gaussian system

Permeability of free space: µ0 = 4π ·10–7 Vs/Am µ0 = 1
Permittivity of free space: ε0 = 8.854187 … ·10–12 F/m ε0 = 1

Electric polarization: D E P0ε= + D E P4π= +

Magnetic induction: H B M
0µ

= − H B M4π= −

Coulomb force: q q

r
F

r

4
1 2

0

12

12
3πε

= q q
r

F
r

1 2

12

12
3=

Lorentz force: qF E v B( )= + × q
c

F E v B= + ×






Maxwell equations: D ρ∇ • = D 4πρ∇ • =

B 0∇ • = B 0∇ • =

t
H D J∂

∂
∇ × − =

c t
H D J1 4∂

∂
π∇ × − =

t
E B 0∂

∂
∇ × − =

c t
E B1 0∂

∂
∇ × − =

Static potentials: V d xr
r

r r
1
4 0

3∫πε

ρ
( ) ( )

=
′

− ′
′ V d xr

r

r r
3∫

ρ
( ) ( )

=
′

− ′
′

d xA r
J r

r r4
0 3∫

µ
π( ) ( )

=
′

− ′
′

c
d xA r

J r

r r
1 3∫( ) ( )

=
′

− ′
′

Table A1.2 Electromagnetic equations in SI and CGS Gaussian systems.
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Some older sources use the Heaviside-Lorentz system of units, which is a CGS system 
rationalized in the same way as the MKSA system, such that the factor 4π appears in the 
Coulomb and Ampère laws explicitly. The electromagnetic relations in this system are 
compared with the MKSA (same as SI) and CGS Gaussian systems in Ref. [3].

Because of the inconvenient and somewhat unnatural CGS units for charge, current, 
potentials and fields, several branches of physics, notably in solid state physics, have 
moved to a hybrid CGS system, where the units of coulomb and ampere were used for 
replacing the units statvolt and abampere. Sometimes the system of units is not clearly 
stated in publications, which may result in a considerable confusion. In these cases we have 
re-derived the equations using the basic SI relations listed above.

A.1.2  Definition of Fundamental Physical Quantities and Variables

In the following table we shall give the definition and values of important fundamental 
quantities and parameters, relevant in magnetic resonance and other fields of the physics of 
polarized targets, in the SI system of units:

Variable Symbol Definition SI unit

Magnetic field H IH ld
a a∫ ⋅ =� A/m

Magnetization M = n µ A/m
Magnetic induction =  
magnetic flux density

B =µ0(H + M) = ∇×A
= –∇Vm

Vs/m2 = T (tesla)

Magnetic flux Φm Vs = Wb (weber)
Vector potential A

= I rl/ 4 d /
a0 ∫µ π( )�  

= ( μ0 I / 4π) µ×( ∇(1/r))

Vs/m

Magnetic scalar potential Vm = ( μ0  / 4πr3) µ·r Vs/m
Magnetic moment µ A m2 = J/T
Angular momentum J kg m2/s
Gyromagnetic ratio Γ = | µ | / | J | A s/kg = m2/(V s2)
Number density N m−3

Larmor frequency νL = –γB/2π s−1 = Hz (hertz)
(in angular units) ωL = –γB radians/s

SI system CGS Gaussian system

Fields from potentials: V
t

E A∂
∂

= −∇ • − V
c t

E A1 ∂
∂

= −∇ • −

B A= ∇ × B A= ∇ ×

Table A1.2 (cont.)
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In this book, for simplicity, we use the term ‘magnetic field’ for both H and B if the 
meaning appears clear from the context. This seems to be a common practice in modern 
literature, although it can be misleading in some cases.

A.1.3  Physical Constants and SI Base Units Redefined in 2019

The table below gives the fundamental constants that are relevant in the physics of polar-
ized targets. While the numeric values of Particle Data Group of Ref. [4] are accurate for 
most purposes, the table below reflects also the changes of the new SI definitions intro-
duced in 2019 and described by Ref. [5].

Quantity
Symbol, 
Equation Value in SI Units SI Unit

Uncertainty  
(ppb)

Speed of light c 299 792 458 m/s exact
Permeability of free space µ0 4π ·10−7 Vs/Am exact
Permittivity of free space ε0 = (c2µ0 ) 

−1 8.854 187 817 ·10−12 F/m exact
Impedance of free space Zfree = μ0 c 119.916 983 2 π Ω exact
Planck constant h 6.62607015 ·10−34 J·s exact
Planck constant/2π h/2π 1.054 571 800

= 6.582 119 514
·10−34

·10−22

J·s
MeV s

exact
6.1

Unit charge e 1.602176634 ·10−19 C = A·s exact
Electron mass me 0.510 998 9461

= 9.109 383 56 ·10−31

MeV/c2

kg
6.2

12
Bohr magneton μB = β 5.788 381 8012 ·10−11 MeV/T 0.45
Proton mass mp 938.272 0813 MeV/c2 6.2
Nuclear magneton µN = he/4πmp 3.152 451 2550 ·10−14 MeV/T 0.46
Deuteron mass md 1875.612 928 MeV/c2 6.2
Avogadro number NA 6.02214076 ·1023 mol−1 exact
Atomic mass unit m(12 C) /12

= (10–3 kg)/NA

931.494 0954
= 1.660 539 040 ·10−27

MeV/c2

kg
6.2

12
Boltzmann constant k 1.380649

= 8.617 3330
·10−23

·10–5

J/K
eV/K

exact
570

Gas constant R = kNA 8.314 459 86 J/(mol·K) exact
Standard temperature TSTP 273.15 K definition
Standard pressure pSTP 1.013 25 ·105 N/m2 definition
Mol. volume STP NAkTSTP / pSTP 22.413 962 l/mol definition
Spin temp. constant h/ k 47.992430734 mK/GHz exact

A.2 Paramagnetic Compounds, Ions and Free Radicals

Table A2.1 is reproduced from M. Borghini’s report listing the spectral widths of the hyper-
fine lines measured in diluted liquid samples at RT [6], obtained mainly from Ref. [7].
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Table A2.1 Extreme hyperfine structure (HFS) of free radicals listed by Borghini in 1966. The data 
is mainly from Ref. [7]. The hyperfine widths were measured mainly in diluted liquid samples at RT, 
and they may miss weak HF lines due to 13C and other rare spins. The g-factors were not accurately 
measured and anisotropies were not measured in glassy solid state. No solvent effects were recorded.

Extreme HFS
Free radical (10−4 T) Abbreviation

Bianthrone 10
1,2 Bis-diphenylene-1-phenylallyl 7.1 BDPA
Dianisyl nitric oxide 30
1,1-Diphenyl-2-picryl hydrazyl 58 DPPH
Diphenylene-triphenyl-ethyl 5
Galvinoxyl
Kenyon-Banfield radical 8.9
Pentaphenylcyclopentadienyl
Picryl-aminocarbazyl 60
Porphyrexide 17 PX
Porphyrindene 10.7
Tetramethyl benzidine formate 3.4
Triacetonamyl
Tri-p-anisylaminium perchlorate 0.68
Tri-p-aminophenylaminium perchlorate 0.33
Tri-t-butyl phenoxyl 7.7
Tri-p-nitrophenylmethyl 0.7
Tri-phenylamine perchlorate 2
Tri-p-xenylmethyl 5.7
Violanthrene 26
Violanthrone 30
Würster’s blue perchlorate 2.7
P-benzosemiquinone 9.5
Mono-methylquinone 14
Tetra-methylquinone 23
Mono-chloroquinone 6.0
Tri-chloroquinone 2.1
Tetra-chloroquinone 0.4
2.5 Di-t-butylquinone 4.3
1.4-Naphtosemiquinone 8
2.3-Dimethylquinone 12

                     

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108567435.013
https://www.cambridge.org/core


476 Appendices

Extreme HFS

0-Benzosemiquinone 10
4-Tert-butylquinone 6
3-Phenylquinone 8

Table A2.2 Values of g-tensor for some organic free radicals used for DNP. Most of these radicals are 
commercially available from Sigma Aldrich (now Merck KGaA).

Organic free radicals g1 g2 g3 Note

1,1-Diphenyl-2-picryl hydrazyl 2.005 2.010 2.010 DPPH
Porphyrexide 1.9997 2.0047 2.0097 PX
Li-7,7,8,8-tetracyanoquinodimethane 2.00252 Δg < 0.0018 TCNQ-Li
BDPA-derived radicals
1,2 bis-diphenylene-1-phenyl allyl 2.0035 Δg < 0.00015 BDPA 1
Sulphonated BDPA SA-BDPA 2
Sulphonamide BDPA SN-BDPA 2
Nitroxide radicals and biradicals
2,2,6,6-Tetramethylpiperidin-1-oxyl 2.002 2.005 2.009 TEMPO 3
4-Hydroxy-2,2,6,6-tetramethylpiperidin-
1-oxyl

TEMPOL 4

4-Oxo-2,2,6,6-tetramethyl-1-
piperidinyloxy

4-oxo-TEMPO 4

4-Amino-2,2,6,6-tetramethylpiperidine-
1-oxyl

4-amino- 
TEMPO

4

Biradicals based on TEMPO and others 5
Trityl radicals
Triphenylmethyl (triarylmethyl) TAM
Trityl OX063 2.005 Δg < 0.0007 OX063
Finland trityl CT-03 CT-03

Notes: (1) BDPA is commonly used as EPR marker for magnetic field strength; soluble in organic 
solvents such as styrene. (2) These are water soluble versions of BDPA. (3) TEMPO is water solu-
ble and sublimable, with melting point close to 37 °C. (4) These versions of TEMPO enter into the 
formulation of biradicals. (5) Biradicals are two radicals linked together chemically; for a review, 
see Ref. [8].

A.3 Nuclear Moments and NMR Frequencies

Table A3.1 gives the spins, magnetic moments and quadrupole moments of the nuclei of 
stable isotopes of some elements in their ground state. Included are light elements up to Z = 
30 (67Zn) and some heavier ones, which are met in polarized targets. In the table we have 

Table A2.1 (cont.)
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also included the neutron and tritium, as these are important for the tests of the theoretical 
models of the nuclear moments.

The light elements up to Z = 21 are almost all dynamically polarized in target materials, 
with the exception of Be, Ne and Sc. The transition metals of the iron group Ti-Zn form 
paramagnetic metallo-organic complexes, and are also paramagnetic in many of their ionic 
salts and minerals; the most common of these is Cr. Their nuclear moments influence the 
EPR line via hyperfine interactions, and their knowledge is therefore vital. From the rare 
earth group only Nd and Tm are represented; they are well-known dopants of the LMN 
and CaF2, for instance. More details and examples on the paramagnetic atoms and ions are 
given in Chapter 3.

Included in Table A3.1 are also the moments of the two isotopes of Ag, which were 
used in the work on the nuclear magnetism in this metallic element, described in 
Chapter 1. 3He and Xe have been optically pumped to a high polarization, as described 
in Chapter 10.

The magnetic dipole moments in the table are scaled by the nuclear magneton  
µN = 3.1524512550 × 10–14 MeV/T from table of Section A1.3. This parameter is known 
to 0.46 ppb from measurements on protons in a Penning trap. The magnetic moments 
of the proton and deuteron are obtained from similar measurements to a high accuracy. 
Neutron beam measurements yield the most precise value for its magnetic dipole moment. 
Most other magnetic moments are determined by NMR or other spectroscopic methods 
in condensed matter in gas or liquid phase. Such measurements are subject to shifts due 
to interactions with the electronic system, in particular the chemical shift that increases 
with the atomic number. The relative accuracy therefore has a tendency to decrease with 
increasing Z.

The table lists the NMR frequencies of the nuclei at 2.5 T magnetic field, calculated 
directly from the tabulated nuclear moments using the Larmor precession frequency 
defined by Eq. 1.39:

 f
B

2 2
.NMR

0 0ω

π

γ

π
= =  (A3.1)

The experimental frequency in solid materials may be somewhat different, due to the 
chemical shift in dielectric materials, and due to the Knight shift in metals. The gyromag-
netic ratios are calculated from Eqs. (1.5) and (5.1):

 
J I

,
N

Nγ µ µ
µ

µ= =
�

 (A3.2)

and the dipole moment µ is scaled by dividing with  µ N of Eq. 5.2, giving µ / µN = gI. 
The natural abundances vary depending on the origin of the sample. A broader list includ-
ing unstable and heavier isotopes can be found in CRC Handbook of Chemistry and 
Physics.
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Table A3.1 Nuclear moments of light stable isotopes; see text for explanations.

