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Background information of this work

´Considered SIDIS process
´Gaussian Ansatz for TMDs
´Only focused on Time-reversal (T) – even TMDs
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A. General definitions of TMDs

Hard processes sensitive to parton transverse momenta like SIDIS are described in terms of light-front correlators

φ(x, p⃗T )ij =

∫
dz−d2z⃗T
(2π)3

eipz ⟨N(P, S)|ψ̄j(0)W(0, z; path)ψi(z)|N(P, S)⟩
∣∣∣∣
z+=0, p+=xP+

. (1)

We use light-cone coordinates a± = (a0 ± a3)/
√
2. In SIDIS the singled-out 3-direction is along the momentum

of the hard virtual photon, and transverse vectors like p⃗T are perpendicular to it. The path of the symbolically
indicated Wilson-link depends on the process [23–25]. In the nucleon rest frame the polarization vector is given by
S = (0, S⃗T , SL) with S⃗2

T + S2
L = 1.

The information content of the correlator (1) is summarized by eight leading-twist TMDs [18], that can be projected
out from the correlator (1) as follows (color online: red: T-odd, blue: T-even)
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and by the subleading twist TMDs [29]
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where the space-indices j, k refer to the plane transverse with respect to the light-cone and ε12 = −ε21 = 1 and zero
else. Integrating out transverse momenta in the correlator (1) leads to the ’usual’ parton distributions known from
collinear kinematics ja(x) =

∫
d2p⃗T ja(x, p⃗ 2

T ) with j = f1, g1, h1, e, , gT , hL [102, 103]. Dirac-structures other than
that in Eqs. (2–10) lead to subsubleading-twist terms [28].
For convenience we introduce for a generic TMD jq(x, k⊥) the ’(unintegrated) transverse (1)-moments’ defined as

j(1)q(x, k⊥) =
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Moreover, we shall also make use of the ’(1/2)-moments’ defined for a generic TMD as

f (1/2)q
1 (x) =

∫
d2k⊥

k⊥
2MN

f q
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where the space-indices j, k refer to the plane transverse with respect to the light-cone and ε12 = −ε21 = 1 and zero
else. Integrating out transverse momenta in the correlator (1) leads to the ’usual’ parton distributions known from
collinear kinematics ja(x) =
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d2p⃗T ja(x, p⃗ 2

T ) with j = f1, g1, h1, e, , gT , hL [102, 103]. Dirac-structures other than
that in Eqs. (2–10) lead to subsubleading-twist terms [28].
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of the hard virtual photon, and transverse vectors like p⃗T are perpendicular to it. The path of the symbolically
indicated Wilson-link depends on the process [23–25]. In the nucleon rest frame the polarization vector is given by
S = (0, S⃗T , SL) with S⃗2

T + S2
L = 1.

The information content of the correlator (1) is summarized by eight leading-twist TMDs [18], that can be projected
out from the correlator (1) as follows (color online: red: T-odd, blue: T-even)
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Quark field defined in the MIT bag model:

Where,

3

II. TMDS IN THE BAG MODEL

In the MIT bag model, the quark field has the following general form [104–106],

Ψα(x⃗, t) =
∑

n>0,κ=±1,m=±1/2

N(nκ){bα(nκm)ψnκjm(x⃗, t) + d†α(nκm)ψ−n−κjm(x⃗, t)} , (13)

where b†α and d†α create quark and anti-quark excitations in the bag with the wave functions

ψn,−1, 1
2
m(x⃗, t) =

1√
4π

(
ij0(

ωn,−1|x⃗|
R0

)χm

−σ⃗ · x̂ j1(
ωn,−1|x⃗|

R0
)χm

)
e−iωn,−1t/R0 . (14)

For the lowest mode, we have n = 1, κ = −1, and ω1,−1 ≈ 2.04 denoted as ω ≡ ω1,−1 in the following. In the above
equation, σ⃗ is the 2× 2 Pauli matrix, χm the Pauli spinor, R0 the bag radius, x̂ = x⃗/|x⃗|, and ji, are spherical Bessel
functions. Taking the Fourier transformation, we have the momentum space wave function for the lowest mode,

