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We propose to measure neutron and deuteron TMDs which includes the first ever measurement of gluon transversity.
The quark transversity distributions of the nucleon are decoupled from the gluon transversity in the Q2 evolution due
to the chiral-odd property in the transversely-polarized target providing a particularly clean probe of gluonic degrees
of freedom. This experiment can be performed with the SpinQuest polarized target recently assembled for experiment
E1039 and the spectrometer already in place in NM4. This new experimental setup would require minimal modification
to the target system. An additional RF-coil is necessary to modulate across the domain of the Larmor frequency to
manipulate the solid-state target spin population densities. Dedicated beam-time with this novel target system is
required to achieve sufficient precision.
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I. INTRODUCTION

How is the quantum spin built in composite systems? This is the quintessential question of Spin Physics. Efforts
to answer this question have resulted in the realization that hadrons and nuclei have an increasingly complex internal
structure likely involving quark orbital angular momentum (OAM) as well as gluonic and sea quark contributions.
The depth of this structure and dynamics are just more recently beginning to be realized due in large part to novel
experimentation. The next generation of spin physics experiments is now driven by a modern understanding of spin
and must leverage the techniques and technology developed in recent years to acquire a broader physics reach.

The spin of nucleons and nuclei are well known but how the internal mechanisms of motion and conservation manifest
to preserve this fixed quantized spin is still not clear. What is clear is that spin, like mass, appears to be an emergent
quantity based on constituent movement and interaction with the vacuum. Since the pivotal results provided by the
EMC collaboration [1], the particle physics community has strived to make sense of experimental results leading to
extensive theoretical development. Decades of experimental studies on high-energy polarized-hadron reactions have
been performed to clarify the origin of spin, mainly through longitudinally-polarized structure functions sparking
considerable work on how to decompose the nucleon spin, see reviews [2–6].

Studying the spin structure of the nucleon and nuclei is a complex subject as the internal motion of the partons
is relativistic and its non-trivial to define the angular momenta. In addition gluon spin is generally thought to be
gauge dependent [7] but there are investigations into quark-gluon spin components and OAM contribution in a gauge
invariant way [8]. Considering the nonpeturbative nature of these studies, calculations based solely on first principles
of QCD are prohibitively challenging. The parton model [9] illustrates the nucleon as a collection of quasi-free quarks,
antiquarks and gluons, with longitudinal momentum distributions described by parton densities. The formalism of
collinear factorization directly connects these concept to QCD and provides the foundational framework needed in spin
physics but only quantifies structure in a single spatial dimension.

To investigate partons in the plane transverse to the direction of motion of its parent nucleon requires the Generalised
Parton Distribution (GPDs) and Transverse Momentum Distributions (TMDs) [10]. For both GPDs and TMDs the
relevant scales are in the non-perturbative domain, in contrast to the longitudinal momentum fractions on which all
types of parton distributions depend. Subject to kinematics the TMDs and GPDs can contain much more information
on non-perturbative phenomena and are critical to the interpretation of spin dependent hadron-hadron and lepton-
hadron collisions providing the advantage of a multi-dimensional exploration of the structure of nucleons and nuclei.
Through this avenue Spin Physics studies of the strong force in its non-perturbative domain and beyond can also
provide insight into color confinement as well as the origin of dynamic mass and charge density. The culmination
of Spin Physics has yet to come but ultimately experiments will reveal exactly how partonic interactions manifest
into hadronic and nuclear degrees of freedom. The spin decomposition using lattice QCD (LQCD) [11–15] also

FIG. 1. Graphical representation of the shape of the deuteron for two specified equidensity surfaces. Here the deuteron is in
the MJ = 1 spin state. The same is similar for MJ = −1. Image from Argonne National Lab.

provide a guiding light. Efforts have been made recently to obtain x-dependent parton distributions from LQCD [16].
Calculations of the nucleon spin from first principle simulations are beginning to provide results with control over all
systematics [17]. The best determined contributions so far are Σq(

1
2∆q) the quark intrinsic spin contribution with

quark flavor (q = u, d, s, c), Jq the quark total angular momentum, Jg the gluon total angular momentum, and Lq the
OAM of the quarks. The PNMDE [18] collaboration have published results for Σq(

1
2∆q) and find Σq = 0.143(31)(36),

consistent with the COMPASS value 0.13< 1
2∆Σ<0.18 obtained at 3 GeV2 [19]. The ETMC [20] collaboration has
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FIG. 2. Graphical representation of the shape of the deuteron for two specified equidensity surfaces. Here the deuteron is in
the MJ = 0 spin state. Image from Argonne National Lab.

presented first results for Jq and Jg, and Lq [21] for the OAM of quarks. Within the next several years improved high
performance computing resources will allow much higher precision LQCD calculations which will require much more
experimental information as a basis for comparison. In fact the greatest opportunity to deepen our understand will
come form the intersection of consistent results from LQCD, phenomenology and experiments over a broaden range of
kinematics.

The next generation of experiments must attempt to measure gluon-spin and partonic OAM contributions, and
further explore spin on a composite level by studying nuclei. To extract and understand this information, we need
to investigate both the longitudinal spatial structure and the transverse momentum structure using novel methods.
Though significant experimental progress has been made adding to the understanding of the spin structure of hadrons,
the data frequently leaves more questions to be answered. To understand the spin configuration of the nucleon and
nuclei in terms of quarks and gluons remains one of the most challenging and critical open problems in nuclear physics
[22, 23]. Vital experimental information is missing especially around the transversely-polarized structure [24–28], with
only minimal studies on quark transversity distributions [29]. The transverse polarized target observables provides
unique and crucial details on the 3D picture. The internal workings of these observables are distinct from those of the
longitudinal structure being the quark transversity distributions are decoupled from the gluon transversity in the Q2

evolution [30–32] for polarized nuclei with spin ≥1 such as the deuteron.

The deuteron is the simplest spin-1 system and offers a vast array of observables to explore as we begin to build
the nuclear composite picture. The deuteron initially appears as a loosely bound pair of nucleons with spins aligned
(spin triplet state). But the existence of the small quadrupole moment implies that these two nucleons are not in
a pure S-state of relative orbital angular momentum, and that the force between them is not central. Taking into
account total spin and parity, an additional D-wave component is allowed. There are several layers to understanding
this system starting with the tensor force. The deuteron would simply not be bound without the tensor force and
there are geometric implications of this force on the deuteron structure which have yet to be explored on the quark
and gluon level. The spin configuration and alignment of the deuteron is a tool yet to be taken full advantage of. If
a deuteron can be aligned in such a fashion that it is in a MJ = ±1 magnetic substate (Fig. 1), where J is the spin
of the deuteron, then the deuteron can have two separate equidensity surface lobes depending on the energy density.
This configuration is associated with the standard spin-up and spin-down common to the spin-1/2 nucleon but for
spin-1 it is distinctly referred to as vector polarization. On the other hand if the deuteron is in the MJ = 0 magnetic
substate (Fig. 2), then the equidensity surfaces that encloses the deuteron are toroidal in shape [33]. The hole in the
torus is due of the repulsive core of the N–N interaction and the overall shape is largely governed by the tensor force.
It is only recently that the highly control manipulation of a solid-polarized target spin ensemble has allowed access to
the optimally aligned high density deuteron targets, allowing increased sensitive to the correlations between geometric
properties and partonic degrees degrees of freedom.

We propose the first ever Spin-1 TMD measurements using a polarized deuteron target including a direct mea-
surement of gluon transversity while also for the first time measuring the sea-quark transversity distribution of the
deuteron/neutron. The gluon transversity was first mentioned in Deep inelastic scattering [34]. Contributions to this
observable vanishes identically for a nucleus made up of protons and neutrons regardless of Fermi motion or bind-
ing corrections. It is therefore an unambiguous probe of the gluonic components of the nuclear wavefunction which
cannot be identified with individual nucleons. We propose to use the same SpinQuest/E1039 setup using Drell-Yan
production from an unpolarized 120 GeV proton beam interacting on a transversely polarized deuteron target. This
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experiment would use the same exact experimental configuration at Fermilab already setup in NM4. With this new
proposal, we suggest implementing polarized target technology in a dedicated run to optimize and separate the tensor
polarized observables from the vector contributions making these challenging measurements viable. The unique beam
cycle of the high intensity proton beam at Fermilab allows for the employment of special characteristics of the thermal
properties of the solid-state polarized target system allowing significant improvement over any other facility to run
intense proton beams on novel RF-manipulated target systems. The combination of high luminosity, large x-coverage
and a high-intensity beam with significant time between proton spills makes Fermilab the best place for this novel
approach to measuring these polarized target asymmetries in Drell-Yan scattering with high precision. Using the
antiquark selectivity of Drell-Yan, we will make the first ever determination of several observables providing multiple
constraints and significant advancement in the understanding Spin Physics.

In summary, this new proposal suggests taking full advantage of the new SpinQuest infrastructure by embarking on
a spin-physics program to measure multiple polarized observables in the deuteron, within the range of 0.1 < xB < 0.5.
He we propose for the first time a way to probe exotic gluonic components in the target using transverse momentum
distribution function TMDs. This experiment would be highly complementary to the approved experiment E1039
[35], which will measure the Sivers function of the sea quarks using both a polarized proton and deuteron target.
The physics presented here is also suggestive of other experiments to gain even further insight. The culmination in
information from these experiments will indeed provide remarkable steps forward in the field of High-Energy/Nuclear
Spin Physics.

It is important to note that the proposed measurement is the only currently planned experiment which will cleanly
access the sea quark and gluon transversity. Fermilab provides a unique and complimentary kinematics with virtuality
Q2 ∼ 10 GeV2 and transverse momentum qT in the few GeV region. This experiment is made possible by the
SpinQuest polarized target and supporting infrastructure as well as the technology that is required to optimize the
deuteron target to achieve linearly polarized gluons. It is necessary to measure the vector polarized asymmetry with
zero tensor polarization and alternate with the unpolarized target cross section measurement. The technology to
achieve these types of RF manipulated target systems has recently been developed at the University of Virginia and
would require only small hardware modification to the SpinQuest target. While this project would be a continuation
of the SpinQuest experiment, E1039 does not use a target optimized for linearly polarized gluons. All of the recent
modification in the NM4 experimental hall are required. The installation of the polarized target and closed loop liquid
helium system as well as the modifications to the beamline to protect the target superconducting coils, changes to the
shielding around the target area and the first magnet are all still necessary in the exact same way for the proposed
experiment. There are no additional installations costs required for the proposed run.

II. MOTIVATION

A. The Spin-1 Target in Drell-Yan

High energy scattering experiments are required to probe the quark and gluon structure of hadrons and hadronization
processes. This makes parton distribution functions (PDFs) and fragmentation functions (FFs) crucial ingredients in
hadron and particle physics [1–3]. Recently, transverse-momentum-dependent quark distribution functions (TMDs)
and fragmentation functions (TMD FFs) have been of significant focus both experimentally and theoretically [4–6]. At
leading-twist the internal transverse-momentum-dependent quark structure of spin-half hadrons, such as the nucleon,
is expressed in terms of six time-reversal even (T-even) and two time-reversal odd (T-odd) TMDs, and after integrating
over the transverse momenta of quarks there remain three PDFs: the unpolarized, helicity, and transversity PDFs.
However, for spin-one hadrons, such as the deuteron, the spin degrees of freedom require three additional leading-twist
T-even TMDs, resulting in one additional PDF [7–9].

The Drell-Yan process [36] describes the hadron-hadron collisions, where at tree level a quark from one particle
annihilates with an antiquark from the other particle, creating a virtual photon. The virtual photon subsequently
decays into two leptons. The Drell-Yan process is one of the cornerstone perturbative QCD processes that cleanly
probes the internal structure of the colliding hadrons, has low background, and is free of the fragmentation uncertainties.

For this proposed experiment we will use p + d↑ → µ+ + µ− + X with a transverse vertically pointing deuteron.
To lowest order, the cross section for the Drell-Yan process depends on the product of the quark and antiquark
distributions q, q̄ in the beam x1 and in the target x2, where x1, x2 are the Bjorken-x of the process and express the
fraction of the longitudinal momentum of the hadron carried by the quark.

dσ

dx1dx2
=

4πα2

9sx1x2

∑
i

e2
i (q

B
i (x1, Q

2)q̄Ti (x2, Q
2) + q̄Bi (x1, Q

2)qTi (x2, Q
2) , (1)

where s is the square of the center of mass energy and is given by s = 2mTEBeam+m2
T +m2

B , with EBeam as the beam
energy and mB,T the rest masses of the beam and target particles. Measuring the two decay leptons in the spectrometer
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allows one to determine the virtual photon center of mass momentum pγ‖ (longitudinal) and pγT (transverse) as well as

the mass Mγ . From these quantities one can deduce the momentum fractions of the quarks through:

xF =
pγ‖

pγ,max‖
= x1 − x2 , x1x2 = M2

γ . (2)

If one chooses the kinematics of the experiment such that xF > 0 and x1 is large, the contributions from the valence
quarks in the beam dominate.

