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Abstract

Dynamic nuclear polarized (DNP) targets in High-Energy and Nuclear scattering ex-

periments require the use of a phase sensitive nuclear magnet resonance (NMR) detec-

tor to measure the polarization of the nucleons in the reaction. The NMR systems use

a Q-meter based design that function within a well defined set of operational param-

eters which allows polarization measurements over the full dynamic range to within

about 3% relative uncertainty. Polarization measurements of the target in scattering

experiments dedicated to probing polarized degrees of freedom are frequently limited

by the precision of the target polarization. For the spin-1 target, the deuteron, this is

especially true being the signal size is nearly an order of magnitude smaller than for the

proton. Additionally, for experiments with high radiation levels at the target vicinity

the long resonant cable connecting the sensing coil to the Q-meter electronics can need

to be longer than the system is designed to tolerate. In this study we apply well es-

tablished methods of machine learning to provide reliable polarization measurements

and reduced error even when operating outside the design specifications of the Q-meter

NMR systems.

1. Introduction

Solid-state polarized targets are essential components of high-luminosity fixed tar-

get scattering experiments used in Spin Physics and in the extraction of polarized ob-

servables. Systematic errors coming from polarization measurements in these scat-

tering experiments are frequently the limiting factor in the overall degree of precision

achievable in the extracted observable. There are several factors that contribute to these
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systematic uncertainties in continuous wave (CW)-NMR measurements. The Q-meter

based NMR system, originally developed at Liverpool, is capable of achieving as good

as 1% relative uncertainty in polarization [1]. This level of precision is very difficult

to achieve in an experimental setting. Usually, the quality of the NMR calibration

measurements are the dominating contribution to systematic error in the polarization.

A quality polarization calibration requires multiple thermal equilibrium measurements

that take time, typically 3T1, where T1 is the nuclear relaxation rate of the target mate-

rial. Changes in the RF environment and instability of the background signal generated

by the resonant length (λ/2) cable are usually the next largest contributions [4].

Another major challenge is the nonlinearity of the Q-meter based NMR that arises

from failure of the constant RF drive current assumption. This nonlinearity can be

reduced by operation at lower signal levels but there are very specific operational pa-

rameters to adhere to for optimal functionality [5]. With a longer resonant length cable

there is also the additional complexity introduced from the steeper Q-curve which when

combined with smaller signals makes traditional background subtraction and signal ex-

traction much more prone to error.

In the case of the deuteron there is additional information provided by the lineshape

of the NMR signal which can be used to determine the level of polarization if this

lineshape is well resolved. However the TE calibration method is still usually required

to minimize the uncertainty that come with the smaller signal size. Achieving a relative

polarization error of better than 5% for the deuteron target in a scattering experiment

is very challenging.

In the following we suggest a method of extracting the deuteron signal from a

standard Q-meter based NMR using artificial neural networks (ANN) trained on the

signal lineshape and the electronic Q-meter parameters that characterize the shape of

the Q-curve baseline. Using simulated NMR data we show that it is possible to improve

the signal to noise ratio and to extract accurate polarization measurements from an

NMR that is functioning outside its design parameters.

This article is arranged in the following way. In the next section we describe the

Q-meter circuit and the operational parameters as well as the limits therein. We then

describe the simulations of the Q-meter NMR signal and present new simulations ded-
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icated to studying the deuteron. Then, the Artificial Neural Network (ANN) extraction

is explained and results are provided for several examples. We then give some con-

cluding remarks.

2. The Q-meter Circuit

The target material nucleons give a complex RF susceptibility

χ(ω) = χ
′(ω)− iχ”(ω),

which has finite values only at frequencies close to the resonant frequency of the polar-

ized nucleons. The nuclear polarization P is proportional to the imaginary coefficient

χ”(ω) integrated over the band of the angular frequency ω extending over the nuclear

resonance line of the polarized nucleons.

The Q-meter based NMR system contains a target sample coupled to a sensing coil

with inductance L0. The coil can be surrounding the target material or embedded in it.

