
Network Report

fsv7eq

August 2019

1 Overview

The network operates like a traditional network during back propagation. The
difference from a traditional network is how the cost propagated for each training
example is calculated. While in a traditional network there would be examples
of known expected values, in this case the network needed to train to fit 3
unknown parameters using only the expected value from an equation with those
3 unknown parameters as input.

First attempts of back-propagating the difference from the equation esti-
mated value and expected value did not perform well.

Eventually a shrinking window sampling method was settled on. In this
method each parameter (1, 2, 3) has a low value, li, and an upper value, ui

where i is the parameter number. Each mini-batch, 5 values are selected through
uniform distribution between li and ui for each i. These 3 sets of 5 values are
then used to create 125 permutations of possible parameters. Each of the 125
sets of parameters are then used to approximate each of the points in the mini-
batch. The parameters that best fit the points in the mini-batch are then the
ones that are back-propagated. Then the parameter ranges close around the
parameter values chosen through an operation like ui = 0.99 ∗ ui + 0.01 ∗ p
where p is the chosen parameter value.

2 Results

The network performed somewhat well on the data but suffered from the same
problem that the curve fit suffered from: The line fits well but the parameter
values are not correct. Looking at the results in Figure 1, the network fits the
points quite well. The cost graph shown in Figure 1b shows the network is
minimizing the cost and successfully fitting the line.

However, the problem arises when the estimated values are compared to the
actual values. Looking at Table 1 (which shows the numerical results for the
network pictured in Figure 1b), the problem can be seen. While the curve fits
the points quite well, the same cannot be said about the estimated values for the
parameters. The actual values for ReH, ReE, and ReHT are 0.677, 1.054, and
0.908 respectively. The trained network estimates these parameters to be 1.13,

1



(a) Results of the 3 network ensemble

(b) Cost graph for one of the networks in the ensemble

Figure 1: Results for 3 network ensemble trained on data with Kinematic values
xb = 0.435, t = −0.3808, Q = 1.74013

1.1006, and 0.86. While parameter’s 2 and 3 are close to their actual values,
parameter 1 is not. This is a problem that is fairly consistent across different
sets of kinematics.

2



Table 1: Network 1 Results
Type ReH ReE ReHT

Correct 0.677287 1.0538 0.908049
Curve Fit 0.4964 + /− 0.5279 1.2793 + /− 0.78 0.12243 + /− 3.918

Deep Network 1.1296 + /− 0.014 1.1006 + /− 0.031 0.8609 + /− 0.0939

(a) Results of the 3 network ensemble

(b) Cost graph for one of the networks in the ensemble

Figure 2: Results for 3 network ensemble trained on data with Kinematic values
xb = 0.4368, t = −0.2916, Q = 2.0738

3



Table 2: Network 2 Results
Type ReH ReE ReHT

Correct 0.631324 0.95597 0.85238
Curve Fit 0.59504 + /− 0.055 1.027 + /− 0.167 1.25 ∗ 10−23 + /− 1.49

Deep Network 0.7979 + /− 0.04 0.718 + /− 0.049 0.2071 + /− 0.0025

Looking at Table 2 for the results of Network 2, the same issue can be seen.
While the Curve Fit fitted the parameters fairly well in this example, the same
can not be said about the network. Although the line fits well when looking
at Figure 2, the parameter values estimated by the network are not accurate.
Additionally, the standard deviations of the network parameters are far too
small to be of any use.

3 Methods

There were many different methods explored when developing the network. Ini-
tially, the network was trained by back propagating the error between estimated
cross section and actual cross section values as the error for each of the three
output nodes. This method resulted in poor fits where, after training, each of
the three outputs predicted nearly exactly the same value as one another and
failed to minimize the RMSE between the estimated cross section values and
actual values. The common results of training like this can be seen in Figure 3.