In this case, in equation 1 the second term becomes negligible and the cross section can be written as

dσ

dx1dx2
≈ 4πα2

9sx1x2

∑
i

e2
i q
B
i (x1, Q

2)q̄Ti (x2, Q
2) . (3)

For a proton beam on a proton target the process is dominated by the u(x1) distribution due to the charge factor
e2
i . But on the neutron (deuteron) target the process is d(x1) dominant. To explore the sea-quark observables in the

neutron we consider the general form of the hadronic tensor from [37] to express the full angular distribution of the
Drell-Yan cross section as.

dσd4qdΩ =
α2
em

Fq2 ×
{((

1 + cos2 θ
)
F 1
UU +

(
1− cos2 θ

)
F 2
UU + sin 2θ cosφF cosφ

UU + sin2 θ cos 2φF cos 2φ
UU

)
+SaL

(
sin 2θ sinφF sinφ

LU + sin2 θ sin 2φF sin 2φ
LU

)
+SbL

(
sin 2θ sinφF sinφ

UL + sin2 θ sin 2φF sin 2φ
UL

)
+
∣∣∣~SaT ∣∣∣ [sinφa ((1 + cos2 θ

)
F 1
TU +

(
1− cos2 θ

)
F 2
TU + sin 2θ cosφF cosφ

TU + sin2 θ cos 2φF cos 2φ
TU

)
+ cosφa

(
sin 2θ sinφF sinφ

TU + sin2 θ sin 2φF sin 2φ
TU

)]
+
∣∣∣~SbT ∣∣∣ [sinφb ((1 + cos2 θ

)
F 1
UT +

(
1− cos2 θ

)
F 2
UT + sin 2θ cosφF cosφ

UT + sin2 θ cos 2φF cos 2φ
UT

)
+ cosφb

(
sin 2θ sinφF sinφ

UT + sin2 θ sin 2φF sin 2φ
UT

)]
+SaLSbL

((
1 + cos2 θ

)
F 1
LL +

(
1− cos2 θ

)
F 2
LL + sin 2θ cosφF cosφ

LL + sin2 θ cos 2φF cos 2φ
LL

)
+
∣∣∣~SaT ∣∣∣SbL [cosφa

((
1 + cos2 θ

)
F 1
TL +

(
1− cos2 θ

)
F 2
TL + sin 2θ cosφF cosφ

TL + sin2 θ cos 2φF cos 2φ
TL

)
+ sinφa

(
sin 2θ sinφF sinφ

TL + sin2 θ sin 2φF sin 2φ
TL

)]
+SaL

∣∣∣~SbT ∣∣∣ [cosφb

((
1 + cos2 θ

)
F 1
LT +

(
1− cos2 θ

)
F 2
LT + sin 2θ cosφF cosφ

LT + sin2 θ cos 2φF cos 2φ
LT

)
+ sinφb

(
sin 2θ sinφF sinφ

LT + sin2 θ sin 2φF sin 2φ
LT

)]
+∣∣∣~SaT ∣∣∣ ∣∣∣~SbT ∣∣∣ [cos (φa + φb)

((
1 + cos2 θ

)
F 1
TT +

(
1− cos2 θ

)
F 2
TT + sin 2θ cosφF cosφ

TT + sin2 θ cos 2φF cos 2φ
TT

)
+ cos (φa − φb)

((
1 + cos2 θ

)
F̄ 1
TT +

(
1− cos2 θ

)
F̄ 2
TT + sin 2θ cosφF̄ cosφ

TT + sin2 θ cos 2φF̄ cos 2φ
TT

)
+ sin (φa + φb)

(
sin 2θ sinφF sinφ

TT + sin2 θ sin 2φF sin 2φ
TT

)
+ sin (φa − φb)

(
sin 2θ sinφF̄ sinφ

TT + sin2 θ sin 2φF̄ sin 2φ
TT

)]}
.

Here there are 48 structure functions that can play some type of role in the observables. In order to shorten the
notation the indices for the angles which characterize the lepton momenta and the transverse spin vectors of the
hadrons are left out. Also the components of the spin vectors can be understood in different frames like the rest frame
of one of the hadrons, the cm-frame, or a dilepton rest frame. For the additional structure function that surface from
the spin-1 target see [38–43].

Summing over the polarizations of the produced leptons, the expression for the cross section DY lepton-pair pro-
duction off a transversely polarized nucleon containing the five transverse spin-dependent asymmetries. This part of
the differential cross section can be expressed as [44],

dσ

dq4dΩ
∝ σ̂U

{
1 + ST

[
D1A

sinϕs
T sinϕs +D2

(
A

sin(2ϕcs−ϕs)
T sin (2ϕcs − ϕs) +A

sin(2ϕcs+ϕcs)
T sin (2ϕcs + ϕs)

)]}
(4)

where q is the four-momentum of the virtual photon and σ̂U = (F 1
U + F 2

U )(1 + λcos2θcs), and F 1
U , F 2

U are the
polarization and azimuth-independent structure function, and polar asymmetry λ is given as λ = (F 1

U−F 2
U )/(F 1

U+F 2
U ).

D1 = (1 + cos2θcs)/(1 + cos2θcs) and D2 = sin2θcs/(1 + cos2θcs). The angles ϕcs, θcs and Ω the solid angle of the
lepton, are defined in the Collins-Soper frame [37]. Naturally, ST is the transverse part of the nucleon spin.

With the deuteron one can measure observables from both the spin-1/2 neutron and the spin-1 deuteron. To extract
the Spin-1 transverse TMDs one has to measure p+d↑ transverse spin asymmetry with the target either in the vector
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or tensor polarization. The polarization of the solid-state target can be manipulated with RF-techniques. The RF
spin manipulation to enhance the target for a particular observable can be achieve in-between beam spills optimizing
the figure of merit for the beam-target interaction time. The time between beam spills is an advantage in this case
allowing time to selectively configure the target to isolate specific sea-quark and gluon observables of interest using
novel RF polarized target techniques. The time between beam spills also allows target spin flips per spill reducing the
time-dependant drifts in the target asymmetry measurements.

In Drell-Yan lepton-pair production with transversely polarized nucleons in the initial state, the TSA Asinϕs
T is

related to the Sivers TMD by a convolution and the QCD predicted sign-change can be measured in the Drell-Yan
process when compared at the same kinematics to the semi-inclusive deep inelastic scattering process (SIDIS). The

other two, A
sin(2ϕcs−ϕs)
T and A

sin(2ϕcs+ϕs)
T , are related to convolutions of the beam Boer-Mulders (h⊥1 ) and the target

transversity (h1) or pretzelosity (h⊥1T ) such that,

Boer-Mulders⊗ Boer-Mulders : Acos 2ϕcs
T ∝ h⊥q1 ⊗ h

⊥q
1 (5)

Unpolarized⊗ Sivers : Asinϕs
T ∝ fq1 ⊗ f

⊥q
1T (6)

Boer-Mulders⊗ Transversity : A
sin(2ϕcs−ϕs)
T ∝ h⊥q1 ⊗ h

q
1 (7)

Boer-Mulders⊗ Pretzelosity : A
sin(2ϕcs+ϕs)
T ∝ h⊥q1 ⊗ h

⊥q
1T . (8)

Combined with the kinematic information and the target polarization we can access the TMDs given the experimental
asymmetries. Specifically for a vector polarized deuteron target at SpinQuest we can get access to the sea-quark
transversity by [45],

A
sin(φ+φs)

qT
MN

UT

∣∣∣∣
pD↑→l+l−X

' −

[
4h
⊥(1)
1u (xp) + h

⊥(1)
1d (xp)

] [
h̄1u (xD↑) + h̄1d (xD↑)

]
[4f1u (xp) + f1d (xp)]

[
f̄1u (xD↑) + f̄1d (xD↑)

] . (9)

Here the Boer-Mulders function (h⊥q1 ) portion can also be measured in the cos(2ϕcs) term of the unpolarized Drell-
Yan measurement [46]. Using the deuteron target provides a cleaner probe to the d̄-quark transversity h̄1d. This is
a primary motivation of this proposal and physically represents the d̄-quark polarization in the transversely vector
polarized deuteron. To optimize such an experiment the target should be only vector polarized in the transverse
vertical direction unlike the standard Boltzmann equilibrium spin configured deuteron target required for SpinQuest
E1039 which contains a mix of vector and tensor polarized deuterons. It is necessary to mitigate contamination from
the tensor polarized observables to isolate quark contribution to the TSA. Such a target requires special treatment
and is discussed later.

Unlike the Sivers function [35] the transversity and pretzelosity are predicted to exhibit true universality, and do not
have a sign-change between SIDIS and Drell-Yan. Tests of universality provide a set of fundamental QCD predictions
that must be checked experimentally. These relations are,

hq1|SDIS = hq1|DY (10)

h⊥q1T

∣∣∣
SDIS

= h⊥q1T

∣∣∣
DY

(11)

h⊥q1

∣∣∣
SIDIS

= − h⊥q1

∣∣∣
DY

(12)

f⊥q1T

∣∣∣
SDIS

= − f⊥q1T

∣∣∣
DY

. (13)

With the combined experimental data from E1039, and this proposed measurements all of the Drell-Yan portions
of these relations can be measured specifically for the sea-quarks. There are no other experiments that can directly
measure the sea-quark contribution so this data will be essential for separating the sea and valance contribution for
global fits and deepening our general understanding.

In being consistent with the popular work on the subject the subscript U is used to denote unpolarized hadrons, the
subscript L and T is used to denote respectively longitudinal and transverse vector polarization and the subscripts LL,
LT and TT to denote longitudinal-longitudinal, longitudinal-transverse and transverse-transverse tensor polarization.
The tensor polarizations have double index indicating a specific orientation of the tensor polarized state (ms = 0)
of the spin-1 target. It is also necessary to use superscripts to indicate which axis is the axis of quantization. For
example SLL is the longitudinal component of the spin tensor and it is oriented longitudinally along the z-axis or the
beam-line. However, the SxTL term indicates a tensor polarization pointed π/4 with respect to the beam line in the
xz-plane where the x-axis is pointing directly vertical transverse to the beam-line and the y-axis is pointing sideways
transverse to the beam-line. With this notation in mind the density matrix is parameterized in terms of a spacelike
spin vector S and a symmetric traceless spin tensor T [47]:

Sµ = SL
Pµ

M
+ SµT −MSLn

µ (14)
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and,

Tµν =
1

2

[
2

3
SLLg

µν
T +

4

3
SLL

PµP ν

M2
+
S
{µ
LTP

ν}

M
+ SµνTT −

4

3
SLLP

{µnν} −MS
{µ
LTn

ν} +
4

3
M2SLLn

µnν
]

(15)

In Drell–Yan processes the transverse motion of quarks in nucleons is particularly important, we measure the transverse
momentum of a particle that inherits part of the quark intrinsic transverse momentum. The quark momentum is given
as,

kµ ≈ xPµ + kµT

The most general form of the correlation matrix can be expressed as [27],

Φ(k, P, S) =
1

2
[A1 6 P +A2λNγ5 6 P +A3 6 Pγ5 6 φT] (16)

When the correlation matrix is integrated of k the result gives,

Φ =

∫
d4kΦ(k, P, S) =

1

2
[gV 6 p+ gAλNγ5 6 P + gT 6 Pγ5 6 φT] (17)

where the constants gv, gA and gT are the vector, axial and tensor charge. The vector charge is the valence number.
There can be calculated from the quark and anitquark distribution functions,

gqV =

∫ 1

0

dx
[
fq1 (x)− f q̄1 (x)

]
gqA =

∫ 1

0

dx
[
gq1(x) + gq̄1(x)

]
gqT =

∫ 1

0

dx
[
hq1(x)− hq̄1(x)

]
.

(18)

The description of the quark-quark correlation matrix at leading twist is,

Φ =
1

2
[ 6 pA1 + εµνρσγ

µP
νkρTS

σ
T

M
Ã1

+ λNγ5 6 PA2 +
kT · ST

M
γ5 6 pÃ2

+ 6 Pγ5 6T A3 +
kT · ST

M2
6 pγ5kTÃ3 +

λN
M
6 Pγ5kTÃ4

+εµνρσγ
µγνγ5

P ρkσT
M

Ã5

]
(19)

In total, the matrix is described by 8 functions where An and Ãn are real parameters used to simplify the charac-
terization [48]. Powers of the nucleon mass M are present to keep the functions dimensionless. And considering the
quark transverse polarization ST . The transversity and pretzelosity determine the transverse polarization distribution
of quarks in a transversely polarized nucleon. From Fig. 3 show quarks in a nucleon polarized along the y-axis may
be polarized in all transverse directions depending on their momentum.

Considering the deuteron polarization the density matrix takes the form:

ρ(S, T ) = 1
3

(
I + 3

2S
iΣi + 3T ijΣij

)
(20)

=


1
3 + SL

2 + SLL
3

SxT−iS
y
T

2
√

2
+

SxLT−iS
y
LT

2
√

2

SxxTT−iS
xy
TT

2

S
x+iS

y
T

T

2
√

2
+

SxLT+iSyLT
2
√

2
1
3 −

2SLL
3

SxT−iS
y
T

2
√

2
− SxLT−iS

y
LT

2
√

2
SxxTT+iSxyTT

2

SxT+iSyT
2
√

2
− SxLT+iSyLT

2
√

2
1
3 −

SL
2 + SLL

3

 (21)

In this proposal we are concerned with both quarks and gluons. For parametrization of the quarks the leading-twist
TMD correlator is,

Φ (x,kT ) ≡ Φ[U ] (x,kT ;n, P, S, T )

≡
∫
d(ξ · P )d2kT

(2π)3
eik·ξ〈P, S, T |ψ̄(0)U(0, ξ)ψ(ξ)|P, S, T 〉

∣∣∣∣
ξ+=0

.
(22)
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FIG. 3. The kinematic factors accompanying h⊥1T (a), h⊥1L(b), and h⊥1 (c) for (S) = (0,1,0). Position of the center of each arrow
corresponds to the quark transverse momentum, its direction denotes the preferred quark polarization, and the color shows the
modulus of the factor [48].