The material modifies the inductance of the coil by,

L(ω) = L0(1+4πηχ(ω)) (1)

where η is the effective filling factor of the coil. The inductive impedance of the coil

is managed by resonating with capacitance C at frequency ω0 where ω0 = 1/
√

L0C. In

most circumstances, ω0, is the central Larmor frequency of the target material at the

magnetic holding field strength. If certain conditions are satisfied [5], χ”(ω), the imag-

inary part of the susceptibility, can be measured from the change in impedance of the

coil as a function of frequency over the resonance curve. This variation in impedance

is seen as the real part of the voltage generated across the coil when it is supplied with

a constant RF sensing current. The sensing coil current must be constant because the

susceptibility is itself a function of the RF field and so a function of the coil current.

The signal generated by the static coil inductance is minimized by connecting the coil

in series or in parallel with an adjustable capacitor tuned to obtain resonance at the

Larmor frequency of the target nucleons of interest.

The length of the cable that runs from the Q-meter electronics to the sensing coil at

the target location is determined by the geometrical layouts of the experimental facility
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and other practical factors such as radiation level at the electronics site. The Q-meter

can operate over a range of frequencies 10-300 MHz to facilitate target systems at

various magnetic field strengths. Here we will focus on 5 T which results in a Larmor

frequency of 212.882 MHz with a λ/2 of 55.0 cm for the spin-1/2 proton or 32.679

MHz with a λ/2 of 358.0 cm for the spin-1 deuteron. For optimal functionality of

the Q-meter a semi-rigid cable of length nλ/2 should be used with n at around 3 [5].

It is however common to use cable of up to n = 8 but much beyond this requires a

new approach all together. With each additional λ/2 there are further nonlinearities

in the domain outside of ω = ω0 and with related uncertainty growing to the level of

making the integration of the area over the domain unreliable. Because of the longer

λ/2, the deuteron target could safely operate significantly further from the Q-meter,

however with longer length cable, even within the defined limits, the Q-curve of the

baseline become deeper and more curved making signal extraction more challenging.

There are additional challenges that come with the deuteron signal. First, it is about

an order of magnitude smaller than the proton. Second, its nuclear relaxation rate

is significantly longer than the proton for most relevant target materials. This adds

additional challenges to the calibration. The calibration require waiting for the target

material to thermalize with the lattice in order to map area of the NMR signal directly

to polarization level. With longer relaxation rates the thermal equilibrium calibrations

take longer and are more susceptible to error during the measurement process.

If the number of n for the λ/2 cable is appropriate, to first order, it makes no contri-

bution to the reactive impedance of the circuit. The damping resistor (RD) is required to

provide a circuit impedance offset so that both positive and negative polarizations sig-

nals can be measured. The sensing current is delivered from a constant current voltage

signal generator with a high value resistor (Rcc) so that the constant current condition

is satisfied if Rcc and ZA, the amplifier input impedance, are very high compared to the

resonant impedance of the tuned circuit.

Assuming that the Q-meter system is configured for the deuteron with n >8, then

the linear distortion could potentially be quite large. The distortions over the frequency

domain can lead to unreliable polarization measurements when using the line peak

asymmetry, because the heights and shapes of the two superimposed signals do not
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accurately reflect the transition intensities for each frequency relative to one another.

The distortion also makes it very challenging to accurately fit the Q-curve drift during

recording of the dynamic nuclear polarization. This is due to the fact that the admixture

of the distorted dispersion signal extends far beyond the edges of the absorption signal.

2.1. Mathematical Description

The real part of the voltage ui can be expressed as,

Re{ui}=
U
R0

Re{Z}+Y
[
Re2{Z}+ Im2{Z}

][
(1+Y Re{Z})2 +Y 2 Im2{Z}

] . (2)

The coupling admittance of the resonator is Y = 1/Ri + 1/R0, in which Ri is the total

input impedance of the amplifier, Ri = R1i +R2i where we assume that Rli is purely

resistive. R0 is the current limiting resistance, G is the amplifier gain as indicated in

Fig. 1.

Figure 1: Schematic of a typical series Q-meter circuit and the sampling resonate part of the circuit.