Z Elem. A I f 
nmr

 at  
2.5 T 

Gyromagnetic 
ratio γ

Dipole moment
µ/µN=gI

Abundance Quadrupole 
moment

(MHz) (s–1/T) (%) (barn)
0 n 1 ½ 72.915804 –1.832574E+08 –1.913042 0.000

1 1H 1 ½ 106.443672 2.675221E+08 2.792847 99.9885

1 2H 2 1 16.338777 4.106383E+07 0.857387 0.0115 2.73E–03

1 3H 3 ½ 113.529733 2.853313E+08 2.978770 0.000

2 3He 3 ½ 81.081505 –2.037800E+08 –2.127400 0.000

3 6Li 6 3/ 2 15.662901 3.936516E+07 0.821920 7.590 6.90E–04

3 7Li 7 3/ 2 41.365263 1.039622E+08 3.256000 92.410 –3.00E–02

4 9Be 9 3/ 2 14.958065 –3.759372E+07 –1.177400 100.000 5.20E–02

5 10B 10 3 11.438334 2.874767E+07 1.800700 19.580 7.40E–02

5 11B 11 3/ 2 34.149209 8.582632E+07 2.688000 13.660 3.55E–02

6 13C 13 ½ 26.762880 6.726245E+07 0.702199 1.109

7 14N 14 1 7.688717 1.932385E+07 0.403470 99.630 –2.60E–02

7 15N 15 ½ 10.785205 –2.710618E+07 –0.282980 0.370

8 17O 17 5/ 2 14.429565 –3.626545E+07 –1.893000 0.037 –0.26

9 19F 19 ½ 100.133028 2.516617E+08 2.627270 100.000

10 21Ne 21 3/ 2 8.402637 –2.111813E+07 –0.661400 0.257

11 23Na 23 3/ 2 28.154041 7.075882E+07 2.216100 100.000 1.45E–01

12 25Mg 25 5/ 2 6.513428 –1.637003E+07 –0.854490 10.130

13 27Al 27 5/ 2 27.734799 6.970515E+07 3.638500 100.000 1.49E–01

14 29Si 29 ½ 21.143925 –5.314048E+07 –0.554770 4.700

15 31P 31 ½ 43.086698 1.082887E+08 1.130500 100.000

16 33S 33 3/ 2 8.163414 2.051690E+07 0.642570 0.760 –6.40E–02

17 35Cl 35 3/ 2 10.429102 2.621119E+07 0.820910 75.530 –7.89E–02

17 37Cl 37 3/ 2 8.680861 2.181738E+07 0.683300 24.470 –6.21E–02

19 39 K 39 3/ 2 4.967008 1.248345E+07 0.390970 93.100 1.10E–01

19 41 K 41 3/ 2 2.726220 6.851738E+06 0.214590 6.880

20 43Ca 43 7/ 2 7.161425 –1.799862E+07 –1.315300 0.145

21 45Sc 45 7/ 2 25.858008 6.498826E+07 4.749200 100.000 –2.20E–01

22 47Ti 47 5/ 2 5.999742 –1.507900E+07 –0.787100 7.280

22 49Ti 49 7/ 2 6.001157 –1.508255E+07 –1.102200 5.510

23 50 V 50 6 10.612235 2.667146E+07 3.341300 0.240

23 51 V 51 7/ 2 27.980355 7.032230E+07 5.139000 99.760 –4.00E–02
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Z Elem. A I f 
nmr

 at  
2.5 T 

Gyromagnetic 
ratio γ

Dipole moment
µ/µN=gI

Abundance Quadrupole 
moment

(MHz) (s–1/T) (%) (barn)

24 53Cr 53 3/ 2 6.016003 –1.511987E+07 –0.473540 9.550

25 55Mn 55 5/ 2 26.252205 6.597899E+07 3.444000 100.000 5.50E–01

26 57Fe 57 ½ 3.439313 8.643937E+06 0.090240 2.190

27 59Co 59 7/ 2 25.134406 6.316965E+07 4.616300 100.000 4.00E–01

28 61Ni 61 3/ 2 9.511470 –2.390493E+07 –0.748680 1.190

29 63Cu 63 3/ 2 28.211211 7.090251E+07 2.220600 69.090 –1.60E–01

29 65Cu 65 3/ 2 30.222304 7.595694E+07 2.378900 30.910 –1.50E–01

30 67Zn 67 5/ 2 6.656809 1.673039E+07 0.873300 4.110 1.50E–01

32 73Ge 73 9/ 2 3.713007 –9.331803E+06 –0.876790 7.760 –2.00E–01

45 103Rh 103 ½ 3.350129 –8.419792E+06 –0.087900 100.000

46 105Pd 105 5/ 2 4.870836 –1.224175E+07 –0.639000 22.230

47 107Ag 107 ½ 4.307145 –1.082504E+07 –0.113010 51.820

47 109Ag 109 ½ 4.951635 –1.244482E+07 –0.12992 48.180

54 129Xe 129 ½ 29.441116 –7.399359E+07 –0.77247 26.401

54 131Xe 131 3/ 2 8.727486 2.193456E+07 0.68697 21.180 –1.20E–01

78 195Pt 195 ½ 22.883019 5.751130E+07 0.6004 33.800

Table A3.1 (cont.)

A.4 Thermophysical Properties of Selected Target Materials

Table A4.1 lists low-temperature thermophysical properties that are important for polar-
ized targets. Unfortunately there are very few direct measurements of target material char-
acteristics below 3 K; there is data for pure materials but almost none for glasses that are 
mixtures of alcohol or diol with water or pinacol, for example.

The Debye temperature ΘD describes the low-temperature phonon spectrum that is 
important for the electron spin-lattice relaxation as was discussed in Section 3.4.1. All 
mechanisms coupling the electron spin with the lattice at low temperatures depend on the 
acoustic phonon spectrum and therefore on the Debye temperature or the related Debye 
frequency, with a typical temperature and field dependence whose measurement yields 
the contributions of the various mechanisms. This method was used in Ref. [11] to deter-
mine the Debye temperatures of glassy matric materials, including glycerol:water and 
toluene:CHCl3.

Data on Debye temperature exists for crystalline materials but for few glassy substances. 
We have included in the table LiD and also Xe because of the possible use of hyperpolar-
ized 129Xe obtained by rapid evaporation of irradiated solid polarized by DNP.
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Table A4.1 Thermophysical characteristics of some polarized target materials.

M ΘD Tmp Tg Ts

Material Phase (g/mol) (K) (K) (K) (K)

LiD (a) fcc crystal 9 611 965
Xenon fcc crystal 136 64 161
Water (ice) (b) Glass 18 192 273 136
Ethanol (c) monocl. crystal 46 284 159 95 62
Ethanol-d6 (c) monocl. crystal 52 268 159 95 62
H2O:glycerol (d) Glass/trityl (e) 105
H2O:glycerol (d) Glass/TEMPO (e) 112

(a) From Ref. [9]; (b) ΘD calculated from specific heat; (c) for ethanol and ethanol-d6 the listed ΘD  
is for the crystalline phase – in the glass phase the T3-dependent part of the specific heat suggests 
ΘD ≈ 200 K [10]; (d) 1:1 by mass; (e) low radical concentrations from 0.5  to 1.5 mM.

The glass properties for ethanol and water are also included in Table 7.3. The Debye 
temperatures for the ethanols were determined for the crystalline phases from the measured 
specific heats [10]. As the T 3-component of the specific heat is of the same order of magni-
tude for both glass and crystalline phases, it is tempting to view the acoustic phonons in the 
glass phase as representative of a material with similar Debye temperature. The glass state 
data of Ref. [10] extends down to 1.8 K and shows below 3 K a T3-dependent component 
that suggests a spectrum with acoustic phonons typical of dielectric crystalline materials; 
the other components in the specific heat are due to local vibration modes and other possi-
ble degrees of freedom.

The Debye temperatures for glycerol-water glasses were determined by fitting of the 
temperature dependence of the spin-lattice relaxation time to a model that includes direct, 
Raman, local vibration mode, Orbach process and thermally activated models that were 
discussed in Chapter 3. The data covers temperatures down to 10 K, and the X-band relax-
ation times were determined by the pulse recovery method [11].

The thermophysical properties of organic glasses at low temperatures are not well 
known, and it would be interesting for polarized target material development to obtain 
experimental results down to 0.1 K on the heat capacity, thermal conductivity, Kapitza 
conductance and acoustic velocity.

A.5 Properties of 3He, 4He and Their Mixtures

Gaseous and liquid 3He, 4He and their mixtures at low temperatures are called ‘quantum 
fluids’ because their subtle behavior at low temperatures can be understood only by quan-
tum mechanical treatment. The pure fluids do not solidify at saturated vapor pressure even 
at absolute zero temperature and therefore they have no triple point, but they have a two-
phase region (liquid coexisting with saturated gas) and therefore a critical point. Their most 
basic properties are given in Table A5.1:
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Liquid 4He has a phase transition into superfluid state at 2.17 K temperature at saturated 
vapor pressure. As the spin of the 4He atom is zero, the system of atoms obeys Bose-
Einstein statistics and therefore the superfluid transition can be considered as a kind of 
Bose-Einstein condensation. However, because the density of the liquid is high and atomic 
interactions are strong, the characteristic features of the condensation cannot be seen as 
dramatically as can be expected for a weakly interacting system. The superfluid state 
of the liquid can be modelled by the phenomenological two-fluid model which invokes 
intermixed normal and superfluid liquids, the relative concentrations of which depend 
on the temperature. Microscopically many of the superfluid properties can be understood 
from the dispersion relation (energy vs. atomic momentum), which has a minimum at  
E/k ≈ 5 K. Excitations in the linear part of the dispersion curve are called phonons because 
they behave much like acoustic waves, whereas around the minimum energy they are 
called rotons because they can be physically understood as elementary vortices of rotation, 
with a slow or zero velocity of propagation.

The superfluid phase is characterized by a very high heat conductivity (up to a critical 
flux) above 0.5 K, by second (thermal) sound waves, by zero viscosity up to a critical 
velocity, by fountain pressure and by film creep phenomena, among those which are most 
important for the design of 4He or dilution refrigerators.

Liquid 3He also becomes superfluid but only at 0.9 mK temperature at saturated vapor 
pressure and zero field. The superfluid characteristics of 3He are of little practical concern 
for the design of cooling systems for polarized targets, but it is interesting to note that 
the Fermi-Dirac statistics, obeyed by the system of spin 1/2 atoms of 3He, very strongly 
influences the superfluid properties, so that there is little in common with superfluid 4He. 
The superfluid 3He features, however, a high thermal conductivity and low viscosity. In a 
magnetic field several different superfluid phases can be distinguished.

A.5.1 Phase Diagram of 3He/4He Mixtures

Figure A5.1 shows the solubility lines and the lambda-transition line for the binary mix-
tures of 3He and 4He. A mixture with an average molar concentration X3 = n3 /(n3 + n4) 
and temperature such that their intersection falls between the solubility lines will spon-
taneously separate into two phases with concentrations given by the solubility lines. The 
lines defining the concentrations of the dilute and concentrated phases join at the junction 
with a third line below that the mixture has a superfluid component. Above this line there 

Table A5.1 Basic properties of liquid 3He and 4He.

Property 3He 4He

Molar mass (g/mol) 3.01603 4.002603
Molar volume of liquid at 0 K (cm3/mol) 36.83 27.58
Latent heat of evaporation at 0 K (J/mol) 20.56 59.62
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is no superfluid component. The term lambda-transition refers to the shape of the specific 
heat anomaly, which resembles the Greek letter lambda at the transition temperature. The 
junction of phase diagram lines is located at T = 0.871 ± 0.002 K and molar concentration 
X3 = 0.6735 ±0.0030 [12].

The maximum solubility at T = 0 has been determined experimentally by several labo-
ratories and the results vary from X3 = 0.064 to 0.068. The tables compiled by Radebaugh 
[13] are based on the value 0.064 which deviates from the more recent value of 0.066 [14].

The dilute solubility line based on the more recent experimental data obeys rather closely 
the equation [15]

 X T T
0.066 1 10

K
,m

2

( ) = +
















 (A5.1)

below 150 mK. This equation is plotted also in Figure A5.1. A more precise polynomial fit 
of Kuerten [16]
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is useful up to 0.5 K mixing chamber temperature.

Figure A5.1 Phase diagram for the liquid solutions of 3He and 4He. Below the saturation lines there 
is the forbidden region in which no stable mixture can exist. The junction of these lines is called tri-
critical point. A mixture brought into the forbidden region separates spontaneously into two saturated 
phases, with the lighter 3He-rich phase floating on top of the heavier dilute phase
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A.5.2 Thermodynamic Properties

Enthalpy
The data on the enthalpy of pure liquid 3He has been compiled by Radebaugh [13] in a wide 
range of temperatures. The compiled data, tabulated between 0 K and 1.6 K, fits accurately 
enough (for our design purposes) with the expression

 H bT
T T1 /

,3

2

3

=
+

 (A5.3)

where b = 13.03 ± 0.03 J/(Mol·K2) and T3 = 323.4 ± 1.6 mK. Figure A5.2 shows this expres-
sion. The deviation from the data compiled by Radebaugh is less than 4% below 1.3 K and 
reaches 7% at 1.5 K. These data are also shown in the plot.