Using the indicated notation the quark correlator is organized in terms of target polarization such that,

Φ = ΦU + ΦL + ΦT + ΦLL + ΦLT + ΦTT ,

and the decomposition is expressed as:

ΦU (x,pT ) =
1

4

{
f1

(
x, p2

T

)
6 n+ +

(
h⊥1
(
x, p2

T

)
σµν

pµT
M
nν+

)}
ΦL (x,pT ) =

1

4

{
g1L

(
x, p2

T

)
SLγ5 6 n+ + h⊥1L

(
x, p2

T

)
SL i σµνγ5n

µ
+

pνT
M

}
ΦT (x,pT ) =

1

4

{
g1T

(
x, p2

T

) ST · pT
M

γ5 6 n+ + h1T

(
x, p2

T

)
iσµνγ5n

µ
+S

ν
T

+ h⊥1T
(
x, p2

T

) ST · pT
M

iσµνγ5n
µ
+

pνT
M

+

(
f⊥1T

(
x, p2

T

)
εµνρσγ

µnν+
pρT
M
SσT

)}
ΦLL (x,pT ) =

1

4

{
f1LL

(
x, p2

T

)
SLL 6 n+ +

(
h⊥1LL

(
x, p2

T

)
SLLσµν

pµT
M
nν+

)}
ΦLT (x,pT ) =

1

4

{
f1LT

(
x, p2

T

) SLT · pT
M

6 n+ +
(
g1LT

(
x, p2

T

)
εµνT SLTµ

pT ν

M
γ5 6 n+

)
+
(
h′1LT

(
x, p2

T

)
iσµνγ5n

µ
+ε

νρ
T SLTρ

)
+

(
h⊥1LT

(
x, p2

T

) SLT · pT
M

σµν
pµT
M
nν+

)}
ΦTT (x,pT ) =

1

4

{
f1TT

(
x, p2

T

) pT · STT · pT
M2

6 n+

−
(
g1TT

(
x, p2

T

)
εµνT STTνρ

p2
T pTµ
M2

γ5 6 n+

)
−
(
h′1TT

(
x, p2

T

)
iσµνγ5n

µ
+ε

νρ
T STT ρPσ

pσT
M

)
+

(
h⊥1TT

(
x, p2

T

) pT · STT · pT
M2

σµν
pµT
M
nν+

)}
.

In regards to the phenomenology, the intrinsic motion of partons inside the nucleons is responsible for the specific
dependence of the cross section in the azimuthal angle. The various correlations encoded in the TMDs translate into
the aforementioned azimuthal or spin asymmetries of the measured cross section, which are calculable and provide the
basis for measurements giving access to a physical interpretation of structure and dynamics.
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The unpolarized TMD f1 is quite well known now which is good because it is critical to the interpretation of other
measurements. The data on the unpolarized function are extracted from facilities worldwide. For the valance quarks
Sivers function f⊥1T there is also increasingly more information. SpinQuest E1039 will make a critical contribution for
sea quarks. Some information exists on valance quark transversity h1 and the Boer-Mulders h⊥1 function as well as
the pretzelosity h1T [49] but considerably less for the sea. Beyond this there is essential no experimental information
on any of the other functions. In Fig. 4 the list is shown of leading twist quark TMDs for the spin-1 target which
contain 3 additional T-even and 7 additional T-odd TMDs compared to spin-1/2 nucleons. The rows indicate target
polarization and the columns indicate quark polarization. The bold-face functions survive integration over transverse
momenta.

FIG. 4. The list of leading twist quark TMDs for the spin-1 target which contain 3 additional T-even and 7 additional T-odd
TMDs compared to spin-1/2 nucleons. The Gluon TMDs are listed in Fig. 5. Here the rows indicate target polarization and
the columns indicate quark polarization. The bold-face functions survive integration over transverse momenta.

Naturally valence quarks have been the focus for the last few decades. There has been considerable theoretical effort
in the last several year to understand the gluonic content of hadrons. Gluon observables can be easily overwhelmed
by the valence quarks depending on the target and the kinematics available at the facility. However, the structure
and dynamics produced by the the gluons and the quark sea are turning out to be critical to answer many pressing
questions and they must be studied in detail.

As there is a clear need for sea quark specific experiments, the information on gluon distributions is far more scarce
and essentially restricted to the collinear gluon PDFs for spin-1/2 targets. Gluon TMDs are mostly unknown because
it is generally challenging to access the relevant kinematic regions for a spin-1/2 target. What little information that
is available on gluons comes from the LHC at CERN.

Little GPD or TMD information is available on spin-1 targets and absolutely no experimental information is available
on the tensor polarization contributions in TMDs. However, the interest on the gluon content of nuclei is growing,
even if restricted to the collinear quantities. The collinear structure function for gluons in spin-1 targets was first
defined by Jaffe and Manohar [34] and referred as nuclear gluonometry. This observable is related to a transfer of
two units of helicity to the polarized target, and vanishes for any target of spin smaller than 1. A finite value to
this observable requires the existence of a tower of gluon operators contributing to the scattering amplitude where
such a double-helicity flip cannot be linked to single nucleons. This observable is exclusive to hadrons and nuclei of
spin ≥ 1 and measures a gluon distribution in the target providing a clear signature for exotic gluonic components
in the target. In the parton model language, this observable comes from the linearly polarized gluons in targets with
transverse tensor polarization, and is related to h1TT . This interesting function is the focal point of our motivation and
is one of the least investigated aspect in the gluonic structure linked to the polarization of the target of spin≤1, where
non-nucleonic dynamics becomes accessible. These tensor polarized observables are expected to yield new insights into
the internal dynamics of hadrons and nuclei.

Going beyond the collinear case, one can define new TMDs, Fig 5. These TMDs appear in the parametrization of a
TMD correlator, which is a bilocal matrix element containing nonlocal field strength operators and Wilson lines. The
Wilson lines, or gauge links, guarantee color gauge invariance by connecting the nonlocality, and give rise to a process
dependence of the TMDs. The description of spin-1 TMDs is presented by Bacchetta and Mulders [50] for quarks
and Boeret al. [47] for gluons. Additionally a study of the properties of and the relations between the gluon TMDs
for spin-1 hadrons has recently been published [52]. Positivity bounds were derived that provide model-independent
inequalities, that help relating and estimating the magnitude of the gluon TMDs.
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In [47] the gluon-gluon TMD correlator was parametrized in terms of TMDs for unpolarized, vector, as well as tensor
polarized targets. We use a decomposition for the gluon momentum k in terms of the hadron momentum P and the
lightlike four-vector n, such that

kµ = xPµ + kµT +
(
k · P − xM2

)
nµ,

satisfying P · n = 1 and P 2 = M2, where M is the mass of the hadron. The gluon-gluon TMD correlator for spin-1
hadrons is defined as:

Γ[U,U ′]µν;ρσ (x,kT , P, n;S, T ) ≡
∫
dξ · Pd2ξT

(2π)3
eik·ξ

〈
P ;S, T

∣∣∣Trc

(
Fµν(0)U[0,ξ]F

ρσ(ξ)U ′[ξ,0]

)∣∣∣P ;S, T
〉∣∣∣∣
ξ·n=0

(23)

where the process-dependent Wilson lines U[0,ξ] and U ′[0,ξ] are required for color gauge invariance. The leading-twist

terms are identified as the ones containing the contraction of the field strength tensor with n and one transverse index
(i, j = 1, 2). Explicitly indicating the dependence of the vector and tensor part of the spin. The correlator is then
expressed as,

Γij (x,kT ) ≡
∫
d(ξ · P )d2kT

(2π)3
eik·ξ 〈P, S, T |Fµν(0)U(0, ξ)F ρσ(ξ)U ′(ξ, 0)|P, S, T 〉ξ+=0 (24)

where there is a trace over color and the dependence on the gauge links is omitted. After the separation in terms of
the possible hadronic polarization states, the correlator can be expressed using the indicated notation as the following,

Γij = ΓijU + ΓijL + ΓijT + ΓijLL + ΓijLT + ΓijTT . (25)

The parametrization in terms of TMDs with specific polarizations and orientations can then be expressed as,

ΓijU (x,kT ) = x
2

[
−gijT f1

(
x,k2

T

)
+

kijT
M2h

⊥
1

(
x,k2

T

)]
ΓijL (x,kT ) = x

2

[
iεijT SLg1

(
x,k2

T

)
+

ε
{i
T αk

j}α
T SL

2M2 h1
1L

(
x,k2

T

)]
ΓijT (x,kT ) = x

2

[
− g

ij
T ε

ST kT
T

M f1
1T

(
x,k2

T

)
+

iεijT kT ·ST
M g1T

(
x,k2

T

)
−
ε
kT
T

{
i
j}
S +ε

ST {i
T k

j}
T

4M h1

(
x,k2

T

)
− ε

{i
T α

j}αST
T

2M3 h⊥1T
(
x,k2

T

)]
ΓijLL (x,kT ) = x

2

[
−gijT SLLf1LL

(
x,k2

T

)
+

kijT SLL
M2 h⊥1LL

(
x,k2

T

)]
ΓijLT (x,kT ) = x

2

[
− g

ij
T kT ·SLT

M f1LT

(
x,k2

T

)
+

iεijT ε
SLT kT
T

M g1LT

(
x,k2

T

)
+
S
{i
LT k

j}
T

M h1LT

(
x,k2

T

)
+

kijαT SLTα
M3 h⊥1LT

(
x,k2

T

)]
ΓijTT (x,kT ) = x

2

[
− g

ij
T k

αβ
T STTαβ
M2 f1TT

(
x,k2

T

)
+

iεijT ε
β
Tγk

γα
T STTαβ

M2 g1TT

(
x,k2

T

)
+SijTTh1TT

(
x,k2

T

)
+

S
(i)
TTαk

j}α
T

M2 hL1TT
(
x,k2

T

)
+
kijαβT STTαβ

M4 h⊥⊥1TT

(
x,k2

T

)]
The resulting list of leading twist TMDs for gluons is shown in Fig. 5. The Gluon TMD functions are divided in terms
of target polarization and gluon polarization as shown in the figure. The bold-face functions survive integration over
transverse momenta.

The phenomenological studies of gluons generally focus on characterizing the appropriate angular dependencies to
access gluon distributions. The extraction of these functions should rely on all-order TMD factorization, even though,
for processes initiated by gluons, factorization breaking effects are often present [53–57]. Here complexity can arise
in factorization breaking from color entanglement and color-singlet configurations. It is worth pointing out that the
extraction of the gluon TMDs from different high energy processes requires taking into account the appropriate gauge
link structures. In situations where higher number of hadrons are involved, the gauge links can be combinations of
future and past pointing Wilson lines, with the possibility of additional loops [58].

The gluon Sivers function can be studied at RHIC and COMPASS and now Fermilab, which can provide the
transverse polarization of the target. The Sivers function can be accessed through the measurement of the Sivers
asymmetry in pp↑ → πX, and in J/ψ production [59–61]. As far as the universality of the gluon Sivers function is
concerned, we should expect a sign-change analogously to the quark case.
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FIG. 5. The list of leading twist TMDs gluons. The rows indicate the target polarization while the columns indicate the gluon
polarization. The bold-face functions survive integration over transverse momenta.

The longitudinal tensor polarized TMD fLL can also be measured at Fermilab [62]. This would require a different
target magnet which the University of Virginia presently owns. This wold require disassembly and reassembly of
the target so it is better to measure everything possible within the transverse case first. In either case These gluon
observables relate to a transfer of two units of helicity to the nuclear target, and vanish for any target with spin less
than 1. So in that case we focus on the linearly polarized gluons in targets with a transverse tensor polarized target
to measure the gluon transversity h1

TT .

B. Transversity

The transverse-polarization physics of the deuteron can be investigated by the transversity distributions in the
twist-2-level collinear framework. Of specific interest are the sea-quark transversity distribution as well as the gluon
transversity. To understand how to access the gluon transversity more explanation is required. The approach to quark
transversity on the other hand is relatively well known and some measurements have already been performed on the
valance contributions. The proposed experiment would provide essential information for such a test specific to the
sea-quarks. Fermilab is unique in its kinematic range providing some overlap with other high-x facilities allowing for
the critical tests of universality and much more.

1. Quark Transversity

As mentioned, an important channels to investigate the quark transversity distribution is the space-like process to
Drell-Yan or SIDIS where it is necessary to measure the Collins azimuthal spin asymmetries in order to extract the
TMDs [63, 64]. Measurements have been made by the HERMES Collaboration [65, 66], the COMPASS Collaboration
[19] and JLab Hall A [67]. The quark transversity distributions requires the Collins fragmentation functions, which are
different from the usual unpolarized fragmentation functions. BELLE and BABAR have attempted some extractions of
the observables [68–70]. Due to the universality of the Collins fragmentation function [71] it is possible to constrain the
fragmentation function and the valance quark transversity given the multiple data sets and analyses using transversity
coupled to the dihadron interference fragmentation functions [72]. There has also been effort to apply the appropriate
QCD evolution to the phenomenological studies [73] and improve the global picture of transversity.