The Q-meter detects only the real-part of signal. The impedance ZT of the resonant

part of the circuit is expressed as,

ZT = RD +
1

iωC
+Zc

ZL +Zc tanhγl
Zc +ZL tanhγl

(3)

where RD is the damping resistor, C is the tuning capacitor. The coil impedance ZL can

be expressed in terms of the RF susceptibility and effective filling factor of the spin
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polarized material η by

ZL = RL + iωL
{

1+η
[
χ
′(ω)− iχ ′′(ω)

]}
=

(R+ iωL)
(

1
iωCstray

)
(R+ iωL)+

(
1

iωCstray

) , (4)

Where Cstray is the capacitance parasitic capacitance created by the environment. The

impedance of the circuit set by the tuning capacitor expressed as,

ZC(ω) =
1

iωC(ω)
. (5)

Finally, Z(ω) is the total impedance of the system, expressed as,

Z(ω) =
R1

1+ R1
r+ZC(ω)+ZT (ω)

(6)

The propagation constant of the λ/2 cable is given as

γ =
√

(Rc + iωLc)(Gc + iωCc)∼= iω
√

LcCc

(
1+

1
2iQc

)
. (7)

The cable propagation constant can be frequently be specified as γ = α + iωβ by man-

ufacturers. The characteristic impedance of the coaxial line is,

Zc =

√
(Rc + iωLc)

(Gc + iωCc)
∼= Z0

(
1+

1
2iQc

)
. (8)

In the above expressions the subscript c indicates that the parameter is specific to the

λ/2 cable. In these expression Z0 =
√

Lc/Cc, and Qc = ωLc/Rc.

Analysis of the Q-meter [5] shows that the cable and the finite amplifier input

impedance introduce nonlinear terms in the analytic expression for the circuit output

voltage. To minimize the size of the nonlinear components the Q of the cable should be

high compared with that of the coil. The appropriate scale of the circuit characteristic

values should be similar to ωL = 50 Ω, RD = 6 Ω, and RA = 50 Ω and with a 3λ/2

length of 50 Ω cable having a Q of about 400. The cable should have a loss-factor as

low as possible, to yield a high effective Q, while the coil should have both low L and

low, Q-factor Q∼3.

The cable parameters used are those given by the manufactures of UT85 semi-rigid

coaxial cable with PTFE insulation and seamless copper tube outer conductor. These

cables have Z0 = 50 Ω, α = 0.0242 Np m−1 and a propagation delay D = 4.72×10−9

s m−1 with β = Dω . The resistance of the coil, RL, is typically around 0.2 Ω.
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2.2. Deuteron Lineshape

Polarization of spin-1 deuterons can be achieved using DNP with deuterated mate-

rials like ND3 or C4D9OH. The deuterons in these materials have nonzero quadrupole

moments, and the structural arrangement of the nuclei in the solid generate electric field

gradients (EFG) which couple to the quadrupole moment. This results in an additional

degree of freedom in polarization that the spin-1/2 nucleons do not possess. The target

spins in the ensemble can be aligned in both a vector (P) and a tensor (Pzz) polarization.

Defined in terms of the relative occupation of the three magnetic substates of the spin-1

system (m = 0, ±1), they are,

P =
n+−n−

N
(9)

for vector polarization and,

Pzz =
n+−2n0 +n−

N
(10)

for the vector polarization.

For materials without cubic symmetry, the interaction of the quadrupole moment

with the electric field gradient (EFG) breaks the degeneracy of the energy transitions,

leading to two overlapping absorption lines in the NMR spectra, which indicates a

quadrupolar splitting. This results in a Pake doublet in the NMR signal which is a

lineshape highly advantageous for our purpose here. This is because the asymmetry in

the two overlapping absorption lines directly indicate the scale of the polarization. The

two allowed transitions from the magnetic sublevels (−1↔ 0) and (0↔ 1) correspond

to the left absorption line and the right absorption line, respectively. The amplitudes

of these peaks vary with the population of that particular energy level and so indicate

what state of polarization the sample is in. An example of a deuteron lineshape at 0.5

polarization is shown in Fig. 2. The analytical function for the deuteron lineshape is

given by the equation

F =
1

2πX

[
2cos(α/2)

(
arctan

(
Y 2−X2

2Y X sin(α/2)

)
+

π

2

)
+sin(α/2) ln

(
Y 2 +X2 +2Y X cos(α/2)
Y 2 +X2−2Y X cos(α/2)