The specific heat of liquid 3He is obtained by taking the temperature derivative of the 
above expression. It is admittedly clear that more accurate results could be expected if one 
would fit the specific heat function using available experimental data, and then obtain the 
enthalpy by integration.

The enthalpy per mole of 3He of dilute solutions is also presented in Figure A5.2. The 
enthalpy depends on the concentration of the solution in addition to the temperature, and 
for the design purposes of dilution refrigerators two types of enthalpy functions are useful: 
Enthalpy along the dilute solubility line Hdm(T), and enthalpy at constant osmotic pressure 
Hπ(T,πm). The first is needed for the calculation of the cooling power available in the mixing 
chamber, and the second is used for the determination of the dilute stream temperature in 
the main heat exchanger. Hdm(T) and Hπ(T,πm) have been tabulated by Radebaugh [13] in 
a wide temperature range that very well covers the design needs of dilution refrigerators.

The enthalpy along the solubility line was fit to the expression

 H T aT

T T1 /
,dm

d

2

3/ 2( ) ( )
=

+
 (A5.4)

where a = 97.56 ± 0.24 J/(Mol·K2) and Td = 266.3± 1.1 mK. This deviates less than 3% 
from the data compiled by Radebaugh, also shown in the plot.

The enthalpy in the dilute stream of a dilution refrigerator deviates from that on the 
solubility line because the concentration drops with increased temperature so as to keep 
the osmotic pressure constant, and consequently the enthalpy changes. If the dilute stream 
channel is small, the concentration may also drop due to the finite diffusion constant, but 
we shall assume here that the channel is so large that the osmotic pressure is practically 
constant. The osmotic enthalpy is obtained by integrating the osmotic specific heat which 
has been tabulated by Radebaugh; the lines in Figure A5.2 show the resulting osmotic 
enthalpies for mixing chamber temperatures of 10 mK, 50 mK and 200 mK. We note that 
the osmotic enthalpies become larger than the enthalpy on the solubility curve; this fact 
helps in keeping the dilute stream temperature low before entering into the still and thus in 
avoiding losses in concentration due to reduced diffusion constant.

The specific heat of the concentrated solutions has not been measured and therefore 
its enthalpy is not known. In design calculations it is assumed that the enthalpy of the 
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concentrated phase is equal to that of the pure 3He, which is a good approximation at tem-
peratures below 200 mK.

In the circulated helium there is often more than 30% of 4He and therefore the enthalpy 
balance in a heat exchanger is determined from the total enthalpy of the mixture, which 
has two phases below 0.8 K. The phase separation increases the enthalpy significantly, and 
it is clear that this has an adverse effect in the cooling power. However, when inspecting 
the expression of cooling power at optimum flow, the enthalpy of the concentrated stream 
enters in the determination of the exchanger outlet temperature To, which determines the 
cooling power via the heat transfer parameter. At low temperatures the concentrated stream 
enthalpy per mole of circulated 3He is estimated from
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Figure A5.2 Enthalpy of pure 3He and of dilute solutions of 3He in 4He. See text for the explanation 
of the different lines
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where Xl is the 3He concentration on the dilute solubility curve, and X4 is the molar fraction 
of 4He in the circulated helium. The deterioration of the maximum cooling power in the 
asymptotic low-temperature region is proportional to
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which can be substantial when X4 > 0.3. At higher temperatures the cooling power is 
slightly less deteriorated than that given by the above expression.

Osmotic Pressure
The osmotic pressure π(T, X) has been determined and tabulated by Radebaugh [13] using 
thermodynamic data. These tables give the value of π(0, X = 0.064) on the solubility line 
as 1,629 Pa, which deviates from the more recent experimental value of π(0, X=0.064) = 
2,240 Pa [17–19]. The osmotic pressure is sensitive to the thermodynamics of the dilute solu-
tions and it has been used for revising the thermodynamic data below 150 mK [16, 20], [21].

At constant concentration the osmotic pressure well below TF has a quadratic tempera-
ture dependence, which changes towards linear dependence of Van’t Hoff’s law above 
TF. As the concentration on the solubility line does not have a strong temperature depen-
dence below 50 mK, the osmotic pressure in the mixing chamber of a dilution refrigerator 
behaves as [18]

 X T T, 21.74 978
K

mbar ;l

2

π ( ) = +






















 (A5.7)

this extrapolates to a slightly low value at T = 0 probably because the experimental tem-
perature range was limited to 25 mK. Bloyet et al. [18] suggested the use of osmotic pres-
sure on the solubility line as a secondary thermometer below 300 mK [18, 22, 23].

The osmotic pressure is measured by using the heat flush effect where the fountain 
pressure pf of superfluid 4He becomes equal to the osmotic pressure. The dilute phase is 
connected via a long capillary to a heated cell; the capillary passes through a thermal 
‘grounding’ at 0.6 K below which the thermal conductivity becomes very small so that the 
heat leak to the mixing chamber remains negligible. When the fountain pressure is equal to 
the osmotic pressure, there is no 3He in the superfluid that then becomes isothermal due to 
its high thermal conductivity. The heat flush is based on the fact that when the superfluid 
component of a mixture is not accelerated, we have everywhere

 p p 0.f mechπ( )∇ + + =  (A5.8)

Assuming that the gravitational pressure gradient is small or negligible, the expression 
integrates to

 p pf mechπ = − − ∆  (A5.9)
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in the heated cell; here Δpmech is the gravitational pressure difference between the phase 
boundary in the mixing chamber and the liquid-vapor surface of the heated cell.
The design of dilution refrigerators would greatly profit from improved experimental data 
and theoretical models on the osmotic pressure, and from the thermodynamic data which 
can be derived from the osmotic pressure.

Vapor Pressure of 3He
The absolute temperature scale between 0.65 K and 3.2 K is defined by the International 
Temperature Scale of 1990 (ITS-90) as the relation between the vapor pressure in Pa of 3He 
and the temperature T90 in K [24]:
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A new provisional low-temperature scale PLTS-2000 is based on the melting curve of 
3He between 0.65 and 1 K. The reported deviations of the thermodynamic temperature 
from ITS-90 below 1 K are marked, but above 1 K the deviations are less than 1 mK from 
the new scale now named PTB-2006 [25].

The formally accepted ITS-90 based on the vapor pressure of the helium isotopes has 
been thus corrected and is going to be replaced by PTB-2006, although the formal SI scale 
is still based on ITS-90.

Gaseous Helium
Gaseous helium obeys the laws of ideal gas at elevated temperatures. This yields the spe-
cific heat
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which is same for both isotopes and their mixtures. Deviations at low temperatures are 
small and have no consequences for heat exchanger design. The specific heat does not 
depend on the pressure, obviously.

A.5.3 Transport Properties

Thermal Conductivity of Liquid Helium Mixtures
The thermal conductivity of 3He, 4He and their two dilute solutions is plotted in Figure A5.3 
from 1 mK to 1 K. For the purpose of comparison, the thermal conductivities of some solids 
are also plotted. The data is fit to functions with an accuracy of about 5% and extrapolated 
to the limits of the plot, but the validity of some of these extrapolations is questionable.

The experimental thermal conductivity of 3He between 50 K and 0.6 K [30] features a broad 
minimum of 5.8 × 10–3 W/(K·m) at about 0.23 K, and a rise at lower temperatures by [31]
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below about 50 mK. This is understood in the terms of the Fermi fluid model where col-
lisions between quasiparticles have a probability proportional to 1/T2 and specific heat 
behaves linearly with T.

The dilute solutions have a similar rise at low temperatures, with
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but they have a much more complex behavior [32] at higher temperatures where the 4He 
phonons begin to contribute to the transport of heat. The measured data extends from 
30 mK to 0.5 K.
The saturated dilute solution has a fairly constant thermal conductivity of 25 mW/(K·m) 
above 30 mK, and the conductivity behaves as

 
T

6.4% 3.0 10
K

 
W

Kmd
4 κ ( ) = ⋅ −  (A5.15)

below 15 mK. At temperatures above 200 mK the thermal conductivity in dilute solutions 
scales roughly as 1/X with concentration.

4He has a totally different behavior below 1 K where very high heat currents are possible 
because the phonon mean free path is limited only by boundary scattering. The conductiv-
ity in capillary pipes of diameter D behaves as
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below 0.6 K. At temperatures below 0.2 K, however, the effective diameter increases 
because the boundary scattering becomes specular [32]. The line in Figure A5.3 is the 
apparent conductivity of 4He in a capillary of 2.5 mm diameter, in which the conductivities 
of the dilute solutions were also measured.

In pure 4He the two-fluid model describes heat transport by counterflowing cur-
rents of superfluid and normal fluid. The thermal conduction is then due to the normal 
fluid that carries entropy and obeys the law of Poiseuille, giving an apparent thermal 
conductivity
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Figure A5.3 Experimental thermal conductivities of 3He, 4He and two dilute solutions, compared 
with selected solids: Cu wire = commercial copper wire [26]; Sst = stainless steel tube [27]; CuNi = 
70% Cu / 30% Ni cupronickel alloy tube [28]; BuOH = glassy butanol / 5% water beads, extrapolated 
from 1.08 K [29] according to the T 2-law, which is obeyed by most glassy materials

100

100

10–1

10–1

10–2

10–2
10–3

10–3

Temperature (K)

T
he

rm
al

 c
on

du
ct

iv
ity

 (
W

K
–1

m
–1

)

3He

4He
Cu wire

Sst

CuNi

BuOH

5.0% 3He in 4He

1.32%  3He in 4He

                     

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108567435.013
https://www.cambridge.org/core


 A.5 Properties of 3He, 4He and Their Mixtures 489

in a pipe of diameter d; here ρ is the density, S the entropy and ηn the viscosity of normal 
4He. This is valid for very low heat fluxes; at higher fluxes the thermal gradient is no longer 
linearly related with the heat flux, and one must use the empirical formula
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where A is the cross section available for heat transport, ℓ is the length of the channel, and 
the dimensionless function X(T) is

 X T T520 1 exp 3 2.16 / K .
2.5{ }( ) ( )= − − −   (A5.19)

Viscosity of Liquid 3He and Dilute Solutions
The viscosity of pure 3He has been measured by Black, Hall and Thompson [33] between 
50 mK and 2 K and by Abel, Anderson and Wheatley [34] below 50 mK; a compilation of 
these data is plotted in Figure A5.4. The asymptotic behavior of the viscosity follows the 
theoretically predicted 1/T2-law. The data fits reasonably well with the function
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which is accurate enough for the design of dilution refrigerators.
The viscosity of dilute solutions has been measured by different methods, which give 

widely diverging results. The vibrating crystal measurements fail to show the theoretically 
predicted [35] 1/T  2-law and show significantly lower viscosities at all temperatures com-
pared with other methods, whereas those made with a low-frequency vibrating wire [36] 
and flow methods [37] tend to agree in the temperature range 30 mK–0.9 K among them-
selves and with the theory within about 20%. The lines shown in Figure A5.4 are fits to the 
data of Ref. [37]. The 5% solution has a trend towards the 1/T2-law
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but the data for 1.3% solution shows insignificant trend towards this.
The viscosity of the saturated dilute solution (on the phase separation line) has been 

measured by Zeegers [38] both by the flow method and by the vibrating wire viscometer. 
His results below 80 mK obey
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The viscosity controls the convectional heat transport by the dilute solution, and its low 
value above 50 mK contributes to the heat absorption capability of the mixing chamber, as 
was discussed in Chapter 8. The viscosity of dilute solutions, however, does not seem to 
control alone the flow of 3He in the dilute stream of the dilution refrigerators, where the 
flow at high velocities appears rather to be limited by diffusion or mutual friction between 
3He and superfluid 4He. In circular tubes the mutual friction seems to appear only above a 
critical velocity, to be discussed below.

Mass Diffusion Constant and Mutual Friction
The two-fluid model relates the thermal conductivity by internal convection to the mass 
diffusion constant of 3He, as was discussed in Chapter 8. Table A5.2 shows the diffusion 
constant based on the total thermal conductivity coefficient, which is believed to be a good 
estimate down to 0.6 K and to give the right order of magnitude down to 0.4 K.