ϕm(k⃗) = i
√
4πNR3

0

(
t0(k)χm

σ⃗ · k̂ t1(k)χm

)
, (15)

where k̂ = k⃗/k with k = |⃗k| and the normalization factor N is,

N =

(
ω3

2R3
0(ω − 1) sin2 ω

)1/2

. (16)

The two functions ti, i = 0, 1 are defined as

ti(k) =

1∫

0

u2duji(ukR0)ji(uω) . (17)

From the above equations, we see that the bag model wave function Eq. (15) contains both S and P wave components.
Especially, t0 represents the S-wave component, whereas t1 represents the P -wave component of the proton wave
functions.
With the above wave functions, we can calculate all quark TMDs. For convenience we define the constant A, which

will be common to all TMDs, and the momenta kz and k as

A =
16ω4

π2(ω − 1)j20(ω)M
2
N

, k =
√
k2z + k2⊥ , kz = xMN − ω/R0 , k̂z =

kz
k

, M̂N =
MN

k
, (18)

where MN is the proton mass, and the bag radius is fixed such that R0MN = 4ω. Moreover, we assume SU(6)
spin-flavor symmetry of the proton wave function, such that spin-independent TMDs of definite flavor are given in
terms of respective ’flavor-less’ expressions multiplied by a ’flavor factor’ Nq, and spin-dependent TMDs of definite
flavor follow from multiplying the respective ’flavor-less’ expressions by a ’spin-flavor factor’ Pq with

Nu = 2 , Nd = 1 , Pu =
4

3
, Pd = −

1

3
. (19)

We recall that in the quark model formulated for a general (odd) number of colors Nc, these flavor factors are given
by Nu = (Nc + 1)/2 and Nd = (Nc − 1)/2 while Pu = (Nc + 5)/6 and Pd = (−Nc + 1)/6 [107].
We mention that the MIT bag model gives rise also to antiquark distributions, but to unphysical ones, since

f q̄
1 (x) < 0, which violates positivity. The TMDs receive non-vanishing support also from the regions |x| ≥ 1. Though
non-physical these contributions must be included when evaluating sum rules like

∫
dx f q

1 (x) = Nq or the momentum
sum rule

∑
q

∫
dxxf q

1 (x) = 1, i.e. sum rules are satisfied only when integrating over the whole x-axis.
In literature it was discussed how to deal with these caveats, see for example [108]. In this work, we limit ourselves

to the discussion of quark TMDs at 0 ≤ x ≤ 1, which should not be confused with ’valence distributions’, for example
f q
1 val(x) = f q

1 (x) − f q̄
1 (x). When discussing sum rules, however, integration over the whole x-axis is implied.

Since there are no explicit gluon degrees of freedom, T-odd TMDs vanish in this model [91]. In principle, one can
simulate the effect of the gauge link, which is crucial in QCD for T-odd effects [22–24], for example by introducing
’one-gluon-exchange’ [91, 92] or invoking instanton effects [93]. In this work we shall not consider such extensions of
the bag model, and restrict ourselves to the description of T-even distributions.
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simulate the effect of the gauge link, which is crucial in QCD for T-odd effects [22–24], for example by introducing
’one-gluon-exchange’ [91, 92] or invoking instanton effects [93]. In this work we shall not consider such extensions of
the bag model, and restrict ourselves to the description of T-even distributions.
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In the MIT bag model, the quark field has the following general form [104–106],
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For the lowest mode, we have n = 1, κ = −1, and ω1,−1 ≈ 2.04 denoted as ω ≡ ω1,−1 in the following. In the above
equation, σ⃗ is the 2× 2 Pauli matrix, χm the Pauli spinor, R0 the bag radius, x̂ = x⃗/|x⃗|, and ji, are spherical Bessel
functions. Taking the Fourier transformation, we have the momentum space wave function for the lowest mode,
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The two functions ti, i = 0, 1 are defined as
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From the above equations, we see that the bag model wave function Eq. (15) contains both S and P wave components.
Especially, t0 represents the S-wave component, whereas t1 represents the P -wave component of the proton wave
functions.
With the above wave functions, we can calculate all quark TMDs. For convenience we define the constant A, which