In the global fit with TMD evolution there are two unknown functions to be extracted using the experimental
data. The collinear transversity distributions hq1 and the collinear twist-3 fragmentation function Ĥ(3)h/q. The fit
parameterizes [73] the quark transversity distributions as

hq1 (x,Q0) = Nh
q x

aq (1− x)bq
(aq + bq)

aq+bq

a
aq
q b

bq
q

1

2
(fq1 (x,Q0) + gq1 (x,Q0)) (26)

where Q0 is the initial scale, for up and down quarks q = u, d, respectively, and fq1 are the unpolarized CT10NLO
quark distributions [74] and the NLO DSSV quark helicity distributions. In this parametrization the so-called Soffer
positivity bound [75] of transversity distribution at the initial scale was applied. This bound is known to be valid
[32] up to NLO order in perturbative QCD. This study assumes that all the sea-quark transversity distributions are
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negligible. It is well understood that this is a less than ideal place to start for such an extraction however there is no
data for the sea-quark contribution. With more data available from SpinQuest and this proposed experiment, it would
be possible to constrain the sea-quarks as well. The resulting extracted transversity distributions for the valance u and
d quarks are shown in Fig. 6. Other extractions have been made using the two-hadron production in electron-positron
annihilation e+e− → h1h2X where the Collins effect is observed in the combination of the fragmenting processes of a
quark and an antiquark , resulting in the product of two Collins functions with an overall modulation of the azimuthal
angles of the final hadrons around the quark-antiquark axis [? ]. Similarly extraction of the transversity distribution

FIG. 6. The extracted transversity distribution at three different scales in Q2. The shaded region corresponds to the 90%
confidence level error band at Q2 = 10 GeV2 [73].

in the framework of collinear factorization was made based on the global analysis of pion-pair production in deep-
inelastic scattering and in proton-proton collisions with a transversely polarized proton [76]. For the transversely
polarized nucleon, transversity distributions are expressed as ∆Tq(x) = q↑(x)− q↓(x), where ↑ and ↓ indicate parallel
and anti-parallel quark polarizations to the transversely-polarized nucleon spin.

FIG. 7. The extracted u and d transversity distributions in a comparison of the best fit results (red, solid lines). [76].

There has been one attempt made to extract something about the sea-quark contribution [? ] but this extraction
largely lacks constraints for any realistic determination. The results in this case imply the sea-quark transversity is
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compatible with zero but especially in the case of the d̄ there error is simply to large to say anything definite. We will
use these results to demonstrate the possible constraints that this proposal could add in the Expected Results section.

To take a closer look at the quark transversity and the physics specific to the deuteron consider that the unpolarized,
longitudinally-polarized, and transversity distribution functions are defined for quarks by the following matrix elements
[28],

q(x) =

∫
dξ−

4π
eixp

+ξ−
〈
p
∣∣ψ̄(0)γ+ψ(ξ)

∣∣ p〉
ξ+=~ξ⊥=0

(27)

∆q(x) =

∫
dξ−

4π
eixp

+ξ−
〈
psL

∣∣ψ̄(0)γ+γ5ψ(ξ)
∣∣ psL〉ξ+=ξ̄⊥=0

(28)

∆T q(x)=

∫
dξ−

4π
eixp

+ξ−
〈
psTj

∣∣ψ̄(0)iγ5σ
j+ψ(ξ)

∣∣ psTj〉ξ+=ξ̄⊥=0
(29)

where sL and sTj (j = 1 or 2) indicate longitudinal and transverse polarizations of the nucleon, and ψ is the quark
field. These distribution functions are leading twist. The structure function gT associated with the transverse spin
can be written in an operator matrix element in a similar way as,

gT,q(x) =
p+

MN

∫
dξ−

4π
eixp

+ξ−
〈
psT

∣∣ψ̄(0)γ⊥γ5ψ(ξ)
∣∣ psT 〉ξ+=ξ̄⊥=0

, (30)

which is a twist-3 structure function.
The structure functions of the nucleon are given by the imaginary part of forward scattering amplitudes by the

optical theorem. Figure 8 shows the parton-hadron forward scattering amplitudes.

FIG. 8. Parton-hadron forward scattering amplitude AΛii,Λfλf with the hadron helicities Λi and Λf and parton helicities λi
and λf .

The amplitude is written as AΛii,Λfλf with the initial and final hadron helicities Λi and Λf and with parton helicities
λi and λf such that the PDFs can be related to the helicity amplitudes by [22, 28],

f1(x) = q(x) = q+(x) + q−(x) ∼ Im (A++,++ +A+−,+−)

g1(x) = ∆q(x) = q+(x)− q−(x) ∼ Im (A++,++ −A+−,+−)

−h1(x) = ∆T q(x) = q↑(x)− q↓(x) ∼ ImA++,−−.

where the direction of the polarization is perpendicular to the beam and the amplitudes are defined by the transversely-
polarized states so the transversity distribution is

∆T q(x) = q↑(x)− q↓(x) ∼ Im (A↑↑,↑↑ −A↑↓,↑↓) . (31)

The SpinQuest polarized target configuration can be used to probe the sea-quark transversity distributions and help in
the determination of the tensor charge in the nucleon. The already proposed experiment E1039 will take data on both
transversely polarized protons and neutrons but without additional data to separate the vector and tensor polarization
contributions the neutron transversity will be very difficult to decipher. This proposal is specific to the control of the
deuteron polarization states where a large part of the vector polarization actually comes from the neutron. Transversity
is an important physical quantity for clarifying the nature of the nucleon spin and also for exploring possible signatures
beyond the standard model [77–79] by observing electric dipole moments of the neutron. There is also considerable
theoretical work in lattice QCD [78, 80–88] as well as the Dyson-Schwinger Equation (DSE) [89, 90].

The neutron electromagnetic current can be written as[91–97],〈
n
∣∣Jem
µ

∣∣n〉 =ū (p′)

[
γµF1

(
q2
)

+
κ

2MN
iσµνq

νF2

(
q2
)

+
dn

2MN
γ5σµνq

νF3

(
q2
)]
u(p).

(32)
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Here the time-reversal odd term is included with the form factor F3 in addition to the ordinary parity and time-reversal
even terms with F1 and F2 the Dirac and Pauli form factors respectively and κ as the anomalous magnetic moment.
The initial and final neutron momenta are denoted as p and p0, where q is the momentum transfer given by q = p−p′,
and u(p) is the Dirac spinor for the neutron. Finally F3 is the time-reversal odd form factor, in combination with the
electro-magnetic field Aµ in the Hamiltonian, with the factor of the neutron electric dipole moment (EDM) dn in units
of e/(2Mn).

The nucleon tensor charge is a fundamental nuclear property and its determination is among the main goals of
several experiments [98–104]. In terms of the partonic structure of the neutron, the tensor charge, for a particular
quark type q, is constructed from the quark transversity distribution, h1(x,Q2) [98–102], where the neutron EDM is
expressed by integrals of the transversity distributions to obtain the tensor charge,

dn =
∑
q

dqδq(Q
2) (33)

δq
(
Q2
)
≡
∫ 1

0

dx
(
hq1
(
x,Q2

)
− hq̄1

(
x,Q2

))
(34)

where dq is the quark EDM. The neutron EDM is investigated theoretically by calculating the quark EDMs in the
standard model, or theories that deviate from the standard model. The EDM is multiplied by the tensor charge in order
to compare with experimental measurements. The contributions from the sea-quarks to the transversity distributions
of the neutron are critical to a detailed understanding and physics interpretation.

2. Gluon Transversity

Equation 31 shows that the transversity distribution ∆T q(x) is associated with the quark spin flip (λi = +, λf = −),
a chiral-odd distribution. Clearly the gluon transversity can not exist in the nucleon where the spin flip = 2 is not
possible. The quark transversity distributions evolve without the corresponding gluon distribution in the nucleon [32]
which differs from the longitudinally-polarized PDFs, where the quarks and gluon distributions couple with each other
in the Q2 evolution. This is a subtle yet critical point because it provide a crucial test of the perturbative QCD in
Spin Physics.

Similarly to the quark transversity, Eq. 31, the gluon transversity is written as

∆T g(x) ∼ ImA++,−−, (35)

where the spin flip of ∆s = 2(|λf −λi| = |Λf −Λi| = 2) is necessary for gluon transversity, see Fig 9. The most simple
and stable spin-1 hadron or nucleus is the deuteron, which is our choice for the future experiment to study gluon
transversity. By angular momentum conservation, the linear polarization of a gluon is zero for the spin-1/2 hadron.
Naturally linear polarization is measured by an operator that flips helicity by two units. Since no helicity is absorbed
by the space-time part of the definition of the parton densities (the integrals are azimuthally symmetric), the helicity
flip in the operator must correspond to a helicity flip term in the density. The gluon correlation function is defined as,

Φαβg/H (ph, pH , sH) =Ng/H

∫
d4ξ

(2π)4
eiph·ξh

×
〈
pHsH

∣∣Aα(0)Aβ(ξ)
∣∣ pHsH〉 (36)

where Aα is give by Aα = Aαa t
α and Nh/H is the normalization constant. The gluon correlation function in the

deuteron at twist-2 is

Φαβg/B (xb) ≡
∫
d2pbTΦαβg/B (x, ~pbT )

= 1
2

[
−gαβT f1,g/B (xb) + iεαβT SLg1,g/B (xb) −gαβT SLLf1LL,g/B (xb) + SαβTTh1TT,g/B (xb)

] (37)

where f1,g/B is the unpolarized gluon distribution function, g1, g/B is the longitudinally-polarized distribution function,
f1LL,g/B is the longitudinally tensor polarized distribution function and h1TT,g/B is the transversely tensor polarized

distribution function or the gluon transversity. It is clear that the matrix elements SαβTT must be finite in order to
measure this observable.

The matrix element form of the gluon transversity is,

−h1TT,g/B = ∆T g(x) =εTT,αβ

∫
dξ−

2π
xp+eixp

+ξ−

×
〈
pEx

∣∣Aα(0)Aβ(ξ)
∣∣ pEx〉ξ+=~ξ⊥=0

(38)
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where εαβTT = +1 for α = β = 1, εαβTT = −1 for α = β = 2 and all else is zero. The linear polarization of the gluons
requires a tensor polarized target oriented along the x-axis or the vertical direction transverse to the beam direction.
This is indicated by the Ex in the above equation.

FIG. 9. Gluon-deuteron forward scattering amplitude A++,−− with the spin flip of 2 (∆s = 2) for gluon transversity.

The cross section can be written in terms of parton correlation functions by considering the subprocess assuming a
quark from the proton beam and an antiquark from the deuteron target (q(p) + q̄(d)→ γ + g),

dσpd→γX |qq̄→γ∗g =
1

4pA · pB

∫
d4pa
(2π)4

∫
d4γb
(2π)4

∑
spjin,favor

∑
XA,XB

(2π)4δ4 (pA − pa − pAX) (2π)4δ4 (pB − pb − pBX)

×
∣∣∣〈XB

∣∣ψ̄b,l(0)
∣∣ pBsB〉 (Γqq̄→γ∗g,µ)lk 〈XA |ψa,k(0)| pAsA〉Mµ

γ∗→µ+µ−

∣∣∣2
×
(
−e
Q2

)2

(2π)4δ4 (pa + pb − k1 − k2 − pd)
d3k1

2E1(2π)3

d3k2

2E2(2π)3

d3pd
2Ed(2π)3

(39)

where the spin summations are over the muons, quark, antiquark, and gluon. The parton-interaction part is Γqq̄ →
γ∗g, µ = eqε

∗α(pd, λb)Γµα by extraction of the quark charge eq and the gluon-polarization vector ε∗α(pd, λd) from
Γqq̄→γ∗g,µ. By changing from three to two-body phase space and recalculating the cross section using the lepton and

FIG. 10. The Quark-gluon process contribution to the cross section.

hadron tensor we get,

dσpd→µ+µ−X

dτdq2
T dφdy

=
α2

3(2π)2Q4

(∫
dΦ2 (q; k1, k2) 2Lµν

)
Wµν , (40)

where the hadron tensor for the qq̄ → γ∗g is,

Wµν(qq̄) =

∫
d4pa
(2π)4

∫
d4pb
(2π)4

∑
spinc0lbr

∑
q

∑
XA,XB

e2
q(2π)4δ4 (pA − pa − pAX) (2π)4δ4 (pB − pb − pBX)

×
[〈
XB

∣∣ψ̄b,j(0)
∣∣ pBsB〉 (Γ qq̄→γ′g,µ)ji 〈XA |ψa,i(0)| pAsA〉

]† [〈
XB

∣∣ψ̄b,l(0)
∣∣ pBsB〉 (Γqq̄→γ∗g,ν)lk 〈XA |ψa,k(0)| pAsA〉

]
× (2π)4δ4 (pa + pb − q − pd)

d3pd
2Ed(2π)3

(41)
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Here the hadron tensor can be expressed in terms of the correlation functions. The quark-gluon process contribution to the
cross section diagram is shown in Fig. 10 indicating the quark in the proton beam A and the gluon in the deuteron target
B. The δ function 4(pH − ph − pHx) (H = A or B, h = a or b) are expressed by the integrals of exponential function:

(2π)4δ4(pH − ph − pHx) =
∫
d4ξhe

−i(pH−ph−pHx )ξ̇h . The quark field is given at ξh in the matrix elements with the exponential

factor e−i(pH )ξ̇hψ(0)e−i(pH )ξ̇h = ψ(ξh).