The diffusion of 3He in isothermal dilute solution results in the concentration gradient
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which adds on that due to the thermal gradient. The design of the dilute stream close to the still 
must be such that the gradient due to diffusion is not too large at the desired mass flow rate.

Figure A5.4 Viscosity of pure 3He and dilute solutions with 5% and 1.3% of 3He in 4He. The lines are 
numeric fits to the experimental data discussed in the text
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The diffusion constant is related to the thermal conductivity by

 D V RX

S
.d

4
0

4
0 2κ

( )
=  (A5.24)

This relation, shown in Table A5.2, is rather accurate above 0.6 K and below a few % con-
centration; it is expected to be of the right order of magnitude down to 0.4 K temperature.

At temperatures below 0.25 K the transport of 3He in the dilute solution obeys laws 
that deviate strongly from classical diffusion. Also, at low flow velocity the ‘mechanical 
vacuum’ model of Wheatley [39] may be only qualitatively correct. The resulting concen-
tration gradient does not obey Eq. A5.23 but [40]
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as was discussed in Chapter 8. This unusual type of diffusion in not theoretically under-
stood yet but is tentatively explained by the creation of vortices in 4He, which pin to the 
wall and scatter the quasiparticles.

Gaseous Helium
The isobaric specific heat cp is that of nearly ideal monoatomic gas:

 c R5
2

20.7862
J

mol Kp = =  (A5.26)

for both isotopes of helium down to the boiling point. This is used for the precooling heat 
exchangers, notably to get the dimensionless Prandtl number Pr:

 
c

Pr 0.67.pµ
κ

= =  (A5.27)

The design of precooling heat exchangers also depends on the viscosity and thermal con-
ductivity of gaseous helium. Both of these parameters depend linearly on the square root 

Table A5.2 Experimental thermal conductivity [32] and diffusion constant of two dilute solutions.

X3 = 0.013 X3 = 0.050

T(K) κd (W/m/K) D (cm2/s) κd (W/m/K) D (cm2/s)

0.4 0.21 2,060 0.060 2,260
0.5 0.21 540 0.058 573
0.6 0.20 172 0.055 182
0.7 0.20 63 0.050 61
0.8 0.19 19.0 0.048 18.5
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of the temperature and of the atomic mass, for the case of an ideal gas of hard spheres. For 
helium the thermal conductivity is

 T M1.499
300 K 4 g/mol

mW
cmK

,
1/2

κ =








  (A5.28)

which holds quite well down to 10 K for both isotopes. Below this temperature quantum 
effects become important [41] and the conductivity of 4He drops faster with temperature, 
with a value of 0.0607 mW/(cmK) at 3 K. The thermal conductivity of 3He obeys the law 
down to 3 K and then drops roughly linearly to zero at absolute zero. The thermal con-
ductivity is independent of pressure down to the range where molecular effects become 
important, i.e. the mean free path becomes of the order of the size of the gap where the 
conductivity is determined.

The viscosity behaves similarly
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for an ideal gas in zeroth order. The experimental viscosity goes down slightly faster with 
temperature
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down to 10 K. The viscosity of 3He has a maximum at 2 K, whereas that of 4He goes down 
faster than the viscosity of ideal gas. These can be understood from molecular corrections 
treated quantum mechanically [41].

A.5.4 Heat Transfer between Sintered Powder and Liquid

The Kapitza surface boundary resistance gives a severe limitation for heat transfer at low 
temperatures and therefore heat exchangers need extended surfaces. The heat transfer 
between the phonon systems in the lattice of a solid and those in helium liquid, given by 
the Kapitza conductance law of Eq. 8.2’, is rewritten here:

 Q T T ,c L He
4 4σ α ( )= −�  (A5.31)

where σc is the contact area. The same coefficient α applies in both directions of heat flow, 
but there is some dependence on the composition of the liquid and on the temperature range 
where the measurement has been made. Table A5.3 gives the coefficient under the condi-
tions indicated, between the liquid and sintered powder surfaces.

As the thermal conductance at the boundary gets very low at low temperatures, the heat 
exchangers need to have extended surfaces. Sintered powders are a practical solution to 
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this, but this technique also has limitations because of the finite thermal conductivities of 
both the helium solutions and the metallic materials used. We shall develop here a simpli-
fied model for estimating the influence of the thermal conductivity in the effective surface 
area that is available for heat exchange. We shall consider random isotropic powder with a 
filling factor η and surface-to-volume diameter de (see Eq. 8.1)

 d V
6 ,e η

σ
=  (A5.32)

where V is the total volume filled by the sinter, and σ is its hydrodynamic surface area.1

Let us first consider the effect of thermal conduction in the helium filling the pores of 
the powder. We may simplify the pores by replacing them with cylindrical holes with total 
cross-sectional area

 A A 1 ,eff η( )= −  (A5.33)

where A is the geometric surface of the sinter, and surface area per unit depth of

 
t d

A6 ,σ η=  (A5.34)

where t is the thickness of the sinter. The heat flow into the walls of the holes is now 
obtained from

 Q
t

T z T dz,
t

0

4

0
4� ∫σ α ( )= −



  (A5.35)

where the temperature T(z) at depth z has a gradient which is determined by the thermal 
conductivity of the fluid. At the entrance into the pores, in particular, the gradient has the 
value determined by

Table A5.3 Coefficient of the Kapitza conductance in the region where n ≈ 4.

Solid Liquid α (W/K4 m2) Temp. range (mK) Ref.

Sintered Cu 325 mesh Conc. 3He 20 10–500
Sintered Cu 325 mesh Dil. 3He 25 10–500
Sintered Cu 325 mesh 4He 100 100–1,000
Sintered Cu 1 µm, h=0.5 mm Dil. 3He 500 <25 mK [42]
Sintered Cu 1 µm, h=1 mm Dil. 3He 2000 <20 mK
Sintered Ag 1 µm Pure 3He 6 <13 mK [43]
CuNi Conc. 3He 80

1 The hydrodynamic surface area is the area determined from the flow resistance of the powder for a gas such as N2 or He. It has 
been found that for most sintered powders the hydrodynamic area is about three times smaller than the area determined by gas 
adsorption, and that the hydrodynamic area gives the same value for the Kapitza resistance as that measured for bulk samples [44].
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and at z it is given by
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Solving dT/dz|z=0 from these we may use it for defining the thermal penetration depth
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When the thermal conductivity does not vary strongly between T1 and T0, this can be 
expressed approximately as
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for the case that T1/T0 deviates significantly from 1 and t < λT ; when the ratio is close to 1, 
the thermal penetration depth is
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The approximations made above are admittedly rather imprecise, but for the present 
purpose it is sufficient to obtain an estimate which is accurate to ±50% in the effective 
exchange area.

The thermal penetration depth can now be used for estimating the effective thermal 
exchange surface area for infinitely thick layer of sintered metal with infinite thermal con-
ductivity, by the simple approximation

 
V

A N d T
T

A, ,T e

n

effσ σ λ η( )= =








σ  (A5.41)

where we have separated the power-law temperature dependence from the numeric coef-
ficient N, which depends also on the thermal conduction coefficient and Kapitza conduc-
tance constant. We note that the area A covered by the sintered powder is enhanced by a 
temperature-dependent factor, which is very large for fine powders at low temperatures. 
The coefficient N, the power n and the reference temperature Tσ  are given for three pow-
ders in Table A5.4.

We note that for 4He the surface enhancement is very small because of the low ther-
mal conductivity in the pores of the fine powder, and that this is independent of tempera-
ture because the thermal conductivity and Kapitza resistance have the same temperature 
dependence.
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The corresponding parameters for the thermal penetration depths are defined by rewriting

 
T
T

;T T

n

λ = Λ








σ  (A5.42)

these parameters are given in Table A5.5.
We may define in a similar way the effective length of a metal fin projecting into the 

fluid, under the assumption that the fluid is isothermal and that the heat transfer is limited 
by Kapitza resistance and by the thermal conductivity of the fin material. Let us assume 
fins with cross-sectional area Af and perimeter Pf which yield the equation
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for fins with constant cross-sectional area and perimeter. For a powder we have approxi-
mately Af  /Pf = η2de/6, which yields
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This shows that the copper powders that are easy to sinter to a thickness of about 1 mm 
have a conductivity which will not limit the heat transfer at temperatures below 0.5 K, 
whereas in the silver powders the powder itself starts to limit the heat transfer if layers of 
1 mm thickness are used at temperatures above 50 mK. Here the value 16 (T/K) W/(K·m) 
was used for the thermal conductivity of the silver in the powder.

By comparing the thermal penetration depths of the helium and the metal, we see that 
with 18 µm Cu powder the conductivity of the copper begins to limit the useful thickness of 

Table A5.4 Enhancement N of the contact surface area by overlaid sinter of depth much larger than 
the thermal penetration depth; see Eq. A5.41. The filling factor is 0.4 for the Cu powder and 0.5 for 
the Ag powders; all three grain sizes correspond to commercially available powders. At temperatures 
below 15 mK the thermal conductivity of the 3He mixtures is taken to follow the 1/T -law, whereas 
above 30 mK it is assumed to be constant.

T-range N(de,η) Tσ

(mK) Liquid Cu, de=18 µm Ag, de=1 µm Ag, de=70 nm (mK) n

< 15 3He 6,000 26,000 98,200 10 2
< 15 3He/4He 4,900 21,200 80,200 10 2
> 30 3He 155 671 2,536 100 3/2
> 30 3He/4He 283 1225 4,630 100 3/2

4He 51 47.4 47.4 – 0
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the sinter only below about 10 mK to 13 mK temperature, whereas at higher temperatures 
it is always the fluid which puts a limitation to the heat transfer. For the silver powders this 
happens at 8 mK to 10 mK temperature.

Another way of using Table A5.4 and Eq. A5.42 is to determine the temperature at which 
the thermal penetration depth becomes equal to the thickness of the sintered layer, in the 
temperature domain where the conductivity of the fluid limits the thermal penetration. 
Choosing a practical thickness of t = 1 mm and requiring that t = λT, yields the temperatures 
given in Table A5.6.

Because the fabrication of sintered layers thinner than about 0.5 mm is impractical, the 
usefulness of 1 µm Ag powder is limited to temperatures below 50 mK and that of the Cu 
powders to below 300 mK. The high conductivity of copper, however, enables enhance-
ment of the heat transfer even with 1 mm layers at temperatures close to 1 K.

If the operation of a dilution refrigerator does not require high power absorption capa-
bility below 20 mK, the sintered copper heat exchangers are the best choice. If operation 
below 10 mK is desired, the addition of sintered silver heat exchangers will give definite 
benefits. Sintered silver layer thicknesses above 1 mm, however, are only useful in the last 
exchanger units when operating below 10 mK mixing chamber temperatures.

If an external heat load needs to be absorbed by the mixing chamber, the sintered contact 
thickness is not the only parameter to be considered, because the heat transport from the 
contact to the phase boundary may limit the overall heat transfer coefficient more than the 
large surface of a thick sintered contact. It is therefore better to distribute the sintered con-
tact in the mixing chamber volume so that convection in the dilute phase and conduction in 
both phases match the heat current which comes from the contact surfaces.

A.6 Lineshape Functions and Their Moments

In the following we shall review some integrable symmetric functions that are convenient 
for modelling and fitting symmetric and slightly asymmetric NMR signals, whose shapes 
are dominated by dipolar interactions. The dipolar interactions lead to lineshapes that can-
not be presented in closed analytical form, and therefore trial functions must be used. 

Table A5.5 Thermal penetration depths in helium filling the pores of isothermal sintered powder. 
At temperatures below 15 mK the thermal conductivity of the 3He mixtures is taken to follow the  
1/T -law, whereas above 30 mK it is assumed to be constant.

T-range Liquid Λ T (mm) Tσ n
(mK) Cu, de=18 µm Ag, de=1 µm Ag, de=70 nm (mK)

< 15 3He 90 17 4.5 10 2
< 15 3He/4He 73.5 14.1 3.73 10 2
> 30 3He 1.16 0.224 0.059 100 3/2
> 30 3He/4He 2.1 0.41 0.108 100 3/2

4He 0.38 0.0212 0.00148 – 0
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Another reason for trial functions is that only rarely the line broadening is due to only dipo-
lar interactions; other causes are magnetic field inhomogeneity, non-uniform magnetiza-
tion due to target or bead shape, non-uniform polarization, pseudo-scalar or pseudo-dipolar 
interactions with anisotropy and anisotropy of chemical shift. These have been discussed 
in Chapter 5.