will be common to all TMDs, and the momenta kz and k as
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where MN is the proton mass, and the bag radius is fixed such that R0MN = 4ω. Moreover, we assume SU(6)
spin-flavor symmetry of the proton wave function, such that spin-independent TMDs of definite flavor are given in
terms of respective ’flavor-less’ expressions multiplied by a ’flavor factor’ Nq, and spin-dependent TMDs of definite
flavor follow from multiplying the respective ’flavor-less’ expressions by a ’spin-flavor factor’ Pq with
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4

3
, Pd = −
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3
. (19)

We recall that in the quark model formulated for a general (odd) number of colors Nc, these flavor factors are given
by Nu = (Nc + 1)/2 and Nd = (Nc − 1)/2 while Pu = (Nc + 5)/6 and Pd = (−Nc + 1)/6 [107].
We mention that the MIT bag model gives rise also to antiquark distributions, but to unphysical ones, since
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where MN is the proton mass, and the bag radius is fixed such that R0MN = 4ω. Moreover, we assume SU(6)
spin-flavor symmetry of the proton wave function, such that spin-independent TMDs of definite flavor are given in
terms of respective ’flavor-less’ expressions multiplied by a ’flavor factor’ Nq, and spin-dependent TMDs of definite
flavor follow from multiplying the respective ’flavor-less’ expressions by a ’spin-flavor factor’ Pq with
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We recall that in the quark model formulated for a general (odd) number of colors Nc, these flavor factors are given
by Nu = (Nc + 1)/2 and Nd = (Nc − 1)/2 while Pu = (Nc + 5)/6 and Pd = (−Nc + 1)/6 [107].
We mention that the MIT bag model gives rise also to antiquark distributions, but to unphysical ones, since

f q̄
1 (x) < 0, which violates positivity. The TMDs receive non-vanishing support also from the regions |x| ≥ 1. Though
non-physical these contributions must be included when evaluating sum rules like

∫
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1 (x) = Nq or the momentum
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∑
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1 (x) = 1, i.e. sum rules are satisfied only when integrating over the whole x-axis.
In literature it was discussed how to deal with these caveats, see for example [108]. In this work, we limit ourselves

to the discussion of quark TMDs at 0 ≤ x ≤ 1, which should not be confused with ’valence distributions’, for example
f q
1 val(x) = f q

1 (x) − f q̄
1 (x). When discussing sum rules, however, integration over the whole x-axis is implied.

Since there are no explicit gluon degrees of freedom, T-odd TMDs vanish in this model [91]. In principle, one can
simulate the effect of the gauge link, which is crucial in QCD for T-odd effects [22–24], for example by introducing
’one-gluon-exchange’ [91, 92] or invoking instanton effects [93]. In this work we shall not consider such extensions of
the bag model, and restrict ourselves to the description of T-even distributions.
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We recall that in the quark model formulated for a general (odd) number of colors Nc, these flavor factors are given
by Nu = (Nc + 1)/2 and Nd = (Nc − 1)/2 while Pu = (Nc + 5)/6 and Pd = (−Nc + 1)/6 [107].
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’one-gluon-exchange’ [91, 92] or invoking instanton effects [93]. In this work we shall not consider such extensions of
the bag model, and restrict ourselves to the description of T-even distributions.
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ij0(
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R0

)χm

−σ⃗ · x̂ j1(
ωn,−1|x⃗|

R0
)χm
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For the lowest mode, we have n = 1, κ = −1, and ω1,−1 ≈ 2.04 denoted as ω ≡ ω1,−1 in the following. In the above
equation, σ⃗ is the 2× 2 Pauli matrix, χm the Pauli spinor, R0 the bag radius, x̂ = x⃗/|x⃗|, and ji, are spherical Bessel
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N =
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ω3

2R3
0(ω − 1) sin2 ω

)1/2

. (16)

