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We discuss recent attempts to extract deeply virtual Compton scattering form factors

with emphasis on their uncertainties, which turn out to be most reliably provided by

method of neural networks.

Keywords: Generalized Parton Distributions, Neural Networks

1. Introduction

Partonic structure of the nucleon, as encoded by generalized parton distributions

(GPDs), is essentially non-perturbative. As such, main avenue to its determina-

tion is extraction from experimental data, mostly from measurements of deeply

virtual Compton scattering (DVCS), which is a subprocess of electroproduction

of real photon off nucleon. Still, more than a decade after the first such fitting

attempts1, we have only partial phenomenological knowledge of GPDs. (Recent

review is available in Ref. 2.) Furthermore, although assessment of uncertainties is

indispensable part of any quantitative scientific result, authors of global GPD fits

usually hesitated to discuss error bands of extracted functions. It was understood

that standard simple propagation of experimental uncertainties is not enough. GPD

functions depend in a rather unknown manner on three kinematic variables (aver-

age and transferred parton longitudinal momentum fractions, x and ξ, and nucleon

momentum transfer squared t), which makes the problem very complex from the

data-analysis standpoint, and the very choice of fitting parametrization introduces

unknown and possibly dominant uncertainty.

2. DVCS subtraction constant

Important role of the choice of the parametrization may be illustrated by recent

attempts to determine the subtraction constant ∆(t) of DVCS dispersion relation,

ReH(ξ, t) = ∆(t) +
1

π
P.V.

∫ 1

0

dx

(
1

ξ − x −
1

ξ + x

)
ImH(x, t) , (1)

that is of great phenomenological interest since it is closely related to the pressure

in the nucleon3,4. Compton form factor (CFF) H(ξ, t) in Eq. (1) is a convolution of

GPD H(x, ξ, t) with the known hard scattering amplitude and is, being dependent

on two variables only, more easy extraction target. Still, ∆(t) resulting from fits to
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CLAS DVCS data5, came out with very different uncertainty estimation, depending

on whether relatively rigid ansatz6 for H was used7 or it was parametrized by

completely flexible neural networks8, see Fig. 1.
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Fig. 1. Imaginary and real part of CFF H resulting from fitting different parametrizations to the
essentially the same data.

3. Neural network fits

In the lack of general procedure for assessment of systematic uncertainties coming

from the choice of fitting ansatz, one convenient approach is using the parametriza-

tion by neural networks, which is known not to introduce any such systematic error.

After the early proof of concept9, first global neural network determination of CFFs

was reported in Ref. 10, demonstrating the power of this approach.

Similarly, in the framework of neural net approach, we attempted to address the

question of which of the four leading order CFFs, H, E , H̃, and Ẽ (or, more accu-

rately, eight sub-CFFs which are the real and imaginary parts of these four), can be

reliably extracted from the given data. To this end, we used the stepwise regression

method proposed in Ref. 11, where the number of sub-CFFs is gradually increased

and all combinations are tried, until there is no statistically significant improvement

in the description of the data. Representative subset of global DVCS data was used,

with various beam and target, spin and charge asymmetries measured by HER-

MES12–14, and helicity independent and dependent cross-sections measured by Hall

A and CLAS JLab collaborations5,15, where JLab data was Fourier-transformed,

so that we fitted to the total of 128 harmonics.

Results, displayed on Figs. 2 and 3, show that from the present data only ImH,

Im H̃, and Re E can be reliably extracted, with maybe some ambiguous hints of

ReH or Im E . This is similar to the conclusions of Ref. 11, which used method of

local fits (which is also resistant to the problem of choice of the ansatz function).
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Fig. 2. Neural network extraction of dominant CFFs from DVCS data. Results for various sets
of CFFs are consistent in the data region (left) and also when extrapolated outside of the data

region (right). Dispersion relation constraints were not used.

4. Conclusion

How to reliably determine uncertainties of GPD or CFF functions extracted by

fitting of ansatz function is an important open question for this area of research.

At the moment, the best confidence is provided by the method of neural networks.
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Fig. 3. Extracted ReH or Im E are mostly consistent with zero, but their addition to the model
improves description of the data from χ2/npts = 103.1/128 to 97.4/128 or 96.4/128, respectively.
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