)] (11)

for X2 =
√

Γ2 +(1− εR− η̃ cos(2ϕ))2, Y 2 =
√

3− η̃ cos(2ϕ), and cos(α) = (1−

εR− η̃ cos2ϕ)/X2. The azimuthal angle ϕ and parameter η̃ are fixed parameters used
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Figure 2: Simulated Deuteron signal at 0.8 Polarization. don’t use these black plots from LabView, replot

them with the standard white plot background.

to characterize the electric field gradient with respect to the deuteron bond axis. The

Lorentzian width, Γ, is related to the degree of dipolar broadening of the NMR signal

and ε references the specific intensity curve so that F(ε = ±1) = I±. The variable R

is the independent variable and represent the position in the frequency domain and is

defined by R = (ω−ωD)/3ωQ.

The lineshape is obtained by a convolution of the deuteron’s energy states in a

magnetic field with a Lorentzian. The two transitions of the magnetic substate have

intensities associated with each absorption line referred to as I+ (on the right) and I−

(on the left). The asymmetry r is simply the ratio of these intensities which is equivalent

to the ratio of the area of each of the absorption lines such that r = I−/I+. The vector

polarization then described by,

P =
r2−1

r2 + r+1
. (12)

and the tensor polarization is,

Pzz =
r2−2r+1
r2 + r+1

. (13)
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It is important to note that if the deuteron signal is perfectly center about the resonance

Q-curve that nonlinearities introduced by a long λ/2 cable are reduced for I+ ∼ I−.

For the case where the system is polarized under Boltzmann equilibrium, Pzz only

exists in the range from 0≤ Pzz ≤ 1, and the following relationship holds for P and Pzz,

P = 2−
√

4−3P2
zz. (14)

For all of our analysis here we assume that this relationship holds.

3. Simulations of the Q-meter system

3.1. Original Simulations

Q-meter simulations have been developed previously by Liverpool to determine the

magnitude of the nonlinearity which arise when the operational design conditions are

not rigorously satisfied [1–3]. In our version we start with the original simulations and

implement it to a real-time environment in LabView and add online monitoring with

elements of DNP ramp-up and relaxation. We also add the lineshape for the deuteron

spin-1 target. We also fold in aspects of RF noise making the simulated output signal

very realistic and a very useful too to study extraction techniques.

The mathematical description of the Q-curve provided and its response to its tuning

parameters and coupling to the target material are used to model the Q-meter behavior

in the simulations. There are six simulated parameters that characterize the Q-meter

RF circuit and environment. Each of the six parameters is listed here with its definition.

• U , or input voltage, is used to calculate the operating current in the Q-meter

circuit. The operation voltage is calculated using operating current I =U/R, the

impedance Z(ω), and the phase φ(ω) such that, V (ω) = IZ(ω)eiφ(ω).

• Cknob, the tuning capacitance in the circuit, is adjusted externally with a variable

capacitor knob and is used to tune the Q-curve to be symmetric about the central

resonance frequency.

• n/2, is the trim, or the length of the λ/2 cable. In order for the circuit to be in

resonance at frequency ω0 this cable must be in discrete multiples of λ/2. The

trim is then defined as n/2 such that the full length of the cable is nλ/2.
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• η , the filling factor of the coil, is the level of coupling of spins in the target

material to the sampling coil, as previously expressed in Eq. 1.

• φ , the value of the phase offset assuming a form of the phase in Eq. 1 that can

be expressed as φ(ω) = aω2 +bω +φ .

• Cstray is the value of the stray capacitance in the environment of the circuit.

This includes parasitic capacitance that exists between the parts of an electronic

component or circuit simply because of their proximity. The true capacitance

of the LC circuit controlled by the variable capacitor is calculated such that

C(ω) = (20×10−12)×Cknob.

The actual circuit contains many components in series and parallel but the parame-

terization used in the simulations approximate the behavior of the system very closely

[1].

add some simulated examples of a tuned and untuned baseline, add some examples

of small and large proton signal, and anything else you think is fitting.