The two functions ti, i = 0, 1 are defined as

ti(k) =

1∫

0

u2duji(ukR0)ji(uω) . (17)

From the above equations, we see that the bag model wave function Eq. (15) contains both S and P wave components.
Especially, t0 represents the S-wave component, whereas t1 represents the P -wave component of the proton wave
functions.
With the above wave functions, we can calculate all quark TMDs. For convenience we define the constant A, which

will be common to all TMDs, and the momenta kz and k as
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2
N

, k =
√
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kz
k
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MN

k
, (18)

where MN is the proton mass, and the bag radius is fixed such that R0MN = 4ω. Moreover, we assume SU(6)
spin-flavor symmetry of the proton wave function, such that spin-independent TMDs of definite flavor are given in
terms of respective ’flavor-less’ expressions multiplied by a ’flavor factor’ Nq, and spin-dependent TMDs of definite
flavor follow from multiplying the respective ’flavor-less’ expressions by a ’spin-flavor factor’ Pq with

Nu = 2 , Nd = 1 , Pu =
4

3
, Pd = −

1

3
. (19)

We recall that in the quark model formulated for a general (odd) number of colors Nc, these flavor factors are given
by Nu = (Nc + 1)/2 and Nd = (Nc − 1)/2 while Pu = (Nc + 5)/6 and Pd = (−Nc + 1)/6 [107].
We mention that the MIT bag model gives rise also to antiquark distributions, but to unphysical ones, since

f q̄
1 (x) < 0, which violates positivity. The TMDs receive non-vanishing support also from the regions |x| ≥ 1. Though
non-physical these contributions must be included when evaluating sum rules like

∫
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1 (x) = Nq or the momentum
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∑
q

∫
dxxf q

1 (x) = 1, i.e. sum rules are satisfied only when integrating over the whole x-axis.
In literature it was discussed how to deal with these caveats, see for example [108]. In this work, we limit ourselves

to the discussion of quark TMDs at 0 ≤ x ≤ 1, which should not be confused with ’valence distributions’, for example
f q
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A. Results for TMDs in the bag model

In the notation introduced above, the results for the T-even leading twist TMDs are given by

f q
1 (x, k⊥) = NqA

[
t20 + 2k̂z t0t1 + t21

]
(20)

gq1(x, k⊥) = Pq A

[
t20 + 2k̂z t0t1 + (2k̂2z − 1) t21

]
(21)

hq
1(x, k⊥) = Pq A

[
t20 + 2k̂z t0t1 + k̂2z t

2
1

]
(22)

g⊥q
1T (x, k⊥) = Pq A

[
2M̂N(t0t1 + k̂z t

2
1)

]
(23)

h⊥q
1L(x, k⊥) = Pq A

[
−2M̂N(t0t1 + k̂z t

2
1)

]
(24)

h⊥q
1T (x, k⊥) = Pq A

[
−2M̂ 2

N t21

]
(25)

and for the subleading twist TMDs we obtain

eq(x, k⊥) = NqA

[
t20 − t21

]
(26)

f⊥q(x, k⊥) = NqA

[
2M̂N t0t1

]
(27)

gqT (x, k⊥) = Pq A

[
t20 − k̂2z t

2
1

]
(28)

g⊥q
L (x, k⊥) = Pq A

[
2M̂N k̂z t

2
1

]
(29)

g⊥q
T (x, k⊥) = Pq A

[
2M̂2

N t21

]
(30)

hq
L(x, k⊥) = Pq A

[
t20 + (1− 2k̂2z)t

2
1

]
(31)

h⊥q
T (x, k⊥) = Pq A

[
2M̂N t0t1

]
(32)

hq
T (x, k⊥) = Pq A

[
−2M̂N k̂z t

2
1

]
(33)

In the following Sections we shall discuss these results in detail.
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5

III. EQUALITIES AND INEQUALITIES AMONG TMDS

In QCD all TMDs are independent functions. But in quark models, due to absence of gauge field degrees of freedom,
certain relations among different TMDs appear which must be satisfied in any consistent relativistic quark model.
We discuss these “model-independent” quark-model relations in Sec. III A. Of course, depending on a quark model
further relations may appear, and the bag model results (20-33) provide a nice illustration why this happens which is
demonstrated in Secs. III B and III C in detail. In Sec. III D we compare to results from other models. This comparison
helps to establish to which extent which relations might be expected to be useful in nature. Sec. III E is devoted to
the discussion of one particular relation.