III. THE MEASUREMENT

To measure transversity of both the sea-quarks and gluons in a polarized deuteron a set of unique target spin asymmetries
must be measured. For the sea-quark transversity ideally what is needed is a transversely vector polarized target system which
mitigates any tensor polarized contributions.

The gluon transversity is ideally measured with a vector and tensor polarized target as to isolate linearly polarized gluons in
the deuteron. To understand this configuration we start again with the spin vector (S) and tensor (T ) which are parameterized
in the rest frame of the deuteron,

S = (SxT , S
y
T , SL) (42)

T = 1
2

 − 2
3
SLL + SxxTT SxyTT SxLT
SxyTT − 2

3
SLL − SxxTT SyLT

SxLT SyLT
4
3
SLL

 (43)

where SxT , SyT , SxxTT , SxyLT , and SyLT are the parameters to indicate the deuteron’s vector and tensor polarizations. The deuteron

polarization vector E is,
~E0 = (0, 0, 1)
~E± = 1√

2
(∓1,−i, 0)

~Ex = 1√
2

(
~E− − ~E+

)
= (1, 0, 0)

~Ey = i√
2

(
~E− + ~E+

)
= (0, 1, 0)

(44)

where E+, E0 and E− indicate the three possible spin states of the deuteron. Here the polarizations Ex and Ey are spin-1
alignment dependent states and can be used to orient the gluons in a linearly polarized configuration in the target based on the
gluon transversity distributions defined by the matrix elements between linearly-polarized states. The spin vector and tensor
are written in terms of the polarization vector E of the deuteron as,

~S = Im
(
~E∗ × ~E

)
, Tij =

1

3
δij − Re (E∗i Ej) . (45)

For best gluon transversity extraction the key to an optimized target configuration is to selectively reduce all unneeded terms in
the spin tensor to zero preserving only the terms that relate to the observable of interest. In this case having a finite SxxTT gives
the desired access to the gluon transversity. Making the other terms zero or negligible is advantageous to a clean measurement.
In this case the polarization vectors Ex and Ey can be used to provide linear polarization and both consist of a deuteron tensor
polarized in the transverse plane to the beam-line. The difference in the cross section from these polarization states can be used
in an asymmetry to build an observable to extract gluon transversity.

The polarization vectors Ex, E0 Ey are all indicative of a purely tensor polarized target with spin quantization axis along the
x, z, and y axis respectively. From Eq. 45 we get for Ex a vector polarization of SxT = SxT = SxT = SxT = 0, with SLL = 1/2,
SxxT = −1, and SxyTT = SxLT = SyLT = 0. For Ey a vector polarization of SxT = SxT = SxT = SxT = 0, with SLL = 1/2, SxxT = +1,
and SxyTT = SxLT = SyLT = 0 is obtained. For E0 a vector polarization of SxT = SxT = SxT = SxT = 0, with SLL = −1, SxxT = 0, and
SxyTT = SxLT = SyLT = 0 is obtained. We can then use combinations to optimize such that Ex−Ey yields SxT = SxT = SxT = SxT = 0,
with SLL = 0, SxxT = −2 and SxyTT = SxLT = SyLT = 0. Also 2Ex −E0 yields SxT = SxT = SxT = SxT = 0, with SLL = 0, SxxT = −2,
and SxyTT = SxLT = SyLT = 0. With either of these configurations the longitudinal tensor polarization is zero as well as any vector
polarization contributions and the critical term SxxTT is also maximized.

To exploit the observables we rely on the correlation functions in the collinear formalism. For the difference in the Ex and
Ey polarized cross section the hadron tensor is given by,

Wµν (Ex − Ey) =
∑
λd

∑
color

∑
q e

2
q

∫ 1

min(xa)
dxa

π

p−g (xa−x1)
Tr
[
Γνβ

{
Φq/A (xa) + Φq̄/A (xa)

}
Γ̂µαΦαβg/B (xb)

]
. (46)

Here the summation is taken over the quark spin λd and all spin tensor matrix elements are zero except for the gluon transversity
in the target. There is no equivalent polarization term in the quark and antiquark distributions of the spin-1 target so the
transversity of the sea-quarks and the gluons can be separated through the strategic use of vector and tensor polarizations. This
is because the virtual photon in the intermediate stage interacts with a charge parton so only quark and antiquark correlation
functions contribute as the leading process from the spin-1/2 nucleons inside the spin-1 deuteron. This implies that the geometric
shape the deuteron in the different MJ spin states are highly correlated to the transverse gluon and sea-quark observables.



18

FIG. 11. (a) The proton-deuteron Drell-Yan process p + d → µ+µ− + X showing the notation for each momentum index. (b)
The parton reaction with corresponding index for process a+ b→ c+ d in the center-of-momentum frame.

To build an asymmetry the cross section difference is written as,

dσpd→µ+µ−X

dτdq2
T dφdy

(Ex − Ey) =− α2αsCF q
2
T

6πs3
cos(2φ)

∫ 1

min(xa)

dxa
1

(xaxb)
2 (xa − x1) (τ − xax2)2

×
∑
q

e2
qxa [qA (xa) + q̄A (xa)]xb∆T gB (xb) .

(47)

The cross section sum of these polarization states can also be calculated where q̄q → γ∗g and q/q̄ → γ∗q/q̄. Leading to the
cross section,

dσpd→µ+µ−X

dτdq2
T dφdy

(Ex + Ey) =
α2αsCF
2πτs2

∫ 1

min(xa)

dxa
1

(xa − x1)x2
ax

2
b

×
∑
q

e2
q

[
4

9
{qA (xa) q̄B (xb) + q̄A (xa) qB (xb)}

× 2τ {τ − (−2xaxb + x1xb + x2xa)}+ x2
b (xa − x1)2 + x2

a (xb − x2)2

(xa − x1) (xb − x2)

+
1

6
{qA (xa) + q̄A (xa)} gB (xb)

2τ (τ − x1xb) + x2
b

{
(xa − x1)2 + x2

a

}
xb (xa − x1)

+
1

6
gA (xa) {qB (xb) + q̄B (xb)}

2τ (τ − x2xa) + x2
a

{
(xb − x2)2 + x2

b

}
xa (xb − x2)

]
(48)

This provides the necessary numerator to construct a gluon transversity asymmetry which can be written as,

AExy =
dσpd→µ+µ−X (Ex − Ey) /

(
dτdq2

T dφdy
)

dσpd→µ+µ−X (Ex + Ey) / (dτdq2
T dφdy)

. (49)

Based on the polarization vector difference an equivalency can be derived using the unpolarized combination vector Ex +Ey +
Ez := U , resulting is zeros for all terms in the spin polarization vector and tensor. We can then write Ex −Ey ≡ 2Ex +E0 −U
and Ex +Ey ≡ U −E0. If we assume that the differential cross section from longitudinal tensor polarization is small compared
to the transverse tensor polarization when the quantization axis of the target is pointing in the transverse direction then we can
write,

AExy =
dσpd→µ+µ−X (Ex − Ey) /

(
dτdq2

T dφdy
)

dσpd→µ+µ−X (Ex + Ey) / (dτdq2
T dφdy)

=
dσpd→µ+µ−X (2Ex − U) /

(
dτdq2

T dφdy
)

dσpd→µ+µ−X U/ (dτdq2
T dφdy) .

The generalized experimental gluon transversity asymmetry can then be written as,

AExy =
1

fPzz

2σEx
pd→µ+µ−X

− σUpd→µ+µ−X

σU
pd→µ+µ−X

, (50)

where Pzz is the target ensemble tensor polarization and f is the correction for the presence of unpolarized nuclei the beam
interacts with. There are several ways to build a gluon transversity asymmetry using different quantization axes and polarized
target configuration, but this equivalence provides as way to compare directly with predictions and requires the same polarized
target magnet and orientation already in place in the SpinQuest experimental hall. Also due to the cos2φ term in Eq. 47 it is
possible to extract a tensor polarization contribution in the azimuthal angle produced by gluon transversity. This would show
up even from the Ex polarized state alone and the difference between a target with some tensor polarization and with no-tensor
polarization can be use to measure the whole coefficient while exploring any azimuthal dependence.

As mentioned previously the quark transversity is easiest to measure in the neutron/deuteron by mitigating any contribution
from the tensor polarization. The best possible target system would then alternate between vector polarized, tensor polarized
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and unpolarized. With the UVA RF technology it is possible to start with a target that is in Boltzmann equilibrium which has
both tensor and vector polarization, then on the scale of milliseconds, use the selective RF in the NMR frequency domain to
remove tensor polarization in the target ensemble, as well as to create a unpolarized target and then flip back to the original
spin state. These alterations to the target spin configurations can be done between beam spills allowing data collection in the
different spin states while minimizing time dependant false asymmetries.

As mentioned the SpinQuest polarized target system can already accommodate most of the needs of this proposal. Only slight
modification must be made to the target cell to add the selective RF manipulation coil and adapt the polarization measuring
NMR system to be optimized to function with the two competing RF sources. For the purpose of the proposed measurements,
one needs to separately measure different target spin configurations but with the field always pointing transverse vertical as
it is now. The experimental setup and data taking approach we will follow is similar to that used previously by experiments
E866 and E906 to measure the d̄ /ū ratio in the proton. A transversely polarized deuteron target is used as for the d̄ Sivers
measurement for part of E1039, with the neutron providing additional d̄ (sea) quarks that annihilate with valence d quarks
from the beam.

Target material ND3 can be used to provide the transversely polarized neutron target. Here the dilution factor is higher (0.3)
than that of the proton, with a maximum vector polarization of up to 50% with a tensor polarization of 20% under Boltzmann
equilibrium. This target can be RF manipulated to have a tensor polarization of over 35% or 0%. The ND3 target materiel
is highly radiation resistant and has been a go to target for decades yet there are still new target systems being developed to
leverages its full potential. The DN3 is our source for tensor observables as the spin-1 system but also our source for neutron
vector polarized observables. The neutron polarization is always 91% of the vector polarization of the deuteron.

IV. EXPERIMENTAL SETUP

A. The Spectrometer

We are proposing to use the existing SpinQuest/SeaQuest [105] Fig.12 spectrometer to perform our measurement. The
spectrometer consists of two magnets, FMAG and KMAG ,and four tracking stations, where the last one serves as a muon
identifier. The first magnet (FMAG) is now almost entirely surrounded in shielding blocks for use in SpinQuest and future
experiments. This magnet is a closed-aperture, solid iron magnet. The beam protons that do not interact in the targets are
absorbed in the iron of the first magnet, which allows only muons to traverse the remaining spectrometer. The downstream
magnet (KMag) is a large, open-aperture magnet that was previously used in the Fermilab KTeV experiment. Each of the
tracking/triggering stations consists of a set of scintillator hodoscopes to provide fast signals for the FPGA-based trigger system
and a drift chambers.

Muon identification is accomplished with station 4, which is located downstream of a 1 m thick iron wall. Like the other
stations, this station contains both triggering hodoscopes and tracking detectors. The station 4 tracking detectors consist of 4
layers of proportional tube planes. Each plane is made of 9 proportional tube modules, with each module assembled from 16
proportional tubes, each 3.66 m long with a 5.08 cm diameter, staggered to form two sub-layers.

This spectrometer was designed to perform Drell-Yan measurements at large x1 . This is illustrated in Fig. 13, where the
acceptance of the SpinQuest detector is plotted as function of x1 (x-axis) and x2 (y-axis).

This is an excellent kinematic range for the proposed sea quark and gluon transversity measurements, covering the region of
large anti-down quark excess observed by E866, where large pion-cloud effects may be expected. The contributions from target
valence quarks at large x2 are then negligible.

The experiment will be using the Fermilab main injector beam with an energy of 120 GeV and a 4.4 second spill every minute.
The maximum beam intensity will be 3× 1012 protons per spill which is defined by the polarized target and spectrometer.

B. SpinQuest Construction Status

The SpinQuest shielding assessment is complete and approved and the construction is complete except for the remaining roof
on the cave. The polarized target system is in place and the cryogenic safety review has been completed and has passed.

The helium liquification system and roots pumps for the high power evaporation refrigerator has been installed and is ready
for testing.

The beam line and collimator have also been installed and approved. Fig. 14 shows the target system and shielding cave
with the spectrometer down stream to run SpinQuest. The upstream perspective is shown in Fig. 15.
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FIG. 14. The target Cave and spectrometer down stream. The red shielding blocks are surrounding FMag. The new UVA
helium liquifier is setup on top of the new cryo-platform. Image courtesy of Don Mitchell of Fermilab.

FIG. 15. The target cave show from the upstream end with the SpinQuest target system shown in place. The connecting storage
tanks for Helium gas and liquid nitrogen are out side of the NM4 building.



22

C. The Polarized Target

The proposal requires the same SpinQuest polarized target which has been rebuilt and tested at UVA and recently installed
in the NM4 experimental hall at Fermilab. The target system consists of a 5T superconducting split coil magnet, a 4He
evaporation refrigerator, a 140 GHz microwave source and a large 15000 m3/hr pumping system. The target is polarized using
Dynamic Nuclear Polarization (DNP) [106] and is shown schematically in Fig. 16. In the left hand picture the target cave
entrance is shown and the polarized target with beam line connection from the upstream perspective can be seen. In the right
hand picture the cross sectional drawing of the polarized target showing the target insert, the evaporation refrigerator, and the
superconducting magnet. The beam direction is from right to left, and the field direction is vertical along the symmetry axis,
so that the target polarization is transverse to the beam direction. The UVA refrigerator is also shown with the target insert
holding the polarized target material (ND3) with the top cell in the center of the split coils.