3.2. Deuteron Simulations

please provide a full description of the inner workings of the simulations in Lab-

View form. Provide all details about inputs, controls, and requirement. Include a details

description of the noise we can introduce and what those parameters are. Provide some

examples of the output in standard white plots of the deuteron on the Q-curve and with

various noise levels.

4. Neural Network

please provide a general description of how ANNs work with a rigorous mathemat-

ical description but also a bit about the algorithm and the hyper-parameters involved.

Describe also why we have chosen this approach to solve our problem of noise reduc-

tion and management of nonlinearities. Elaborate on why we chose a specific type

of ANN with mention of the particular feature space we are in for the two separate

problems one is noise reduction the other is extraction of polarization with very long
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λ/2 cable. Uses several plots of before and after with various extraction examples

with a quantified error associated with each extraction. This should be done with many

trials to produce a distribution of our resulting capacity to extract the correct polariza-

tion. Finally describe how our setup can be used in real-time using LabView in online

polarization monitoring.

4.1. Underlying Theory

Why is an artificial neural network an effective solution to this problem? It is

not unreasonable to assume there exists some unknown function which can account for

both the length of the λ/2 cables and the background noise and output an accurate value

for the polarization. Suppose we want to represent a function of some N-dimensional

real variable, x ∈ RN
N

∑
j=1

α jσ(yT
j x+θ j) (15)

where y j ∈ RN and α j,θ j ∈ R are fixed. We take the function σ(t) to be ”sigmoidal”

such that

σ(t)→

1 as t→+∞

0 as t→−∞

Then it can be proven that sums of the form of equation 3 are dense on C(In), the

space of continuous functions on the n-dimensional unit cube [? ]. This means that

any general function can be approximated by the summation in equation 3. This theory

has been extended to conclude that any nonconstant, nonlinear, and bounded function

can be applied to as few as one hidden layers and act as a universal approximator [?

]. So as we design our network we know that as long as we include a single hidden

layer with an activation function satisfying the necessary conditions, the network can

theoretically approximate our hidden function.

4.2. Network Design

It is important to design a network which is both complex enough to appropriately

fit our unknown function and simple enough to reasonably minimize computational

resources. In order to test different network structures we used k-fold cross validation.

11



This technique takes a dataset and splits it into k manifolds, then trains k times on k-1

manifolds, each time permuting which manifolds are training and which are for vali-

dation. The mean and variance of the validation statistics are then minimized in order

to test the robustness of the network structure. By employing a k value of 5 we were

able to determine a valid network structure employing just two hidden layers each with

Rectified Linear Units as activations. Since the output value representing polarization

is bounded between zero and one, it makes sense to employ a sigmoid activation in

the output layer so as to bound our output. A graphical representation of the network

structure is shown below. This network is effective in identifying simple simulations

Figure 3: Graphical Representation of Simple Neural Network

of the Deuteron lineshape with varying levels of noise. A more complex network is re-

quired to identify signals from the simulated Q-meter, since it has a different baseline

shape and is dependent on more variable such as the locaion of the resonant frequency

and the length of the λ/2 cables. After repeated sets of k-fold cross validation with a

value of k=5, we settled on a network of two additional layers with variation in size. A

graphical representation of this network is shown in figure 3.
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Figure 4: Graphical Representation of the More Complex Network. only one of these type of picture is

needed but we should use one of ours with our feature space. The variable on the right should be readable

too.

5. Signal to Noise Analysis

In preserving the notation in [5] we use S0 as the signal voltage at the minimum of

the Q-curve, with not NMR signal. The effective signal strength Se f f is defined at,∫ +∞

0
S(ω)dω ∼= Seff∆ωeff (16)

where ∆ωe f f is the effective width of the NMR signal. Then the NMR signal hight for

a particular polarization is

A =
Se f f (P)

S0
. (17)

The maximally enhanced deuteron signal is about three orders of magnitude bigger

than the TE signal. The RMS noise should then be analysed. Scans are made in the

simulations that mimic that of the NMR system by sweeping from the minimum to the

maximum frequency in the domain. Each scan has two measurements of the spectrum.

Averaging Ns such scans reduces the noise by
√

2Ns. The signal to noise can be analysis

at a particular frequency bin or by integration of the signal then improves the signal-

to-noise ratio by a factor f .
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