The functions are presented with the variable x, which can be the frequency difference 
f−f0 or angular frequency difference ω−ω0 or any linear scaled version of these. When 
scaling, however, care must be taken to change the normalization constant accordingly. 
The normalization constants of the symmetric functions are obtained from

 C f x dx2 .
0
∫ ( )=
∞

 (A6.1)

A6.1 Gaussian Lineshape

The normalized Gaussian function

 f x
C
e C1 ; 2x– /22 2

σ π( ) = =σ  (A6.2)

gives the following results for the even moments:

 x x x n; 3 ; 1 3 (2 –1) .n n2 2 4 4 2 2σ σ σ= = = ⋅ ⋅ ⋅ ⋅  (A6.3)

The odd moments are all zero by definition that the line is symmetric. The second moment 
is related to the RMS width by

 x2 2RMS
2 σ∆ = =  (A6.4)

and the full width at half-maximum (FWHM) is

 2 2ln 2 2.35482 .FWHM σ σ∆ = =  (A6.5)

The ratio of the fourth moment and the square of the second moment, often called the line-
shape parameter, is the simplest dimensionless measure of the shape. For the Gaussian it is
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Table A5.6 Temperatures at which the thermal penetration depth is equal to 1 mm for sintered layers 
of three commercial powders. For the 70 nm Ag powder the parameters valid below 15 mK were used 
because the thermal conductivity of the fluid is close to the asymptotic behavior already at 20 mK.

Powder Cu, de=18 µm Ag, de=1 µm Ag, de=70 nm

T(3He), mK 110 37 21
T(3He/4He), mK 164 55 19
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This parameter can be easily determined for an experimental lineshape and it gives a rather 
sensitive test for the assumption that an experimental lineshape is close to a Gaussian. 
Unfortunately the ratio evaluated for an experimental signal is also sensitive to the possible 
contributions to the signal of the dispersion part of the susceptibility; this can be substantial 
in the wings and can therefore increase the ratio.

A6.2 Lorenzian Lineshape

The second and higher even moments of the normalized Lorentzian function

 f x
x

1
2 2

δ
π δ( ) =

+
 (A6.7)

diverge. The Lorentzian is a special case of two classes of functions with the definite inte-
grals [45]
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where the gamma function is defined in the next section.
A convenient normalized symmetric lineshape function is obtained by setting a = 0, 

b = 2, m = δ2:
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here C is the normalization constant that is obtained from
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which yields
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This function has the peak value of
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and FWHM width

 FWHM 2 2 1;c1/δ= −  (A6.14)

The second moment is finite for all c > 3/2 and is obtained by using the recursion formu-
lae given in the next section:
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The fourth moment is finite for all c > 5/2 and is calculated similarly
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The lineshape parameter is now obtained easily
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and is seen to converge towards the same value 3 as the Gaussian lineshape, when c tends 
to infinity.

As the gamma function is numerically easily expressed for all half-integer values of c, 
we shall list the normalizing constant, FWHM, second moment and lineshape parameter 
for 1 ≤ c ≤ 5 in Table A6.1.

Lineshape functions are needed for the simulation of NMR signals arising from circuit 
theoretical expressions of the susceptibility, on the one hand, and on the other hand for 
fitting of experimental signals with such theoretical expressions. In the fitting programs 
the parameter c can be chosen to be free within a range around the value obtained from the 
experimental lineshape parameter. The dispersion part of the susceptibility can be obtained 
using the Kramers-Krönig transform, which has to be integrated numerically.

Slightly asymmetric lineshapes can be generated by multiplying the lineshape function 
by a low-order antisymmetric polynomial, or by adding another function that is antisym-
metric, such as

 f x
C

x

x
;

d n

d

2 1

2 2

δ

δ( )( ) =
′ +

−

 (A6.18)

where n ≤ d−c is an odd positive integer. Such functions integrate to zero and their even 
moments are zero.
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A.7 Gamma Function

The gamma function, an extension of the factorial function [45–47], is defined by

 n t e dt n n n;   if    1,2, ,  1 !n t

0

1∫( ) ( )Γ = = … Γ + =
∞

− −  (A7.1)

which is not convenient for numerical evaluation because the integral converges slowly. 
The argument n can be any integer, real or complex number; we are here interested only in 
the positive real numbers. The gamma function needs to be known only between 1 and 2 
because it can be calculated recursively from

 n n n n
n

n1    or    
1

1 .( ) ( ) ( ) ( )Γ + = Γ Γ = Γ +  (A7.2)

In the interval from 1 to 2 it can be numerically calculated to the precision of < 5 × 10–6 
from a polynomial of sixth degree

 P n A n ,k
k

k
k

0

6

∑( ) =
=

 (A7.3)

with coefficients
A0 = 0.999998938
A1 = -0.57644001
A2 = 0.975135246
A3 = -0.81371653

Table A6.1 Normalizing constants, linewidths and lineshape parameters for the generalized lineshape 
functions of Eq. A.6.10.

c C FWHM/δ x2 2δ x x4 2 2

1 π 2

1 1
2

2 1.53284

2 1
2 π 1.28719 1

2 1
2

4
3

1.13050 1
2

3 3
8 π 1.01965 1

3
9

3 1
2

2
15

4 0.93598 1
4 6

4 5
24 π 0.86996 1

5
5

4 
1
2

2
35

5 0.81616 1
6 4 1

2

5 2
35

5

π 0.77123 1
7 4 1

5
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A4 = 0.657600132
A5 = -0.31562574
A6 = 0.07304891.

The gamma function has the special values of

1 2 1  ;   
1
2

  ;   
3
2

1
2

  ;   1 0.577215664π π γ( ) ( ) ( )Γ = Γ = Γ






= Γ






= ′Γ = − = − … (A7.4)

and it has poles at 0 and at all negative integers.
Double-precision floating-point implementations of the gamma function and its loga-

rithm are available in most scientific computing software and special functions libraries.

A.8 Transmission Lines

A8.1 Rectangular Waveguides

The common transverse modes of propagation in a rectangular guide are TEmn and TMmn where 
T refers to transverse and E or M refer to electric or magnetic field that has only transverse 
components with respect to the axis of the guide. The subscripts m and n refer to the number of 
half-wavelengths along the wide side and narrow side of the rectangular guide, respectively. In 
such a guide TE10 is the fundamental mode that has the lowest cut-off frequency, and the results 
below are given for this mode; in these formulas a is the length of the wide side of the guide. 
Low-frequency limit of propagation takes place at the cut-off angular frequency

 
a

c
a
.c

0

ω π

µ ε

π= =  (A8.1)

Cut-off frequency is then f c a/ 2c ( )=  and the cut-off wavelength is

 a2 .cλ =  (A8.2)

The phase velocity up ω β=  for an approximately lossless line is

 u c

c
a

1

.p
2

π
ω

=

−










 (A8.3)

Group velocity of a pulse propagated along the guide is

 u c
u

c c
a

1 .g
p

2 π
ω

= = −






 (A8.4)

The impedance of the waveguide transmission line is

 Z
E

H
u

c

c
a

Z

c
a

max

max
1 1

.g
y

x
p

0
0

0

2

free

2

ωµ
β

µ
µ

π
ω

π
ω

( )
( )= = = =

−










=

−










 (A8.5)
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The impedance of free space is

Z 377 .free
0

0

µ
ε

= ≅ Ω

The attenuation constant α of the waveguide is

 
ab

b
a a

a2
2 2 2

,
0

2

2

2 2

α
ω µ β

ω µ
σ

π π β= + +








  (A8.6)

where the propagation constant is, from Eq. 9.18a, 

 
c a

.2
2 2

β ω π
=







−






 (A8.7)

Table A8.1 lists the standard waveguides that are likely to be used in polarized targets, with 
the cut-off frequencies of the two lowest order modes and with the inner dimensions that 
can be used for the calculation of attenuation. The V band and E band standard guides can 
be fitted with UG-385 flanges.

Table A8.1 Characteristics of the rectangular waveguides covering the mm-wave range used 
commonly in polarized targets and EPR spectrometers. The X band and Ka band guides are used 
as oversized waveguides to transmit over long straight sections with losses lower than the single-
mode guides. The RCSC waveguide names are those given by Radio Components Standardization 
Committee. Electronic Industries Alliance (EIA) uses WRxxx code, where xxx is the guide inner 
width in 1/100 of an inch; E band guide WG26 is therefore equivalent to WR12 and V band guide 
WG25 is equivalent to WR15.

RCSC 
waveguide 
name

Frequency 
band name

Recommended 
frequency band 
of operation 
(GHz)

Cut-off 
frequency of 
lowest order 
mode (GHz)

Cut-off 
frequency of 
next mode 
(GHz)

Inner dimensions of 
waveguide opening 
(mm× mm)

WG16 X band 8.20–12.40 6.557 13.114 22.9 × 10.2
WG17 – 10.00–15.00 7.869 15.737 19.1 × 9.53
WG18 Ku band 12.40–18.00 9.488 18.976 15.8 × 7.90
WG19 – 15.00–22.00 11.572 23.143 13.0 × 6.48
WG20 K band 18.00–26.50 14.051 28.102 10.7 × 4.32
WG21 – 22.00–33.00 17.357 34.715 8.64 × 4.32
WG22 Ka band 26.50–40.00 21.077 42.154 7.11 × 3.56
WG23 Q band 33.00–50.00 26.346 52.692 5.68 × 2.84
WG24 U band 40.00–60.00 31.391 62.782 4.78 × 2.39
WG25 V band 50.00–75.00 39.875 79.750 3.76 × 1.88
WG26 E band 60.00–90.00 48.373 96.746 3.10 × 1.55
WG27 W band 75.00–110.00 59.015 118.030 2.54 × 1.27
WG28 F band 90.00–140.00 73.768 147.536 2.03 × 1,02
WG29 D band 110.00–170.00 90.791 181.583 1.65 × 0.826
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A8.2 Round Waveguides

For round waveguides the modes are designated with the same transversity codes TE or 
TM as the rectangular ones, but the meaning of the subscripts is different: in TEan or TMan 
the subscript a gives the order of the Bessel function that characterizes the solution of the 
wave equation, and the subscript n gives the number of the root of the particular Bessel 
function. The zeros of the Bessel functions are obtained from

J p

J p

0      for TM  modes;

0      for TE  modes,
a n an

a n an

( )
( )

=

′ =

and the values for these roots can be found from the tables of Bessel functions [46]. Selected 
values are given in Table A8.2 for the lowest modes.

A8.3 Coaxial Lines

In the following we shall use the normal circuit bloc symbols R, L, G and C for the char-
acteristics of the cable of length λ and consider frequencies above which the R and G 
are small in comparison with the reactances. The approximate formulas refer to the cases 
where the attenuation in the line can be neglected, and for frequencies above about 10 kHz 
where the TEM00 is the only mode of propagation, up to the low-frequency cut-off of the 
next mode TEM11.

Let us assume a coaxial line of length λ, diameter of the inner conductor d, inner 
diameter of the outer conductor D, dielectric constant of the insulator r0ε ε ε=  and 
magnetic permeability of the insulator r0µ µ µ= . Then we have the following results: 
Shunt capacitance per unit length

 C
D d

2

ln /
r0

�

πε ε

( )
=  (A8.8)

Table A8.2 Roots of some Bessel functions.

Mode a n pn

TE11 1 1 1.84118
TM01 0 1 2.40482
TE21 2 1 3.05424
TM11 1 1 3.83171
TE01 0 1 3.83171
TE31 3 1 4.20119
TM21 2 1 5.13562
TE12 1 2 5.33144
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Series inductance per unit length

 L D d
2

ln /r0µ µ
π ( )=

�
 (A8.9)

Propagation constant

 i R i L G i C / �γ α β ω ω( )( )= + = + +  (A8.10)

Phase constant

 LCIm / 2
�β γ ω π

λ{ }= ≅ =  (A8.11)

Attenuation constant α

 
R
Z

Re
0

α γ{ }= ≅
�

 (A8.12)

Characteristic impedance

 Z R i L
G i C

L
C0

ω
ω

=
+
+

≅  (A8.13)

Impedance Z through a series cable of length � terminated by an impedance Zr

 Z Z
Z Z
Z Z

tanh
tanh

r

r
0

0

0

γ
γ

=
+
+

�

�
 (A8.14)

Impedance of line terminated with a short circuit (Zr = 0)

 Z Z iZtanh tan0 0γ β= ≅� �  (A8.15)

Impedance of open-circuited line (Zr = ∞)

 Z Z iZcoth cot0 0γ β= ≅� � (A8.16)

Impedance of a line an odd number of quarter wavelengths long

 Z Z
Z Z
Z Z

Z
Z

coth
coth

r

r r
0

0

0

0
2�

�

α
α

=
+
+

≅  (A8.17)

Impedance of a line an integral number of half wavelengths long

 Z Z
Z Z
Z Z

Z
tanh
tanh

r

r
r0

0

0

α
α

=
+
+

≅
�

�
 (A8.18)

Low-frequency cut-off of the next lowest mode TE11 is approximately

 f
D d

c

D

1

2

,c

r rπ µε π µ ε
=

+
=  (A8.19)
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where D is the inner diameter of the outer conductor and d is the outer diameter of the inner 
conductor, and speed of light is that in the insulator that separates the two conductors.