FIG. 16. (Left) The target cave entrance and the polarized target with beam line connection from the upstream perspective. (Right)
Cross sectional drawing of the polarized target showing the target insert, the evaporation refrigerator, and the superconducting
magnet.

While the magnetic moment of the proton is too small to lead to a sizable polarization in a 5 T field through the Zeeman
effect, electrons in that field at 1 K are better than 99% polarized. By doping a suitable solid target material with paramagnetic
radicals to provide unpaired electron spins, one can make use of the highly polarized state of the electrons. The dipole-dipole
interaction between the nucleon and the electron leads to hyperfine splitting, providing the coupling between the two spin
species. By applying a suitable microwave signal, one can populate the desired spin states. As mentioned, we will use frozen
ammonia beads [107] of and ND3 as the target material and create the paramagnetic radicals (roughly 1019 spins/ml) through
irradiation with a high intensity electron beam at NIST. The cryogenic refrigerator, which works on the principle of liquid 4He
evaporation, can cool the bath to 1 K, by lowering the 4He vapor pressure down to less than 0.118 Torr. The polarization will
be measured with NMR techniques with three NMR coils per cell, placed inside each target cell. The maximum polarization
achieved with the deuteron target is around 50% vector polarization and the ammonia bead packing fraction is about 60%. In
our estimate for the statistical precision, we have assumed an average polarization of 32% vector polarization. The polarization
dilution factor, which is the ratio of free polarized deuterons to the total number of nucleons, is 3/10 for ND3, due to the
presence of nitrogen. The target material will need to be replaced approximately every 8-10 days in all three target cells, due to
the beam induced radiation damage. This work will involve replacing the target material in the target insert, cooling down the
target and performing multiple thermal equilibrium measurements. From previous experience, we estimate that this will take
about a shift to accomplish. Careful planning of these changes will reduce the impact on the beam time. Furthermore, we will
be running with three active targets on one target insert, thus reducing any additional loss of beam time. The target cells are
about 80 mm long and hold about 12 grams of ND3. Each cell contains 3 NMR coils spaced evenly over the whole length.

Polarization of spin-1 deuterons can be achieved using DNP with deuterated materials like ND3, C4D9OH or LiD. In the
spin-1 targets the deuterons have nonzero quadrupole moments, and the structural arrangement of the nuclei in the solid
generate electric field gradients (EFG) which couple to the quadrupole moment. This results in an additional degree of freedom
in polarization that the spin-1/2 nucleons do not possess. The target spins in the ensemble can be aligned in both a vector (P )
and tensor (Pzz) polarization. Defined in terms of the relative occupation of the three magnetic substates of the spin-1 system
(m = 0, ±1) they are,

P =
n+ − n−

N
and

Pzz =
n+ − 2n0 + n−

N
,
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with ni being the relative occupation of the magnetic substate with m = i, and N = n+ + n0 + n−.

1. NMR Measurements

The proton spin polarization is measured with a continuous-wave NMR system based on the Liverpool Q-meter design [? ]
and recently upgraded at LANL. The Q-meter works as part of a circuit with phase sensitivity designed to respond to the change
of the impedance in the NMR coil. The radio-frequent (RF) susceptibility of the material is inductively coupled to the NMR
coil which is part of a series LCR circuit, tuned to the Larmor frequency of the nuclei being probed. The output, consisting of
a DC level digitized and recorded as a target event [106] in the target data acquisition system.

The polarized target NMR and data acquisition included the software control system, the Rohde & Schwarz RF generator
(R&S), the Q-meter enclosure, and the target cavity insert. The Q-meter enclosure contains a series of Q-meters circuits with
separate connection cables which are used for different target cup cells during the experiment. The target material and NMR
coil are held in polychlorotrifluorethylene (Kel-F) cells with the whole target insert cryogenically cooled to 1 K. Kel-F is used
because it contains no free protons.

The R&S generator produces a RF signal which is frequency modulated to sweep over the frequency range of interest.
Typically, the R&S responds to an external modulation, sweeping linearly from 400 kHz below to 400 kHz above the Larmor
frequency. The signal from the R&S is connected to the NMR coils within the target material. To avoid degrading reflections in
the long connection from the NMR coil to the electronics, a standing wave can be created in the transmission cable by selecting
a length of cable that is an integer multiple of the half-wavelength of the resonant frequency. This specialized connection
cable is known as the λ/2 cable and is a semi-rigid cable with a teflon based dielectric. The NMR coil a set of loops made of
70/30 copper-nickel tube, which minimizes interaction with the proton beam. The coil opens up into an oval shape spanning
approximately 2 cm inside the cup. It is possible to enhance signal to noise information through the software control system by
making multiple frequency sweeps and averaging the signals. A completion of the set number of sweeps results in a single target
event with a time stamp. The averaged signal is integrated to obtain a NMR polarization area for that event. Each target event
written contains all NMR system parameters and the target environment variables needed to calculate the final polarization.
The on-line target data and conditions are analyzed over the experiments set of target events to return a final polarization and
associated uncertainty for each run.

A target NMR calibration measurement or Thermal Equilibrium measurement (TE) is used to find a proportionality relation
to determine the enhanced polarization under a range of thermal conditions given the area of the “Q-curve” NMR signal at
the same magnetic field. The magnetic moment in the external field results in a set of 2J+1 energy sublevels through Zeeman
interaction, where J is the particle spin. The TE natural polarization for a spin-1/2 particle is given by,

PTE = tanh

(
µB

kT

)
, (51)

coming from Curie’s Law [? ], where µ is the magnetic moment in the external field of strength B, k is the Boltzmann constant,
and T the temperature. Measuring PTE at low temperature increases stability and the polarization signal. This is favorable
being that the uncertainty in the NMR signal increases as the area of the signal decreases. In fact much of the target uncertainty
comes from error in the calibration. The goal temperature used is ∼1.4 K.

The dynamic polarization value is derived by comparing the enhanced signal SE integrated over the driving frequency ω,
with that of the (TE) signal:

PE = G

∫
SE(ω)dω∫
STE(ω)dω

PTE = GCTEAE , (52)

and calibration constant defined as,

CTE =
PTE
ATE

. (53)

Where PE (AE) is the polarization (area) of the enhanced signal and PTE (ATE) is the polarization (area) from the thermal
equilibrium measurement. The uncertainty in the calibration constant, δCTE/CTE , can easily be calculated using the fractional
error from PTE and ATE . The ratio of gains from the Yale card used during the thermal equilibrium measurement to the
enhanced signal is represented as G. For more detail see, [110].

2. Neutron Polarization Measurements

The deuteron polarization will be monitored by the same LANL continuous wave NMR system as used for the proton with
one small change. There are two means whereby the polarization can be extracted from the NMR signal: the area method and
the peak-height method. We intend to use both.

First, the total area of the NMR absorption signal is proportional to the vector polarization of the sample, and the constant of
proportionality can be calibrated against the polarization of the sample measured under thermal equilibrium (TE) conditions.
This is the standard method used for polarized proton targets, but can be more problematic for deuteron targets. Typical
conditions for the TE measurements are 5 T and 1.4 K, where the deuteron polarization is only 0.075%, compared to 0.36% for
protons. This smaller polarization, along with quadrupolar broadening, makes the deuteron TE signal more difficult to measure
with high accuracy. A cold NMR system can be used to improve the signal-to-noise ratio of the NMR signal [111].
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The deuteron polarization can also be extracted from the shape of the NMR signal. The deuteron is a spin-1 nucleus with
three magnetic substates, m = −1, 0,+1, and the NMR absorption signal lineshape is the sum of the two overlapping absorption
lines consisting of the −1→ 0 and 0→ +1 transitions. In the case of 14ND3, the deuteron’s electric quadrupole moment interacts
with electric field gradients within the molecule and splits the degeneracy of the two transitions. The degree of splitting depends
on the angle between the magnetic field and direction of the electric field gradient. The resultant linshape, integrated over a
sample of many polycrystalline beads has the form of a Pake doublet [113]. has been experimentally demonstrated that, at or
near steady-state conditions, the magnetic substates of deuterons in dynamically polarized 14ND3 are populated according to
the Boltzmann distribution with a characteristic spin temperature T that can be either positive or negative, depending on the
sign of the polarization.

When the system is at thermal equilibrium with the solid lattice, the deuteron polarization is known from:

Pz =
4 + tanh µB

2kT

3 + tanh2 µB
2kT

(54)

where µ is the magnetic moment, and k is Boltzmann’s constant. The vector polarization can be determined by comparing the
enhanced signal with that of the TE signal (which has known polarization). This polarimetry method is typically reliable to
about 5% relative.

Similarly, the tensor polarization is given by:

Pzz =
4 + tanh2 µB

2kT

3 + tanh2 µB
2kT

(55)

From Eqs. 54 and 55, we find:

Pzz = 2−
√

4− 3P 2
z (56)

In addition to the TE method, polarizations can be determined by analyzing NMR lineshapes as described in [? ] with a
typical 5-7% relative uncertainty. At high polarizations, the intensities of the two transitions differ, and the NMR signal shows
an asymmetry R in the value of the two peaks. The vector polarization is then given by:

Pz =
R2 − 1

R2 +R+ 1
(57)

and the tensor polarization is given by:

Pzz =
R2 − 2R+ 1

R2 +R+ 1
(58)

This measuring technique can be used as a compliment to the TE method resulting in reduced uncertainty in polarization for
vector polarizations over 28%.

The measurement of the neutron polarization (Pn) is achieved by a calculation using the NMR measured polarization of the
deuteron (Pd). The quantum mechanical calculation using Clebsch-Gordan coefficients show 75% of the neutron spins in the
D-state are antiparallel to the deuteron spins. The resulting neutron polarization is,

Pn = (1− 1.5αD)Pd ≈ 0.91Pd,

where αD is the probability of the deuteron to be in a D-state.

3. The Deuteron NMR Lineshape

The quadrupole moment of the spin-1 nuclei results from the nonspherically symmetric charge distribution in the quadrupolar
nucleus. For materials without cubic symmetry (e.g. C4D9OH or ND3), the interaction of the quadrupole moment with the
EFG breaks the degeneracy of the energy transitions, leading to two overlapping absorption lines in the NMR spectra. The
spin-1 NMR lineshape is shown in Fig. 17 demonstrating the two intensities I+ (in blue) and I− (in red). In terms of population,

I+ = C(ρ+ − ρ0)

and
I− = C(ρ0 − ρ−),

where ρx is the population density in the m = x energy level and C is the calibration constant. The term intensity is used here
to indicate both the height and area of these two individual regions. The frequency is indicated by a dimensionless position in
the NMR line R = (ω − ωD)/3ωQ which spans the domain of the NMR signal, where ωQ is the quadrupolar coupling constant.
In these units R = 0 corresponds to the Larmor frequency of the deuteron at 5 T (ωD = 32.679 MHz). The local electric field
gradients that couple to the quadrupole moments of the spin-1 system causing an asymmetric splitting of the energy levels into
two overlapping absorption lines. The energy levels of the non-cubic symmetry spin-1 system can be expressed as,

Em = −~ωDm+ ~ωQ(3cos2θ − 1 + ηsin2θcos2φ)(3m2 − 2),

where θ is the polar angle between the axis of the deuteron bond and the magnetic field, see Fig. 18. The azimuthal angle φ and
parameter η are fixed parameters used to characterize the electric field gradient with respects to the deuteron bond axis. The
degree of axial symmetry and dependence on the polar angle can be understood from the basis lineshape for an isotropic rigid



25

6− 4− 2− 0 2 4 6

R                                       

 m
V

) 
  
  
  
  
  
  
  
  
  
  

E
I 
(C

FIG. 17. An example of the NMR lineshape of a spin-1 target with a non-cubic symmetry demonstrating the two overlapping
absorption lines. The two intensities of the signal I+ and I− are shown in blue and pink respectively. Figure from [112].
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FIG. 18. The energy level diagram for deuterons in a magnetic field for three values of θ where ~ωD is the deuteron Zeeman
energy, ~ωQ is the quadrupole energy. The color indicates which transition corresponds to which peak shown in Fig. 17. Figure
from [112].

solid which is known as a Pake doublet. The polarization information can be extracted from a fit of the NMR data providing
the areas of the two intensities [114, 115]. The peaks of the Pake doublet (R ∼ ±1) correspond to the principal axis of the
coupling interaction being perpendicular (θ = π/2) to the magnetic field. This is the most probable configuration within each
transition, as indicated by the height in the intensity of each peak. The opposing end in each absorption line, called the pedestal,
corresponds to the configuration when the principal axis of the coupling interaction is parallel (θ = 0) to the magnetic field,
which has much less statistical significance as indicated by the small relative height in the intensities in each transition around
(R ∼ ∓2).

If the ensemble of the spin system is in thermodynamic equilibrium the ratio of the intensities (r = I+/I−) can be used to
extract the polarizations directly [114].

P =
r2 − 1

r2 + r + 1
Pzz =

r2 − 2r + 1

r2 + r + 1
(59)

or simply,
Pzz
P

=
r − 1

r + 1
. (60)

The extracted information from the fit also gives the sum of the two intensities which provides the vector polarization P =
C(I+ + I−) while the difference provides the tensor polarization Pzz = C(I+ − I−). It is important to note that these two
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expressions remain true even if the system is not in thermodynamic equilibrium unlike Eq. 59 and 60. Once the calibration
constant C is measured, these expressions can be used to extract the averaged polarizations of the ensemble over the course of
the HEP/Nuclear scattering experiment [110].