This result led to the implementation of a regularization action which mea-
sured the length of the curve using the Euclidean distance between the points

Figure 3: Results of training the network purely on cross section error

4



Figure 4: Results of training the network with length minimization and error
shrinking

of the line over the X axis space. Additionally, a parameter was added that
would shrink the error being back propagated to ensure the network was not
getting stuck by consistently ”jumping over” the cost minimum. The results
of these changes were promising when compared to the results represented in
Figure 3. The curve resulting from this stage, as seen in Figure 4, show that
the network was beginning to learn the curve. The magnitude of the errors
had dropped significantly between the first trial and the one shown above with
the estimations by the network now within the same order of magnitude as the
expected values.

Following this, derivatives were implemented into the error scaling with great
success. Since at the time these tests were still being performed on the simpler
model of cross sections, the derivative could be added to the model with relative
ease. The error that was being back propagated for each of the output neurons
was now the cross section error multiplied by the derivative with respect to each
parameter in the equation. The results of this addition can be seen in Figure 5.

Figure 5: Results of training the network with parameter derivatives included

5



After implementing the derivative and obtaining the results seen in Figure
5, the data for the more complex equation was ready and tests began to de-
termine the effectiveness of the previous methods on the newer data. Since
the TotalUUXS equation was very complex, getting the analytical derivative, as
had been done with the previous models, was no longer an option. Additionally,
the network was suffering from a problem where the outputted parameters were
experiencing a runaway effect where as the error between the estimated cross
section increased, the training would cause the parameters to become even less
accurate and cause the error to increase even more thus causing the parameters
to become less accurate.

To solve these problems many randomized iterations were run to understand
how the network trains. It was discovered that if the estimated parameters were
within the same order of magnitude as the correct parameters, then the training
would work but if they were too large or too small, the runaway would occur.
The solution was to implement a window of ”allowed” parameter estimations.
The idea was to essentially force the network to estimate parameters within the
range where regular training could occur. If the network estimated a parameter
value outside of this range, the value back propagated was the edge of the
boundary. For example: the parameter 1 neuron returns a value of -5.0, then the
network will take notice of this and continuously back propagate values within
the range for that neuron. Additionally, the windows would shrink around the
estimated values as the network trained to force the network to find a minimum
that could produce estimations that were stable for all sets of inputs.

The windows approach was also used to solve the derivatives problem. Al-
though the derivatives themselves were no longer a concern once the TotalUUXS
equation was implemented in TensorFlow and the partial derivative functional-
ity of TensorFlow could be used, for the Numpy based version this problem still
existed. The problem was that without the derivatives, the network would be
forced to train on just the error from the estimated cross section vs the actual.
This was not an effective way of training and would consistently result in a
parameters that were a general minimum across all curves, not a minimum for
the current curve. There had to be some way to give some form of error relative
to each parameter. The windows implemented before were used to solve this
problem, as these windows would be used to generate sets of permutations of
potential parameter values within the range for that neuron. Specifically, each
parameter (ReH, ReE, and ReHTilde) had its own range and 5 values would be
selected randomly from each. These would then be used to create 125 (5x5x5)
sets of potential parameters. Each of these parameters would then be used to
calculate estimated cross section values and get an error value when compared
to the actual value. The parameters with the lowest error were chosen to be
back propagated, and the windows would shrink around the value picked for
each parameter.

After implementing these into the network, the effect was substantial. Look-
ing at Figure 6, the accuracy of the network fit is higher than that of a traditional
Chi Squared curve fit. The results shown in the figure were fairly standard and
clearly shows that the network is able to fit the curve to the points. How-

6



Figure 6: Results of training the network with length minimization and error
shrinking

ever, as described in the Results section, the parameter predictions were still
not consistently similar to the correct parameters and were at times completely
wrong.

4 Further Problems

As touched on in the methods section and in the results section, the parameter
predictions themselves are still a major problem for this approach. It is unclear
if this error is coming from bias in the network itself or is a result of the inherent
error in the data. Considering the network was able to fit the curve to the data
points quite well, it seems the network itself and the approach being taken are
not to blame. Further testing should be done on data with techniques applied
to reduce noise or on artificial data with no error added to determine if this is
the source of error.

7