The resistance R in the above equations is that of the skin layer of Eq. 9.19. The atten-
uation therefore increases proportional with the square root of the frequency and with 
the inverse of the cable diameter. Table A8.3 gives the key characteristics of the most 
popular 50 Ω semi-rigid coaxial cable sizes with solid copper jacket, PTFE insulator and 
silver-plated center conductor.

The series Q-meter NMR circuit uses most often the 0.141″ semi-rigid coaxial line in 
the tuned cable connecting the RT circuitry to the part of line inside the refrigerator. In the 
case of very small NMR signals, in particular the TE signal in a deuterated target, the λ/2 
cable length needs to be very stable over the period of the thermal equilibrium calibration 
signal measurement, which may be several days if not weeks. The tuned cable then needs 
to be thermally stabilized, because the electrical characteristics of the PTFE insulation suf-
fer from a sensitivity to phase transitions that occur in the crystallized components of the 
material [48]. The thermal change of the electrical length of the cable is about –80 ppm/°C 
between 12 °C and 18 °C, which is the most sensitive region [48], and about –10 ppm/°C 
around 27 °C, which has been the set point of thermally stabilized cable set of the SMC-
polarized target [49].

Inside the refrigerator the coaxial lines need to be fabricated of materials with low ther-
mal conductivity. As these materials need to be non-magnetic, cables are available in the 
0.085″ size with BeCu outer and inner conductors, with the inner conductor silver plated. 
Isothermal sections of the coaxial line inside the cryostat are often made of the 0.047″ size 
cable with a Cu jacket. All these cables can be equipped with SMA connectors; hermetic 
feedthroughs are available for the passage of the coaxial lines through vacuum tight walls. 
For the two larger cables the maximum practical frequency is limited by the cut-off of the 
next higher mode TE11. The SMA connectors limit the frequency ranges to below about 30 
GHz depending on the type and precision of the connector.
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Index

absorption
RF power,  118

due to Provotorov,  119
acceptance drift

geometric and dead time,  439
acceptance of detector,  284

in each kinematic bin,  436
acceptor,  100
acoustic phonon

emitted energy flux,  340
velocity of,  231

acoustic velocity,  83
adiabatic

transition,  29
adiabatic condition

ignoring relaxation,  442
adiabatic demagnetization,  33

cooling by,  35
in rotating frame,  35, 38, 95

adiabatic passage
in rotating frame,  39, 96

ADRF,  38, See adiabatic demagnetization
alcohol,  288
alignment,  17, 19, 20
alkanes,  288
amine,  288
aminoxyl

4-hydroxy-TEMPO,  148
OH-TEMPO,  148
oxo-TEMPO,  148
TEMPO,  148
TEMPOL,  148

ammonia
second-order spin couplings,  225

ammonia beads
irradiation,  312
preparation by freezing liquid droplets,  311
preparation by slow freezing and crushing,  311

ammonium borohydride,  288
analyte

molecule under study,  309
angular momentum

classical definition of,  2
intrinsic,  3
law of conservation,  2
orbital,  3
quantum mechanical definition,  3
vector,  2

anhydrous magnesium sulphate
water removal,  303

anisotropic hyperfine tensor,  227
anomalous magnetic moment,  4, 98
APRF,  40, See adiabatic passage in rotating frame

at constant entropy,  443
density matrix with two temperatures,  443
high-temperature models,  444
magnetic ordering

loss of reversibility,  444
mixing field,  443
of polarized proton targets,  460
polarization loss mechanisms,  444

APRF reversal of deuteron spins,  445
APRF reversal of proton polarization

superradiance,  445
Arrhenius law,  293
attenuation

in oversized waveguide,  400
rectangular guide,  400

azephenylenyls,  148

beam normalization,  439
beam polarization,  437
beam transmission,  290
Bessel function,  401

root of,  401
BHHA-Cr(V),  149

proton hyperfine spectrum,  228
binomial coefficients,  108
biradical,  147, 309

in cross effect,  183
TOTAPOL,  147

bisdiphenylallyl (BDPA),  148
bisdiphenylene-b-phenylallyl,  148
Bloch equations,  87
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Bloch function
of conduction electron,  235

Bloch state
of conduction electron,  235

Bohr magneton,  4
boiling heat transfer

at low pressure,  344
correlation for 4He,  345
Cu-dilute solution,  345
dryout heat flux limit,  346
forced convection,  346
nucleate,  345
pool boiling,  346
propanediol-3He,  345

bolometer
microwave detector,  140
used for study of FM,  193

Boltzmann constant,  18, 279
Boltzmann distribution,  18, 24, 59, 66, 246
Boltzmann factor,  18
Boltzmann ratios,  189
Born approximation,  452
boron compounds,  288
Bose-Einstein condensation

4He,  481
Bose-Einstein statistics,  80
Breit-Rabi polarimeter,  431
bremsstrahlung

energy loss by,  286
Brillouin function,  19, 21, 29, 30
brute force polarization

27Al, 93Nb, 165Ho,  422
metal hydrides,  422
of nuclei in metals,  422
solid 3He,  423
solid HD,  423

BWO,  463, See backward wave oscillator

canonical
density of protons,  115
distribution,  24

CGS Gaussian system of units,  471
charged glassy beads

discharging,  307
chemical DNP,  425–427
chemical potential

of 4He,  367
chemical shift,  55, 477

anisotropic,  56
magic angle spinning (MAS),  229

chemical spin polarization
atomic hydrogen,  425
CIDNP,  427
parahydrogen induced polarization,  427

Clausius-Clapeyron equation,  381
coaxial line

characteristics,  503
electrical length,  250
phase transition in PTFE,  267
propagation constant,  250
semi-rigid,  267
thermal drift of attenuation,  267
thermal drift of length,  267

cobalt-iron alloy
magnet pole pieces,  409

coherent scattering
polarized slow neutrons,  290

coherent slow neutron scattering,  452
cold neutron beam

polarization by magnetic supermirrors,  452
commutation relations,  5
commutation rules,  32

exponential operators,  12
COMPASS collaboration

triple target,  450
concentrated stream

energy balance,  358
conduction electrons

cooling of,  36
paramagnetic,  100

configurational degrees of freedom
loss of,  292

contamination
by water frost,  331

convectional heat transfer
hydrodynamic surface area,  347
in dilute solution,  346

cooling cycle
dilution refrigerator,  355
evaporation refrigerator

3He,  350
4He,  350

cooling of the rotating sample
in MAS NMR,  463

cooling power
evaporation refrigerator,  351

counterflow heat exchanger
effectiveness,  375

coupling constant
spin-orbit,  51

coupling resistance,  249
Cr(V) complexes

in stable pure form,  304
preparation with diols,  302

Cr(V)-diol reaction
sensitivity to light and water,  302

critical temperature
for magnetic ordering,  460

critical velocity
for zero viscosity,  481

cross effect
for MAS-DNP,  183
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simulation using TEMPO,  184
cross effect DNP,  463
cross relaxation,  46, 79

flip-flop terms,  133
inhomogeneous broadening,  167
nuclear spins,  115
rate parameter,  184
role of nuclear spins,  135
spin pair flip-flop transitions,  133

cross relaxation parameter,  183
cross section

difference for opposite orientations,  284
unpolarized,  284

cross-relaxation
between different nuclear spin species,  239

crystallization
hindered nucleation,  292

Curie law,  21, 78
correction to,  22

Curie temperature,  22, 23, 32
Curie-Weiss law,  22
cut-off wavelength

rectangular guide,  399

damping resistance
resonant circuit,  252

Debye
cut-off,  126
frequency,  231
model,  80
temperature,  80, 132, 341

Debye frequency,  479
Debye model

phonons in glassy materials,  231
Debye temperature,  479, 480
density matrix,  23, 24, 73, 155

high-temperature approximation,  25
linearized,  25
off-diagonal elements,  25

deuterated ammonia
post-irradiation,  314

deuteron NMR signal
errors in asymmetry,  269

devitrification
microcalorimetry,  296
stability against,  299

differential solid effect,  463
diffusion

nuclear spin,  230
of nuclear spin polarization,  242

diffusion barrier
for nuclear spins,  242

diffusion constant
in dilute stream,  367

dilute solubility line
of phase diagram,  482

dilute solution
degenerate Fermi fluid,  366
isenthalpic expansion,  366

dilute stream flow
limited by diffusion,  366

dilution factor
for pure chemical substance,  286
of PT material,  284
of target

mean over kinematic bins,  437
dilution refrigerator

cooling power,  357
counterflow heat exchanger,  357
design of flow channels,  362
enthalpy in the dilute stream,  483
evaporator and condenser,  355
expansion device,  355
main heat exchanger,  356
maximum cooling power,  357, 361
mixing chamber,  356
optimum flow,  360
optimum flow of 3He,  357
phase boundary,  356
principle of operation,  355
still,  355

diol,  288
diphenyl picryl hydrazyl (DPPH),  148
dipolar broadening

fourth moment,  207
of EPR line,  111
of NMR line,  206
second moment,  206

dipolar energy
quantum mechanical,  45

dipolar field,  32
local,  112

dipolar frequency,  69, 72, 113
dipolar interaction

energy,  24
dipolar lineshape

at high polarization,  207
moments at high polarization:,  208

dipolar spin-spin interactions
secular part,  164

dipolar temperature,  61, 133
dipolar width,  113, 114

EPR line,  115
Dirac term

scalar interaction,  184
direct process

relaxation rate due to,  84
dispersion relation

for 4He superfluid,  481
dissolution-DNP (dDNP),  183, 465
dissolution NMR

DNP before rapid melting,  309
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Dittus and Bölter correlation,  376
divacancy,  100
DNP,  155

by cross effect,  182
by Overhauser effect,  187
cross effect at low temperatures,  183
diffusion barrier,  180
dynamic cooling of the spin-spin interactions,  155
enhancement of MAS NMR signal,  309
in fluorene

using photoexcited phenanthrene,  321
in irradiated Ca(OH)2,  319
in irradiated CaF2,  319
in irradiated glassy butanol,  320
in scintillating plastics,  308
irradiated deuterated butanol,  321
leakage factor,  179
of hyperfine nuclei,  184
Overhauser effect,  155

in liquid state,  190
in solids,  190

solid effect,  155
time evolution,  174
using cross effect,  309
via electron spin locking,  429
with frequency modulation,  191
with inhomogeneously broadened EPR line,  167

DNP in crystalline materials
using substitutional paramagnetic ions,  322

DNP MAS NMR spectroscopy,  462
donor,  100
double balanced mixer,  249
doublet

non-Kramers,  125
D-state probability

deuteron,  201
dynamic cooling

inhomogeneous broadening,  163
of electron dipolar interactions

at high temperature,  161
dynamic cooling of nuclear spins

phenomenology,  156
dynamic nuclear polarization. See DNP

effective damping
frequency sensitivity,  252

effective field,  38
effectiveness method

design of heat exchangers,  374
EHBA-Cr(V),  149

preparation,  304
proton hyperfine spectrum,  228

eigenfunction,  25
of spin operator,  6

eigenvalues
of spin 1 Hamiltonian,  216

EIO,  463, See extended interaction oscillator

elastic coherent scattering
forward peaked,  455

elastic peak
for free protons,  289

elastic scattering
elastic peak,  439

electric field
asymmetry parameter,  49
gradient,  49

electric quadrupole moments
of nuclei,  200, 203

electromagnetic compatibility (EMC),  279
electromagnetic interference (EMI) 

control of,  279, 382
electron dipolar interactions

neglect of,  172
electron-nucleus spin interaction

dipolar,  227
hyperfine,  227

Ellis-Jaffe sum rule,  450
EMC solenoid

main and trim coils,  418
EMI control

design of signal paths,  280
hardening by circuit design,  280
RF interferences,  279

energy conservation
in dynamic cooling,  165

energy reservoirs
electron dipolar,  156
electron Zeeman,  156
nuclear Zeeman,  156

enthalpy
dilute solution,  357
helium isotopes and their mixtures,  

 483–485
of helium mixtures,  483
of the concentrated stream,  484
osmotic,  483

enthalpy-pressure diagram
Joule-Thomson cycle,  351

entropy,  28, 31, 35
additive quantity,  28
equilibrium,  27
excess between liquid and crystal,  293
in high magnetic field,  29, 30
loss of,  39
maximum for a spin system,  28
measurement of,  29
of 4He,  367
of a composite system,  28
of a spin system,  24
quantum statistical definition,  28
relation with polarization,  460
with dipolar interactions,  32