4. Tensor Polarization Enhancement

To manipulate the magnitude of tensor polarization during DNP pumping a separate source of coil generated RF irradiation
is used to selectively saturate some portion of the deuteron NMR line. By applying RF irradiation at a frequency or over a
frequency range (hole burning [116, 117]), transitions are induced between the magnetic sublevels within the frequency domain
of the applied RF. A spin-diffusion rate that is small compared to the effective nuclear relaxation rate allows for significant
changes to the NMR line via the RF, which can be strategically applied to manipulate the spin-1 tensor polarization. In the
presented set of measurements DNP microwaves were used as well as an additional RF source that used semi-saturating RF (ss-
RF) irradiation to maximize the tensor polarization for the 1 K and 5 T system [115]. A semi-saturated steady-state condition is
used which manipulates and holds the magnetic sublevels responsible for polarization enhancement. The continuous wave NMR
(CW-NMR) lineshape is measured and manipulated to maximize tensor polarization. The technique of ss-RF requires using
a power profile that is sensitive to the intensity distributions with the correct modulation time signature over the frequency
domain to optimally enhance. To be useful in a scattering experiment setting, the target ensemble averaged tensor polarization
must be increased and held during the beam spill. Temporarily enhanced states during beam-target interactions are much more
plausible at facilities that have a short beam spill per cycle such as Fermilab. This allows significant beam intensity on a target
that is RF-manipulated for a short period, and then gives significant recovery time to build up polarization again for the next
spills.

The source of ss-RF comes from a dedicated coil with a field Bν resulting in an induced transition rate proportional to [115],

ξ = 2π
Bνaν
B0

δ(ωD − ων), (61)

where ωD is the Larmor frequency, ων is the ss-RF frequency and aν is the coupling constant and B0 is the strength of the
holding field. The ss-RF can only play a role between nuclear spin energy levels that differ by the spin of the mediating photon.
The ss-RF drives transitions that lead to equalization of the populations in the energy levels at the applied frequencies. This
implies that the change in intensities at the location R in the NMR line due to the ss-RF can be expressed as,

I±(R)

dt
= −2ξω1I±(R), (62)

I∓(−R)

dt
= ξω1I±(R). (63)

In other words the rate at which any one of the intensities change due to ss-RF is only dependent on the intensity level and the
strength of the Bν field, or RF power. Here ω1 is the reciprocal of the electron longitudinal relaxation rate used to be consistent
with previous work [115]. The total polarization can only be decreased at the ss-RF location in R so strategic implementation
is required to enhance the difference in the integrated I+ and I− regions. Equation 63 indicates that for any region at R in the
intensity reduced by the ss-RF also results in the increase in the opposite signed intensity growing at −R at half the rate as the
decrease seen at R. This also implies that the region at −R increases in area by half of the lost area at R.

Equations 62 and 63 affirms that materials with the same lineshape can be treated exactly the same under ss-RF tensor
enhancement. This expression does not change for different materials relaxation rates. The nuclear spin polarization is measured
with an CW-NMR system [108]. With this system the RF susceptibility of the material is inductively coupled to the NMR coil
which is part of a series LCR Q-meter circuit that is tuned to the Larmor frequency of the nuclei of interest. The Q-meter based
NMR provides a non-destructive polarization probe of the nuclear spin ensemble in the solid-state target.

For the selective excitation using ss-RF, an additional coil around the target cup is necessary. This additional RF coil is
connected to an RF-generator and amplifier. The ss-RF coil consists multiple turns of silver covered copper clad non-magnetic
steel with a diameter of ∼0.2 mm. The coil is constructed to approximate a homogeneous RF field around the target material
that is perpendicular to the holding field. For optimal performance the coil is both impedance matched and tuned as an LCR
circuit to maximize power and reduce reflection at the coil. The ss-RF is modulated over the frequency domain of interest at
the appropriate RF power to semi-saturate the NMR line to the intensity level of interest. This same RF circuit can be used to
perform an Adiabatic fast passage (AFP) on the target. A half AFP can be used to unpolarized the target putting 50% of the
target polarization in the opposing direction. The RF sweep rate to achieve an AFP is on the order of a few milliseconds.

The distribution of the power profile delivered is also dependant on the coil. A high quality factor and optimized tune in the
ss-RF coil delivers a more precise and localized RF load in the signal domain. The power profile of the ss-RF in the CW-NMR
is characterized by the Voigt function [115].

The material of choice is ND3 primarily because if has the desired lineshape and it is highly radiation resistant as well
as offering the best polarization and dilution factor out of all possible polarized target materials. However because of its
long relaxation rate ND3 does take a while to fully polarized (several hours) and it will maximizes at only about 50%. This
experiment would require tensor polarization as well which is calculated from the equilibrium relation between the energy level.
Under Boltzmann equilibrium (no ss-RF) for a vector polarzation of 50% the resulting tensor polarization is,

Pzz = 2−
√

4− 3P 2 = 19.7%. (64)
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FIG. 19. Drawing of the ss-RF cup and coil used for the set of experiments discussed. The NMR coil is also shown inside.
Figure from Carlos Ramirez of UVA polarized target group.
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Tensor Polarization

FIG. 20. The tensor polarization shown from the difference of the intensities I+(R) and I−(R). Figure from [112].

Enhancement beyond this level requires application of selective excitation [115] using the ss-RF to maximize the difference in
the two intensities I+ and I− such that Pzz = C(I+ − I−) is maximized.

Figure ?? shows a plot of the NMR lineshape for a vector polarization of 50%. This plot represents the sum of I+(R) and
I−(R) over the frequency domain in R. Similarly, a tensor polarization plot is shown in Figure 20 and represents the difference
of I+(R) and I−(R) over the frequency domain in R. By selectively applying the ss-RF it is possible to reduce the regions in
the Pzz line that drop below the x-axis. When this is done simultaneously over all negative regions in the domain the tensor
polarization is enhanced.

5. Semi-Saturating RF Enhancement

To optimize the enhancement, the ss-RF excitation must minimize the negative tensor polarization for all R while minimizing
the reduction to the overall area of the NMR signal from the process. The two critical regions lie around R∼∓1 (θ ≈ π/2) and
±1 < R < ±2 (θ ≈ 0). For positive vector polarization, the greatest integrated tensor polarization enhancement is achieved
through selective excitation to reduce the size of the smaller transition area with intensity I−. This can be thought of minimizing
the negative parts of the tensor polarization, shown in Fig. 20. In both figures the y-axis would normally be millivolts scaled
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FIG. 21. NMR measurement with fit result after the ss-RF has been applied to the two negative tensor regions. The tensor
polarization from this example is about 32%. Figure from [112].

by a multiplicative factor CE which is sensitive to the characteristics of the NMR coil, such as inductance, geometry and
orientation. We therefor leave these units generalized and provide a scale for relative change when necessary. For negative
vector polarization, the greatest enhancement comes from the reduction of the transition area with intensity I+, otherwise the
treatment of both cases are identical, so it is convenient to focus on positive vector and tensor polarization.

The target must first be polarized with DNP to achieve the highest vector polarization possible for that material. This
maximized the signal area to be used in the ss-RF manipulation.

The ss-RF is then applies as described. Because of the power amplification in the ss-RF damage to the Q-meter may result
if these systems are ran simultaneously. Cycling between RF manipulation and NMR measurement can result in additional
uncertainty in the NMR measurement due to the delayed sampling and the evolution of the spin state in the ensemble over
time.

The ss-RF is applied by modulating the frequency over the domain of interest. The pedestal region of the smaller intensity
(I−) can be brought to near saturation to optimize. Saturation occurs when the RF drives the population of the magnetic
sublevels to equalize. However, the peak is highly sensitive to power being it is higher in magnitude and it is necessary to
preserve as much of the larger intensity (I+) underneath the I− peak as possible. Optimization requires just the right amount
of RF power to reduce the area in I− without depleting I+.

To maximize tensor polarization first the DNP process is used to build up the available polarization as much as possible,

then the can be optimized for either the vector polarization observable A
sin(ϕsc−ϕc)
T or the tensor polarized observable AExy .

Once the DNP process has maximize the NMR signal area (to around 50%), the the ss-RF is imposed to maximize tensor
polarization. A fit to the data is also shown indicating the I+ intensity in blue and the I− intensity in pink. Figure 21 shows the
NMR measurement after the ss-RF has been applied to the two negative tensor regions in R. A fit to the data is shown which
uses only the constraints from Eq. 62 and Eq. 63 resulting in a tensor polarization measurement of about 30%. In optimal
circumstances using a combination of AFP and ss-RF well over 30% tensor polarization can be achieved. Fortunately, as the
target polarized decays due to radiation damage the enhancement potential per total NMR signal area increases. This is simply
because the two peaks in the pake double become closer in area.

The same techniques that are used to enhance the tensor polarization can also be used to reduce it. This is done by applying
the ss-RF to the larger peak and manipulating the signal so that I− and I+ are equal. The ss-RF manipulated signal lineshape
is show in Fig. 22 for vector polarization of P = 35% and Pzz = 0.

The proposed experiment will take advantage of this novel polarized target system providing a farther physics reach by
improving the figure of merit of the polarized observables and providing a method to disentangle the polarized neutron observables
associated with quark transversity and the tensor polarized observable associated with gluon transversity. This is achieved
best by polarizing under Boltzmann equilibrium then enhancing the tensor polarization and then polarizing with zero tensor
polarization. The ss-RF manipulation can be done on the order of several seconds so these target spin flips can be done in
between the beam spills and cycled to reduce the over all systematics.

6. FNAL Auspicious Beam Cycle

Fermilabs unique beam cycle from the Main Injector of 4.4 seconds of high intensity proton beam with 55.6 seconds before the
next spill allows applications for polarized fixed target experiments not otherwise achievable. The superconducting polarizing
magnet can not withstand such a continuous heat-load at such high beam intensity. We intend to run at the highest intensity
that the spinQuest target magnet can withstand without creating local hot spots in the coils that go over the superconductor
critical temperature resulting in magnet quenching. The time between spills allows for higher instantaneous intensity that
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FIG. 22. The NMR lineshape for ss-RF manipulated deuteron signal with zero tensor polarization and roughly 35% vector
polarization.

previously achieved by allowing time for the coil temperature to decrease back to baseline. That combined with the length (8
cm) of the SpinQuest target means that SpinQuest is operating at the polarized target intensity frontier.

The time between spills also allows for RF manipulation of the target spin configuration. The manipulation can be applied
between the spill to prime the target for an enhanced state during the spill. Since these RF-generated spin states are not in
thermal equilibrium, hold these states without decrease in polarization is not possible. The time between beam spills allows for
recovery before the next spill. For this experiment tensor enhancement using a combination of AFP and ss-RF will increase the
tensor polarization over the beam spill and then rebuild polarization when waiting for the next spill. This also makes it possible
to cycle between a vector enhance target, a tensor enhanced and an unpolarized target for each still. This drastically reduces
the uncertainty associated with time dependent drifts in the systematics.

Temporarily enhanced spin states during beam-target interactions are much more plausible at facilities that have a short
beam spill per cycle such as Fermilab. The unique beam cycle of the high intensity proton beam at Fermilab allows for the
employment of special characteristics of the thermal properties of the solid-state polarized target system allowing significant
improvement over any other facility to run intense proton beams on novel RF-manipulated target systems. The combination
of high luminosity, large x-coverage and a high-intensity beam with significant time between proton spills is paramount for this
novel approach to measuring polarized target asymmetries in Drell-Yan scattering with high precision. This makes Fermilab
very unique in this regard and allows great potential this proposal and for future projects.

7. Kinematic Dilution Factor

The figure of merit for this type of polarized target experiment is proportional to the active target contribution squared times
polarization squared. The active target contribution is made of of the dilution factor and the packing fraction over the length
of the target. The packing fraction can be measured using a method of cryogenic volume displacement measurement which
compare an empty target cell to the full target cell used in the experiment. The target cell is filled with beads of solid NH3

material with a typical packing factor of about 60% with the rest of the space filled with liquid helium.
The dilution factor is the ratio of the number of polarizable nucleons to the total number of nucleons in the target material

and can be defined as,

f =
NDσD,H

NNσN +NDσD + ΣNAσA
, (65)

where ND is the number of deuteron nuclei in the target and σD is the corresponding inclusive double differential scattering
cross section, NN is the nitrogen number of scattered nuclei with cross section σN , and NA is the numbers of other scattering
nuclei of mass number A with cross section σA. The denominator of the dilution factor can be written in terms of the relative
volume ratio of ND3 to LHe in the target cell, the packing fraction pf . For the case of a cylindrical target cell oriented along
the magnetic field, the packing fraction is exactly equivalent to the percentage of the cell length filled with NH3 or ND3. The
dilution factor for NH3 is 0.176 and for ND3 is 0.3. The uncertainty in these factors from irreducible background is typically
2-3%.

