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NMR Signals

I Polarized targets allow the study of nucleon spin structure

I Measuring polarization requires the use of phase-sensitive
NMR detectors

I We can extract information from both vector-polarized and
tensor-polarized targets

dustin
Measuring polarization in scattering experiments requires a non-destructive continuous wave phase-sensitive detector (Q-meter based NMR)

dustin
…spin structure and spin degrees of freedom



Laboratory Systems

I Dynamic Nuclear Polarization is used to polarize target

I NMR Systems from the Q-Meter used in polarized target
experiments across the world

dustin
Dynamic Nuclear Polarization uses low temperature, high magnetic fields and microwave to transfer spin polarization from electrons to nuclei 



DNP Polarized Target Setup



DNP Polarized Target Setup

I Zulkaida Akbar: The Polarized-Target System for the
SpinQuest Experiment at Fermilab (2:24-2:36PM)



Q-Meter



Q-Meter

I Couples to magnetic susceptibility of target material

I Continues wave NMR with with tuning range of 1-7λ/2

I Frequency range of 3-300 MHz

I Phase Sensitive

I Constant current, non-destructive polarization measurements

dustin
with with



Example Experiment Setup

FNAL SpinQuest Experiment

dustin
make as big as you can



Deuteron Signal

Figure: Deuteron Lineshape at 0.8 Polarization



Deuteron Signal

dustin

dustin



Deuteron Signal

Within the theoretical framework, the polarization of the deuteron
is the integral over all space of the signal we receive, so using
Riemann Sum methods, we can calculate the polarization for a
given signal.

dustin
Specifically for the Deuteron the magnitude and lineshape are sensitive to the polarization, so its a good candidate for pattern recognition studies



Polarization Calculation

Here we can calculate the Riemann sum of the signal in LabView
to acquire the polarization level of the deuteron.

Figure: Reimman Sum Calculation for a Deuteron at 0.8 Polarization

dustin
need to point  out the meaning of both lines



Q-Meter Simulation

How do we get the deuteron signal from the Q-Meter? The
Q-Meter scans over a range of frequencies, passing over the
resonant frequency where the signal occurs.



Q-Meter Simulation

Figure: Deuteron Signal from the Q-Meter scanning over a large
frequency range



Q-Meter

Figure: Deuteron Signal from the Q-Meter scanning around the resonant
frequency



Background Noise

In order to make our simulation a viable approximation of the
laboratory, we need to incorporate variables such as noise and λ/2
length.



Background Noise

Figure: Deuteron Lineshape with Simulated Gaussian Noise



Background Noise in the Q-Meter Sim



Background Noise in the Q-Meter Sim



Why Neural Networks?

I Once we incorporate background noise Riemann sum methods
can no longer be used

I There must be some unknown function that can account for
both background noise and λ/2 length



Why Neural Networks?

I Multilayer Feedforward Networks with as few as one hidden
layers and arbitrary squashing functions are universal
approximators (Hornik, Stinchombe and White, 1989).

I As long as we incorporate at least one hidden layer with a
non-linear activation, we can approximate our unknown
function.



Signal Processing Structure

Figure: Overview of Signal Processing

dustin
can we  have picture below and make bigger



Neural Network Construction

I Goal: Create an effective network to calculate polarization
while minimizing computational resources

I Used K-Fold Validation to test different network structures



Filtering a basic lineshape

For the task of filtering a basic lineshape, the network only
required one hidden layer.

Figure: Structure for basic lineshape



Filtering a Basic Lineshape

If we add a reasonable amount of noise to our basic deuteron
lineshape, we can use the neural network to easily extract the true
polarization.



Filtering a Basic Lineshape

Figure: True polarization value and Network Output for a noisy simple
lineshape



Filtering a Basic Lineshape

We can then use the output of the neural network to reproduce the
analytical lineshape, thus filtering out the environmental noise.



Filtering a Basic Lineshape

Figure: Signal filtered by a neural network



Filtering a Basic Lineshape

The network can filter signals that have a high noise to amplitude
ratio.



Filtering a Basic Lineshape
At low polarization’s and higher noise the network loses significant
accuracy



Filtering a Basic Lineshape

I The simple neural network is accurate at values which are
within reason

I It is unreasonable to expect any network would be able to find
a global fit and accurately determine all extreme values

I With enough training a network could adapt to all extrema,
but it would overfit to the training data and would not
extrapolate to the lab

dustin
Its better to make quantitative states rather than qualitative



Filtering Signals from the Q-Meter

In order to account for a fluctuating baseline and changes in the
length of the λ/2 cable, this network must be more complicated.



Filtering Signals from the Q-Meter



Filtering Signals from the Q-Meter

Deuteron at 0.8 Polarization with no noise



Filtering Signals from the Q-Meter

Deuteron at 0.8 Polarization with 5% noise



Filtering Signals from the Q-Meter

Deuteron at 0.8 Polarization with 5% noise (small range)



Filtering Signals from the Q-Meter

Deuteron at 0.8 Polarization with 9λ/2 cable length



Filtering Signals from the Q-Meter

Deuteron at 0.8 Polarization with 9λ/2 cable length (small range)



Filtering Signals from the Q-Meter

Figure: Deuteron at 0.8 Polarization with 5% noise and 9λ/2 cable length



Conclusions

I Neural networks can efficiently be used to filter background
noise from deuteron signals.

I Neural networks can adapt to changes in the baseline and
scanning range of the signal.

I Neural networks can adapt to changes in parameters which are
outside the operational parameters of the physical systems.
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What’s Next?

I Alter the structure and training methods of the Q-meter
network to filter noisy signals from long λ/2 cables.

I Create further networks/expand current ones to work on
proton signals.

I Implement trained networks in a laboratory setting to allow
signal extraction outside of the Q-Meter’s operational
parameters.
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Thank You For Listening!