entropy theory
glass transition,  293
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EPR saturation,  172
EPR spectrometer

high field,  138
V-band,  139
X-band,  135

EPR spectroscopy,  135
in situ,  140

EPR spectrum
from NEDOR signal,  146

equilibrium thermodynamics
in a glass,  292

equivalent surface-to-volume
heat transfer surface,  339

equivalent surface-to-volume diameter
flow resistance parameter,  340

European Muon Collaboration (EMC)
CERN NA2 twin target,  448

evaporation refrigerator
with 3He-4He mixture,  353

exchange interaction,  40, 55, 58
exchange narrowing,  118

Fabry-Perot interferometer
semiconfocal,  139

false asymmetry
estimation and mitigation,  439–441

fast neutron beam
polarization using polarized proton target,  290

F-center,  100
F-centers

in glassy organic materials,  149
Fermi contact interaction,  54
Fermi distribution function,  236
Fermi pseudopotential,  453, 458
Fermi surface,  57

of conduction electrons,  236
Fermi-Dirac statistics,  481
fibre-optic links

replacing galvanic lines,  280
FID. See free induction decay

time scale,  88
FID envelope,  67
figure of merit

for a scattering experiment,  436
material dependent part,  285
maximization in intense beam,  285
of PT,  284
of the target,  437

filling factor
of probe coil,  261

film boiling
critical heat flux,  380

finite element (FE)
numeric simulation,  413

flash evaporation,  353
flip-flop term,  46
fountain pressure

in 4He superfluid,  481
free electron

trapped by solute molecule,  150
trapped in a cavity,  150

free induction decay,  62
free precession signal

non-exponential,  88
free radical,  147

radiolytic,  99
stable,  99

free radicals
table,  475

free-volume model
glass transition,  293

Fremy’s salt,  148
frequency modulation

during DNP,  463
effect on EPR spectrum,  143
effect on NEDOR signal,146  
repopulation of hyperfine lines,  195

frozen spin operation
coolant density measurement,  440
during field rotation,  379
transverse field mode,  379

fusion with polarized fuel,  290

gamma function,  498, 500
gaseous helium

specific heat,  486
Gaussian function

normalized,  71, 497
gel matrix

immobilizing radicals,  465
general relativity,  2
g-factor

anisotropic,  101, 114
coupling with the lattice,  101
Dirac value of,  4, 98
free nucleon,  199
quark

in naïve quark model,  200
structural,  4

Gibbs free energy,  28
glass

organic,  132
glass former

characteristics,  292
glass transition

1,2-propanediol,  299
microcalorimetry,  296

glass transition temperature,  292
glassy material,  70, 115

delayed heat release,  299
mould casting,  308

glassy materials
chemically doped,  291
properties of the matrix,  292
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glassy target beads
preparation of,  306

Glebsch-Gordan coefficients,  49, 201
gluon,  2

contribution to nucleon spin,  200
Gomberg’s triphenylmethyl radical,  148
Gorter’s formula

for relaxation time,  236
gradient tensor

electric field,  48
group velocity

rectangular guide,  399
g-shift

paramagnetic electron,  100
unpaired electron,  101

gyromagnetic factor,  45
gyromagnetic ratio,  3, 21, 199

sign of,  5
gyrotron,  463

hadron,  2
Hamiltonian,  47

dipolar,  31, 45
secular part,  33

electron exchange,  58, 118
Hermitian,  69
phonon,  82
secular part,  47
spin,  13, 17
spin orbit,  51
Zeeman,  17, 33, 45

heat capacity
of spin system,  131

heat exchanger
continuous-flow,  358

heat flush effect,  355
for measurement of osmotic pressure,  485

heat transfer
in sintered sponge,  359
sintered powder and liquid,  492

heat transport
by evaporating superfluid film,  349
subcooled 4He superfluid,  349

Heaviside-Lorentz system of units,  473
helium gas purifiers,  386–388

operation,  388
helium pump

leak testing,  386
Root’s blower,  384
rotary blade pump,  385

helium recirculation systems
active purifiers,  385
adsorbent purifiers,  386
pump oil purge,  385
shaft seal,  386

high-intensity beam
direct heating of target,  438

radiation damage,  438
high-resolution NMR technique

pulsed NMR,  462
high-temperature approximation

interacting spin system,  31
horn antenna

coupling structure,  463
hydraulic surface area,  370
hydrodynamic surface area,  493
hydrogen

free molecule wavefunction,  223
solid spin conversion,  224

hyperfine constant
isotropic,  107

hyperfine interaction,  54
dipolar term,  184
neglect in DNP,  173

hyperfine splitting,  107
hyperfine tensor,  107

anisotropic,  54, 107, 109, 114
isotropic,  54

hyperpolarization,  421, 460
deuterated glucose,  466

impedance
rectangular guide,  399

incomplete inner shells,  98
indirect coupling between nuclear  

spins,  55
indirect nuclear spin interaction

pseudo-dipolar,  226
pseudo-exchange,  226

indirect spin interaction
NMR lineshape,  222

integral theorem of Cauchy,  64
integrated beam fluxes

through target,  436
integrated NMR signal

linearity,  270
International System of units (SI),  471
inverse temperature,  34
irradiated ammonia

preparation,  311
irradiated crystalline materials

F-centers,  151
H-centers,  151

irradiated lithium hydride
structure and properties,  314

irradiated materials
radical yield,  310

irradiated PT materials,  309
irradiation

safety aspects with liquid N2,  322
irradiation damage

bleaching by light,  326
in irradiated ammonia,  327
repair by annealing,  325
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irradiation effects
in situ,  324

isospin mirror nuclei,  201
isotropic hyperfine tensor,  227
isotropic space,  2, 6
ITS-90 scale

possible improvement using NMR,  278
vapor pressure of helium,  276

ITS-90 temperature scale,  381

Kapitza conductance,  171, 492
Cu-3He,  341
Cu-4He,  341
deuterated butanol-dilute solution,  344
epoxy-3He,  343
FEP-dilute solution,  343
glassy butanol-4He,  343
paramagnetic salts-4He,  342

Kapitza conductances,  341
Kapitza resistance

acoustic phonon mismatch,  340
heat transfer,  306
solid ortho-hydrogen,  224
thermal boundary resistance,  340

kinematical bin,  436
Knight shift,  55, 56, 229, 477
Korringa constant,  36, 238

effect of impurities,  238
with weak coupling,  239

Korringa law,  422, 428
Korringa relation

between relaxation and Knight shift,  238
Kozeny-Carman equation,  370
Kramers doublet

in YES,  424
Kramers-Krönig equations,  247
Kramers-Krönig relations,  64, 65, 76
Kramers-Krönig transform,  499

Lagrange multipliers,  34
lambda-transition,  481
Landé g-factor,  51, 101
large superconducting magnets

examples,  417
Larmor frequency,  17

chemical shift,  229
Larmor precession,  11

classical treatment,  12
frequency of,  21, 246, 477

lattice interactions,  76
lattice stress

interstitial radiolytic centers,  314
leakage factor,  173
leakage mechanism

for nuclear spin polarization,  94
level gauge

for liquid helium,  384

Ley’s radical,  182
linear distortion

of wide NMR signal,  269
linear response

approximation,  119
theory,  60, 162, 204

lineshape
Gaussian,  134
Lorentzian with cut-offs,  114
quadrupolar,  49, 50, 210

in high field,  210
lineshape functions,  496

moments of,  67, 68, 496
linewidth

EPR contribution of nuclear  
spins,  115

Liouville formalism,  78
liquid nitrogen

explosion following irradiation,  322
lithium deuteride 6LiD

irradiated,  288
lithium hydrides

DNP results,  315–319
high radiation length,  288

LMN
crystal growth,  323

local field,  33, 44, 72
Lorentzian function,  71, 498

Mach number
at freezing radius of atomic beam,  430

magnet pole pieces
shimming,  412

magnet system
CEN-Saclay Nucleon-Nucleon experiments,  

 419
magnetic cooling,  29
magnetic dipole interaction,  43–48

energy of,  17
magnetic dipole moment

of nuclei,  199, 200
of nucleon,  199

magnetic dipole operator
for a nucleus,  200

magnetic energy levels,  9
magnetic field

transverse,  48
magnetic induction,  43, 113
magnetic moment

density,  20
magnetic moments

table,  476
magnetic ordering

due to exchange interaction,  58
loss of entropy,  460

magnetic resonance,  58
magnetic scalar potential,  43
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magnetization,  21
evolution of,  16
static,  20, 246

main heat exchanger
axial conduction,  365
viscous heating,  365

MAS-DNP
sensitivity enhancement,  229

mass diffusion
of dilute solutions,  490

mass flowmeters
calorimetric,  383

matrix representation
of spin operator,  7–9
spin 1 vector,  216

Maxwell-Boltzmann distribution,  157, 159
mechanical vacuum model,  491
memory functions,  78
metallo-organic complexes,  477
metallo-organic compounds,  100, 149
methane,  288

spin conversion in solid,  224
microwave counter

with harmonic downconversion,  408
microwave power

measurement by calorimeter,  408
microwave source

backward wave oscillator (BWO)
carcinotron,  393

extended interaction oscillator (EIO),  394
IMPATT diode source,  395
klystron,  394
measurement of frequency and power,  408

miniature gas turbines
for MAS NMR,  462

mixing field,  34
modified Lorenzian function

moments of,  499
modified Lorenzian functions,  498
molecular dioxygen (O2),  147
molecular field effect,  23
molecular spin effects,  57
molecular spin isomers,  222
MRI contrast enhancement,  464
MRI sensitivity enhancement,  464
multimode cavity,  463
multiple scattering,  285, 437, 438
multiple targets in same beam

mitigation of drift sources,  448
mutual friction

in dilute solution below 0.25 K,  491
in dilute stream,  366

ND3
irradiated,  288

NEDOR spectroscopy,  145
nitronyl nitroxides,  148

NMR circuit
crossed-coil,  272

NMR coil
Q-factor,  252

NMR line broadening
Van Vleck formulas,  227

NMR measurement of polarization
principles,  245

NMR saturation
by polarization measurement

neglect of,  172
NMR signal

ab initio size,  253
calibration for polarization measurement,  275
continuous-wave (CW),  260
saturation,  256
signal-to-noise ratio,  254

non-equilibrium phenomenon
liquid-glass transition,  292

normalized Gaussian function,  497
nuclear magnetic cooling,  35
nuclear magnetic ordering,  36, 39, 40, 460

in Ag,  40
in AuIn2,  40
in Ca(OH)2,  41
in CaF2,  41
in Cu,  40
in LiH,  41
in Rh,  40

nuclear magnetic phases
by neutron diffraction experiments,  461

nuclear magneton,  477
nuclear Overhauser effect

NOE sequence
I. Solomon,  429

nuclear spin polarization
by brute force,  421

nuclear spin relaxation
in dielectric solids,  235
in metals,  235
polarization dependence,  232

nuclear spin-lattice relaxation
shell-of-influence model,  230

nucleation of crystal growth
effect of impurities,  297
in slow cooling,  296

nucleon,  2
Nusselt number,  374, 375

operation in high beam flux
frozen spin mode,  373

operation in high beam fluxes
choice of refrigeration method,  372

operator
exponential,  12
ladder,  6

optical pumping
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by collisional spin-exchange (SEOP),  432
by metastability-exchange (MEOP),  431, 432
ground-state and metastable atoms and ions,  431
in dense gas,  430

optically pumped 3He
MRI contrast medium,  291

optimum filter
pre-filtering and cross-correlation,  446

Orbach expansion
lattice potential,  124

orbital moment
nuclear,  53
quenched,  53

orbital motion
contribution to nucleon spin,  200

oriented single crystal
ellipsoidal,  461

ortho-hydrogen,  223
osmotic pressure

loss in dilute stream,  366
of dilute solutions,  485

Overhauser effect,  427, 464
DNP,  463
in liquid phase using TEMPO,  464
in metals and liquids,  427

para-hydrogen,  223
paramagnetic compounds,  147
paramagnetic ion

Nd3+ in LaAlO3,  149
Nd3+ in LaF3,  149
Nd3+ in LMN,  149
Tm2+ in CaF2,  149

paramagnetic oxygen
magnetic liquid,  147

paramagnetic substance
diluted,  98

paramagnetic susceptibility
static,  21, 99

paramagnetism,  98
partition function,  24, 28, 34
parton,  2
Pascal’s triangle,  108
Penning trap,  4, 477

single-electron,  98
perdeuterated propanediol

reduction of potassium dichromate,  303
permeability

of free space,  20
perturbation theory

time-dependent,  16
phase diagram of 3He/4He mixtures,  481
phase sensitive detection