The material density for ND3 is 1.007 g/cm3 and a packing fraction higher than 0.06 can be achieved while the radiation
length is about 5.7%. There are more materials in the experimental beam path than just the ND3, which means the amounts
and cross-sections of those materials must also be accounted for when calculating the kinematically sensitive dilution factor.
Due to this, the dilution factor of the target will actually be given by the equation

f =
3d4σDYD (xB , xT , φ, φT )∑
ANAd

4σDYA (xB , xT , φ, φT )
. (66)

Here A is required for each nuclei in the beam path. Background that are not from Drell-Yan must also be considered.
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x2-bin < x2 > ND3 ND3+A Full
f δf (%) f δf (%) δf(%)

0.10 - 0.16 0.139 0.305 0.3% 0.310 0.6% 2.3%
0.16 - 0.19 0.175 0.304 0.5% 0.319 0.7% 2.4%
0.19 - 0.24 0.213 0.303 0.5% 0.327 0.7% 2.4%
0.24 - 0.60 0.295 0.306 1.6% 0.341 1.8% 2.5%

TABLE I. Here will list the dilution factor based on the MCFM simulations with kinematic sensitivity in x2 for our four
kinematic bins for pure deuterated ammonia (ND3) as well as for the contribution from all materials (ND3+A), as well as the
total with contribution from packing fraction and target density in (Full). Errors contain contributions from both statistical
and systematic uncertainty estimates.

To estimate the contribution from other materials in the beam path such as the aluminum windows, the target cell material,
the NMR coils, the liquid Helium, and the target ladder, a cross-section generator called Monte Carlo Femtobarn (MCFM) [120]
was used. The MCFM program is designed to calculate cross-sections based off of the parton distribution functions for various
femtobarn-level processes in hadron-hadron collisions. A number of processes can be calculated at next-to-next-to-leading order
in QCD. We use this software to estimate the Drell-Yan cross-section for our kinematics. Table I shows the resulting dilution
factor from pure ND3 as well as from the combination of all material in the beamline, shown in column (ND3+A). The total
percentage of dimuon yield is obtained by using the Geant4 with our target and spectrometer geometries constructed in the
simulations. We also show the error estimate associated with relying purely on MCFM to provide the necessary cross-section to
calculate the dilution factor for that kinematic bin. We also show in colomn (Full) the combined error estimation from MFCM,
the target packing fraction and the ND3 density.

V. BEAMLINE

The Neutrino-Muon (NM) beamline currently supporting the E906 Drell Yan experiment delivers a high-intensity (up to
1013 protons/4-sec spill), 120-GeV proton beam. The experimental beam has the 53 MHz microbunch characteristics of the
Fermilab Main Injector RF structure and the longer microsecond structure of consecutively injected Fermilab Booster beam
batches -with appropriate intervening kicker gaps separating the injected batches. After a lengthy beamline of a couple of
kilometers interspersed with vacuum windows and in-beam diagnostics such as Secondary Emission Monitors (SEMs), the beam
is distinctly Gaussian with Lorentzian tails. These tails are problematic for the cryogenic coils that polarize the E1039 target.
However, this beamline is uniquely suited to tailor and customize beam properties - upstream beam collimation allows both
matching the beam profile to the dimensions of the polarized target vertically and horizontally and protection against a quench
of the SC magnet without creating increased backgrounds at the experiment.

A. Current and Proposed Beamline Configuration

The beam is slow-spill extracted from the Fermilab Main Injector on the half integer resonance and travels a couple of
kilometers to the E906 target area in NM3. Losses in the couple of hundred meters upstream of the target are on the percent
level and large backgrounds are not created in the experimental area. Although slow spill produces an asymmetric, non-elliptical
phase space in the horizontal plane, after traveling through vacuum windows, diagnostics, and other sources of scattering, the
beam in both planes becomes Gaussian-like (with Lorentzian tails) and even symmetry. (The vertical split of beam to the
MTEST and MCENTER lines is at such low intensity, that the beam profile in this high-intensity line is not observably
impacted.) The NM/E906 beam properties have been extensively studied to determine how to achieve the requested beam
profile on the polarized target. A minimal spot size of σ = 3 − 4 mm is the smallest obtainable in both planes simultaneously
with the present beamline magnet configuration and distances involved - the polarized target is 2 meter supstream of the
current E906 targets so these measurements apply. The new experiment has requested a spot size of 6 - 7 mm. No magnet
reconfiguration or additions are required with beam collimation, greatly reducing the cost and lab resources required. The
present beamline magnet configuration can thus be used for the E1039 experiment. The primary modification required is to
collimate beam tails by at least ∼ 10-20%, well upstream of the polarized target, to remove the potential for quenching the
superconducting magnet and also to more evenly distribute beam across the target. To do this the NM2 target pile from the
kTeV experiment will be used to absorb beam scattered by collimators (Palmer-style) positioned upstream of this pile. These
collimators are currently stored downstream of the target pile but can be rigged around the shielding and installed upstream
replacing two of the 5 4Q120s (only the two last quadrupoles, 3 and 4 are currently in use for E906).

By installing the collimators upstream, the beam can be collimated and tails clipped, scattered and completely absorbed by
the NM2 target pile with little background reaching the experiment. A MARS study is planned for this configuration. Finally,
a fixed collimator in the NM3 enclosure will shadow the SC coils of the polarized target to protect it not only from any residual
halo but also beam steering allowing target scans.

The present E906 beamline is ideal for the proposed E1039 experiment, and especially for a polarized target. No modification
to the present beamline magnet component configuration or new optics is required outside of replacing two NM2 4Q120s (not in
service) with collimators. These collimators are available and already located within the NM2 enclosure so no extensive rigging



31

and drop hatch work is required. This beamline represents the most cost effective approach to the proposed polarized target
Drell Yan Experiment.

VI. COUNT RATES AND STATISTICAL ERRORS

The total Drell-Yan count rates on different targets are calculated using both full GEANT4 based Monte Carlo simulation pro-
gram with Drell-Yan signal events generated by the NLO calculations done by Vitev, et. al., and the demonstrated performance
of the Fermilab Main Injector combined with the E906/SeaQuest spectrometer.

Unlike E906/SeaQuest, the primary physics interest of E1039 experiment is to measure the low-x2 range of polarized Drell-
Yan production. We moved our target position from -130 cm to -300 cm, which greatly improves the low-x2 acceptance and
the triggering capability, as well as the offline target/dump separation power.

One primary bottleneck of the data collection efficiency at E906/SeaQuest is the slow Data Acquisition System (DAQ). A
very tight trigger level selection has been implemented in E906/SeaQuest so as to accommodate as many events in our limited
DAQ bandwidth as possible. In the summer shutdown between Run-IV (FY-2016) and Run-V (FY-2017), we will be upgrading
our DAQ system to increase the bandwidth by a factor of 10, which will be available for the last run of E906/SeaQuest and
following experiments.

Another limiting factor of the data collection efficiency at E906/SeaQuest is the unstable instantaneous beam intensity,
which is sometimes more than one order of magnitude larger than average. To prevent the spectrometer from being completely
saturated, the total number of protons delivered to the target has to be limited to be less than 6× 1012 per spill, to indirectly
constrain the instantaneous beam intensity. This also requires the data taking to be inhibited on all neighboring RF buckets
when a high intensity bucket arrives. After careful optimization, E906/SeaQuest has been able to record on average 2.67× 1012

protons per spill, which corresponds to 7.7× 1017 protons per calendar year.

After running for 2 years with beam time evenly split on NH3 and ND3 targets the integrated luminosity on NH3 (ND3 )
target is expected to be 1.82× 1042(2.11× 1042) cm−2. With the various assumed efficiencies shown in Table II, the final event
yield and statistical precision of AN measurement in each x2 bin is summarized in Table III. Here the statistical precision is
calculated by ∆AN = 1

f
1
P

1√
N

, where f denotes the dilution factor, P denotes the average polarization, and N denotes the event

yield in each x2 bin.

Sources Target/Accelerator Spectrometer Acceptance Trigger Reconstruction
Efficiency (%) 50 80 2.2 90 60

TABLE II. Various efficiencies assumed for the count rate estimates based on previous experience with E906 and polarized
target operations.

x2-bin < x2 > Vector-NH3 (d↑) Tensor-ND3 (d↑) n↑

N ∆AExy (%) N ∆AExy (%) ∆AsinT (%)
0.10 - 0.16 0.139 3.0× 104 4.7 3.8× 104 4.3 6.3
0.16 - 0.19 0.175 2.7× 104 5.2 3.2× 104 4.6 6.6
0.19 - 0.24 0.213 4.3× 104 5.5 3.9× 104 4.1 6.1
0.24 - 0.60 0.295 3.3× 104 5.3 3.8× 104 4.1 6.2

TABLE III. Event yield and statistical precision of the AN measurement in each of the x2 bins for the vector polarized NH3

(d↑) and the tensor polarized ND3 (d↑) targets as well as the deduced AN measurement precision for polarized n.
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A. Target Polarization Uncertainty

The lower limit for polarization uncertainty is set by the Q-meter style NMR which can not be expected to preform better
that 1% relative error. UVA test lab studies have gone down as far as 1.5% but typically in an experiment 2-4% is achieved for
the proton. The Deuteron/neutron has much larger error but with the use of the cold NMR system [110, 115] in combination
with the multiple measurement techniques it is also possible to get down into the same uncertainty region as the proton.

VII. LUMINOSITY AND BEAM INTENSITY

A. Beam Profile

The typical profile of the beam delivered to the target is a two dimensional Gaussian with a width of σx = 6.8 mm, σy = 7.6 mm.
The beam will be clipped with collimators at ±1.25σ, giving a beam profile of ∆x= 17 mm, ∆y= 19 mm. The beam is expected
to drift no more than ±2 mm in the x-direction before collimation. The change of the luminosity of the beam due to the beam
drifting is (Nbeam −Ndrift) /Nbeam. The change in the delivered Luminosity is ∆L= 2.8%.

B. Luminosity measurement

Several detector and measurement techniques are used in order to control systematic uncertainties from changing beam
conditions, such as position, luminosity and shape. The absolute beam intensity will be determined by Unser Monitors, which
are upstream of the target. The accuracy of Unser Monitors has been established to be 0.05% [118].

Four detectors at 90◦ to the beam (two horizontally and two vertically) will help monitor the instantaneous luminosity. Each
of these detectors will consist of four plastic scintillators in coincidence and positioned outside of the shielding wall, pointing
through a small hole in the shielding at the target. Fast MC simulations show that these detectors will detect normal π±s, µ±s,
γs with E> 100 MeV on the order of ∼200 kHz.

The ratio of every one of these detectors over the Unser Monitor measurement (N90◦/Nunser) will provide a fast relative
luminosity measurement. If part of the beam profile deviates off the target after the Unser measurement, the 90◦ detectors will
be able detect luminosity changes to >1%. This error comes from the efficiency of the four fold coincidence scintillators in each
90◦ detector. If each scintillator paddle is εscint = 99.8% efficient, the total efficiency goes as ε4scint≈ 99%.

As an additional check on the relative beam intensity, a four plate RF cavity will be installed, which can also determine
relative changes in the beam position, N90◦/NRF ∝ (N90◦/Nunser).

C. Consistency in Delivered Luminosity

Since extracting the Sivers asymmetry for the ¯d(x) requires to measure the ratio of σpd

2σpp
, care has to be taken that the

running conditions for both targets are as identical as possible. Our target system will have three identical cells, two filled with
NH3 and the other with ND3, or vice-versa. These will be interchanged on a regular basis to minimize systematic effects.

Finally, a fourth cell will have an empty cell for background subtraction, which can be replaced with a Carbon disk, to study
false asymmetries.

VIII. OVERALL SYSTEMATIC ERROR

The following table lists estimates of the dominant contributions to the relative systematic error as described in the text.

Quantity Error
Polarization Measurement 2.5%
Dilution Factor 2.5%
DAQ and Dead Time 1.5%
Relative Luminosity 1 %

TABLE IV. Estimates for the systematic errors

Adding these numbers, we estimate our relative systematic error to be less than 4%. We also expect an absolute systematic
error due to the muon spectrometer of <1.0%.
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IX. EXPECTED RESULTS

In Fig 24 we show the expected results after two years of running with both NH3 and ND3 targets. The errors displayed
are the statistical precision as listed in Table III, while the expected systematic uncertainty is discussed in the caption. The
calculations are based on global fits to the available SIDIS data. The large discrepancy is a reflection of the fact that the current
SIDIS data are insensitive to the seaquark contribution, thus leading to large uncertainties in the calculations. This is also
reflected in the width of the uncertainty bands.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

target
x

0.2−

0.1−

0

0.1

0.2

0.3
1

x
h

FIG. 23. Expected results after two years of running on NH3 and ND3 targets. The red error bars are statistical only. Absolute
systematic uncertainty is estimated to be <1.0% (see Sec. ??), and the relative systematic uncertainty is 4.0%. The theory
model predictions are for NH3 target only.
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FIG. 24. Projections of the gluon transversity asymmetry with expected data point. Error bars on projected data points are
from statically and systematic uncertainty estimates.

From the analytical scope of QCD there is a certain ubiquity of gluons to consider in almost any relevant process. However
probing the gluonic structure of hadrons and nuclei is considerably more difficult than that of quarks. To some extent that
can be accredited to the significant innate challenges in measurements of gluon observables which are usually O(αs)-suppressed
relative to the quark observables. Here we suggest a measurement that can provide significant information. A finite value of
the gluon h1TT is likely to trigger a multitude of new experiments to probe the full kinematic range of this observable to help
map out and detail the relationship between the nuclear geometry and the gluonic structure. It has also been suggested [119]
that the magnitude of this observable should increase with atomic number (z). There is ongoing polarized target research [121]
to polarized higher z solid-state targets.
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