real part of Q-meter signal,  249
phase separator

4He liquid-gas,  378
phase velocity

rectangular guide,  399
phonon,  80

ballistic,  130
phonon bottleneck,  130

DNP speed limiting,  165
Kochelaev model,  132
with frequency modulation,  132

phonon energy,  82
phonon spectrum,  479
phonons

in 4He superfluid,  481
Planck constant,  2
PLTS-2000

provisional low temperature scale,  486
provisional temperature scale,  277

point defect
interstitial,  100
substitutional,  100

Poiseuille flow
laminar region,  369

Poisson’s equation
vector form,  412

polarization,  17, 18
adiabatic reversal of,  34
measurement,  22, 60
measurement of,  21
tensor. See alignment
vector,  17

polarization asymmetry
in scattering experiments,  283

polarization by spin selection
in atomic beam,  430

polarization of nuclei in large biomolecules,  454
polarization reversal

by adiabatic passage in rotating frame (APRF),  442
by DNP,  441
by field rotation,  450
by spin rotation,  441
diabatic,  37
efficiency of,  39
optimum filter theory,  446

polarization reversal frequency
optimization,  445

polarized target refrigerator
SMC double cell target,  379
Virginia-Basel-SLAC target,  377

polarizing agent (PA)
in MAS-DNP,  309
generic name for a free radical,  464

porphyrexide (PX),  148
porphyrindene (PB),  148
powder

of small crystals,  70
power absorption

due to spin flips,  59
power supplies

separated analog and digital parts,  280
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Poynting vector,  400
Prandtl number,  374

for gaseous helium,  491
precooling heat exchangers

pressure drop,  376
pressure measurement

capacitive gauge,  382
McLeod gauge,  383
Pirani gauge,  383
vacuum gauges,  383

probe coil
filling factor,  258
reduced current,  265
sampling function,  257
size compared with wavelength,  258

proton NMR spectrum
hyperfine protons,  228

Provotorov equations,  38, 60, 63, 72, 74, 75,  
88, 160, 161

generalized,  78
pseudo-dipolar coupling,  57
pseudo-exchange coupling,  57
pseudomagnetic field

due to strong interaction,  459
pseudomagnetism,  457
PT refrigerator

target holder insert,  379
target insert,  378

PTB-2006 scale
forthcoming new temperature scale,  486
provisional scale,  382

pulse response
Fourier transform,  205

pycril-N-aminocarbazyl (PAC),  148

Q-curve
drift of,  255

Q-meter
circuit optimization,  265
complex circuit theory,  257
Liverpool circuit,  249
optimum tuning,  266
parallel tuned,  249
probe coil

series tuned,  256
Q-curve,  251
series tuned,  249
signal expansion,  251

quadrupole energy
sign of,  214

quadrupole interaction,  48–50
asymmetry parameter,  214
coupling parameters,  221
in low field,  215

quadrupole moments
table,  476

quadrupole resonance
due to magnetic interaction,  215

Quantum Chromodynamics (QCD)
testing based on nucleon spin,  200

quantum fluids,  480
quantum statistical treatment,  16, 120
quantum statistics,  27

of a system of spins,  17
quark,  2
quark model,  199
quenching of the angular momentum,  52
quenching rate

glass formation,  292

radiation damage
chemically doped hydrocarbons,  325
in lithium hydrides,  329

radiation length,  286
radiation resistance

of PT materials,  324
radicals

alcoxy,  150
in irradiated alcohols,  150
in irradiated alkanes,  150
in irradiated ammonia,  151
in irradiated aryls,  150

radiolytic centers,  147
radiolytic free radical,  466
radiolytic radicals

in glassy organic materials,  149
Raman process

relaxation rate due to,  84
rare earth group,  477
rare spin species

polarization measurement,  276
rectangular waveguide

characteristics,  501
refrigerator for polarized target

precooling heat exchangers,  373
relative permeability

magnet material,  410
relaxation

Blume and Orbach process,  128
cross-relaxation,  90
dipolar,  87
direct leakage,  165
direct process,  124, 128
effective rate with phonon bottleneck,  132
electron spin-lattice,  3, 101, 122
electron spin-spin,  122
nuclear spin,  230
nuclear spin-lattice,  94
of transverse magnetization,  87
Orbach process,  127, 128
Orbach-Aminov process,  127
Raman process,  125
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spin-lattice,  18, 76, 78
experimental,  128

Waugh and Slichter process,  128
relaxation measurement

NEDOR method,  129
pulse recovery method,  128

relaxation mechanisms,  16
relaxation of the dipolar energy

loss of entropy,  460
relaxation time

determined from pulse recovery,  480
dipolar

from saturated lineshape,  138
from pulse recovery,  137
from saturation spectrum,  137
from signal height,  137
in situ NEDOR measurement,  146

reluctance
of magnetic circuit,  410

Remotely Enhanced Liquids for Image Contrast 
(RELIC),  464

reservoir
dipolar,  38
Zeeman,  38

residual gas analyzer,  384
resonator impedance,  249
reversal of nuclear spin polarization,  94
Reynolds number,  374
RF field

transverse,  25
RF filters

in power feeds,  280
rotating frame,  15, 23, 161

spin resonance in,  12
transformation,  13

rotation operators,  5
rotons

in 4He superfluid,  481
round waveguide,  404

circular polarization,  401
dominant mode,  401
guide wavelength,  404
phase velocity,  404
propagation constant,  404
propagation impedance

TE11 mode,  404
TM01 mode,  405

round waveguides,  503
Rudermann-Kittel interaction,  40

saturation,  16, 47, 72, 155
BPP phenomenological model,  119
effect of frequency modulation on,  193
effect on DNP,  174
electron spin resonance,  118
error in polarization measurement,  261
function,  119

NMR lineshape,  76
Provotorov equations,  119
strong,  133
time constant,  260

saturation decay
experimental

deuteron NMR signal,  264
saturation error

deuteron NMR signal measurement,  262
saturation function,  119
saturation of NMR signal

error due to,  256
saturation parameter

in cross effect,  182
scattering amplitude

neutron beam traversing a polarized target,  
 458

Schrödinger equation,  13
time-dependent,  9

scintillating detector
polarized by DNP,  308

second (thermal) sound waves,  481
second quantization,  83
self-inductance

definition,  257
semi-rigid coaxial cables

replacing flexible cables,  280
series Q-meter

capacitively coupled,  272
design for deuteron NMR,  268
design for proton NMR,  268
improvements,  271
probe coil design,  270
using a hybrid bridge,  274
with quadrature mixer,  274

shock wave
at atomic beam skimmer,  430

sintered heat exchanger
design and evaluation,  369
thermal penetration,  371

sintered heat exchangers
continuous approximation,  371

sintered powder
extended surface,  359

skin depth,  257, 400
anomalous,  400

slow drift
beam and acceptance,  448

SMA connectors,  280
small-angle neutron scattering

time resolved,  456
SMC magnet system

solenoid and dipole coils,  419
SMC polarized target

microwave isolator,  380
mixing chamber,  380
sintered copper heat exchanger,  380
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SMC solenoid
main coil and trim coils,  418

solenoid winding
gap filling technique,  417

solid effect,  47, 174
cavity losses,  179
differential,  181
diffusion barrier,  180
leakage factor,  179
phonon bottleneck,  181
rate equations,  175
resolved,  175
semi-phenomenological model,  174
transition rates,  175

solid effect DNP,  463
solutions of 3He in 4He

spontaneous separation in two phases,  355
sources of noise

RF oscillator,  279
thermal,  279

spallation neutron source,  457
specific heat,  33, 36

of a spin system,  29
specific heat anomaly

at glass transition,  292
specific heat of liquid 3He,  483
spectral diffusion,  135
spectral redistribution

cross relaxation,  159
spherical polar coordinate system,  43
spin

components of,  2
effective,  3
intrinsic,  2
maximum projection of,  2
quantum number,  7
temperature,  17
vector,  2

spin contrast variation,  290
small-angle scattering of neutrons,  454

spin filter
transmission of neutrons,  451
transmitted neutron polarization,  451

spin filtering,  290
spin filtering of neutron beams,  450
spin filtering of neutrons

by Sm, 3He, TiH2,  452
spin flip coil

neutron beam polarization reversal,  455
spin packet,  135

dipolar width,  135
spin packets

quadrupolar lineshape,  212
with individual Zeeman temperatures,  183

spin pairs
like,  46
unlike,  46, 47

spin polarization
matrix,  25

spin refrigerator,  463
by rotating YES crystals,  424
polarized target,  323

spin temperature,  25
in low effective field,  23
in rotating frame,  25
inverse,  21
measurement,  28

spin-orbit coupling,  106
spin-orbit interaction,  50
split-coil solenoid magnet

SLAC E143 experiment,  419
stable atomic hydrogen

as polarized electron target,  433
stable isotopes,  476
standard waveguides,  502
state vector

spin 1 exact solution,  220
static field

internal,  21
statistical accuracy

dominated by systematic errors,  438
of polarization asymmetry,  436

statistical error
of target asymmetry,  437

statistical fluctuations
multiplicative and additive components,  446

statistical uncertainty
minimization,  438

storage ring
muon,  4

strong saturation
transverse field,  159

substructure,  98
superconducting magnet,  413

rectangular conductor,  413
round conductor,  413
with split coils,  413

superconducting magnets
control and protection,  417

superconducting solenoid
end compensation,  415
field on axis,  414
winding accuracy,  415

supercooled liquid,  292
superfluid 3He,  481
superfluid film creep,  349, 353, 481
superfluid state

4He,  481
superisolation,  330
superradiance

of NMR circuit,  271
surface-to-volume diameter,  370, 493
susceptibility

complex,  66
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static,  20, 67, 119
systematic error

due to slow drift
beam and acceptance,  438

Taler and Taler correlation,  376
target asymmetry,  436
target cavity

bolometer,  407
coupling slots,  407
microwave field strength,  407
multimode structure,  407

target dilution factor,  437
target length,  437
target materials

storage and handling,  330
target thickness,  437
target thickness variation

in dilution refrigerator,  440
in evaporative cooling,  440

Taylor expansion,  25
Taylor series

of density matrix,  31
temperature

dipolar,  159
Zeeman,  159

temperature measurement
during NMR signal calibration,  381
of helium bath,  276
using resistance thermometers,  382

tetramethylsilane marker,  229
thermal conductivity

in gaseous helium,  492
of helium isotope mixtures,  487

thermal equilibrium,  18
between spins and lattice,  275
calibration,  22

thermal exchange
effective surface area,  494

thermal mixing,  36, 39, 93
thermal penetration depth,  494

dilute solution,  371
thermodynamic functions,  27–28
thermodynamics

at high polarization,  34
second law of,  28

thermomolecular effect,  353
toluene

glass former,  301
transition metal ions,  100
transition metals,  98, 477
transition probability,  16, 119
transport properties

liquid-glass transition,  293
transverse field,  38

strong limit,  94

transverse susceptibility,  246
absorption part,  59, 76
complex,  246
dispersion part,  59
general features

complex,  205
in NMR,  204

triplet state
optically induced,  100

triradical,  309
tris(2,4,6-trichlorophenyl)methyl radical TTM,  148
trityl radicals

Finland-D36,  148
OX063,  148
triphenylmethyl,  148

tune shift
attenuation in coaxial line,  267
coaxial line,  252

twin target
acceptance drift elimination,  450

two-fluid model
for 4He superfluid,  481

two-phase boiling
heat transfer,  306

two-phase region
liquid and gas,  480

units
CGS Gaussian,  1
MKSA,  1
Système International (SI),  1

unpolarized cross section,  437
unpolarized dummy

target tests,  441

V1-center,  100
vacuum-insulated dewar

for biological samples
low loss,  330

Van Vleck formulas
electron-nucleus interaction,  227

Van Vleck’s
second moment,  113

Van Vleck’s method of moments,  68
vapor pressure

of 3He,  276
ITS-90 temperature scale,  486

viscosity
glass former,  293
in gaseous helium,  492
of liquid helium isotope mixtures,  489

von Neumann-Liouville equation,  23, 67
vortex pinned to walls

flow of 3He in 4He,  368
vortex tangle

of superfluid 4He,  368
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wave vector
of phonon,  81

waveguide
complex propagation constant,  398
hollow metallic,  396
propagation modes,  396
rectangular,  396
round,  401
single mode band,  396
single mode propagation constant,  398

waveguide components,  405
waveguide window,  405, 406
Wigner-Eckart theorem,  49, 52

yttrium ethyl sulphate (YES)
spin refrigerator,  424

Zeeman energy,  18, 29, 48
Zeeman temperature,  61, 133

inverse,  73
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