A. Relations valid in all quark models

Certain relations among TMDs must be valid in any quark model of the nucleon lacking gluon degrees of freedom
[100]. In such “no-gluon models” the absence of the Wilson-link implies that in the general Lorentz-decomposition of
the unintegrated quark-correlator certain amplitudes do not appear, namely the Bi-amplitudes (i = 1, 2, . . . 20) in
the notation of [28]. This gives rise to the following relations [17, 100]

gT (x)
LIR
= g1(x) +

d

dx
g⊥(1)
1T (x) , (34)

hL(x)
LIR
= h1(x)−

d

dx
h⊥(1)
1L (x) , (35)

hT (x)
LIR
= −

d

dx
h⊥(1)
1T (x) , (36)

g⊥L (x) +
d

dx
g⊥(1)
T (x)

LIR
= 0 , (37)

hT (x, pT )− h⊥
T (x, pT )

LIR
= h⊥

1L(x, pT ) , (38)

which must hold in any consistent relativistic quark model. These so-called “Lorentz-invariance relations” (LIRs)
are not valid in models with gauge field degrees of freedom [95] and in QCD [96]. The applications of LIRs in
phenomenology were discussed in [99, 100]. There it was also shown, by exploring QCD equations of motion, that
some LIRs hold in an approximation consisting of the neglect of quark-gluon-quark-correlator and current quark mass
terms. Whether such an approximation is is justified in nature is, of course, a different question. For discussions of
specific cases see [98–101, 109–113]. For quark model calculations, the practical application of the relations (34–38)
is immediate: they provide a valuable cross check for the numerical results.
In App. A we provide analytical proofs that the LIRs (34–38) are satisfied in the bag model. We also checked that

the numerical results satisfy the LIRs, which provides a welcome cross-check for the numerical calculation.
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B. Linear relations in bag model

In the bag model, there are 9 linear relations among the 14 (twist-2 and 3) T-even TMDs, which can be written as
follows

Dq f q
1 (x, k⊥) + gq1(x, k⊥) = 2hq

1(x, k⊥) (39)

Dq eq(x, k⊥) + hq
L(x, k⊥) = 2gqT (x, k⊥) (40)

Dq f⊥q(x, k⊥) = h⊥q
T (x, k⊥) (41)

g⊥q
1T (x, k⊥) = − h⊥q

1L(x, k⊥) (42)

g⊥q
T (x, k⊥) = − h⊥q

1T (x, k⊥) (43)

g⊥q
L (x, k⊥) = − hq

T (x, k⊥) (44)

gq1(x, k⊥)− hq
1(x, k⊥) = h⊥(1)q

1T (x, k⊥) (45)

gqT (x, k⊥)− hq
L(x, k⊥) = h⊥(1)q

1T (x, k⊥) (46)

hq
T (x, k⊥)− h⊥q

T (x, k⊥) = h⊥q
1L (x, k⊥) (47)

where the ’dilution factor’ is defined as

Dq =
Pq

Nq
. (48)

In the relations (45, 46) some TMDs need to be multiplied by the model-independent factor k2⊥/(2M
2
N), which is

a ‘legitimate linear operation’ in our context (the meaning of that will be explained shortly). The ’(unintegrated)
transverse moments’ are defined in Eq. (11).
Why are there 9 linear relations? In fact, naively, one could have expected even more relations, since all TMDs are

expressed in terms of only two functions, t0 and t1 representing the contributions from the S and P-wave components
of the proton wave function, Eqs. (15, 17). However, having linear relations in mind, the combinations t20, t0t1, t

2
1

are to be considered as independent structures. But there are more independent structures than that. By inspecting
Eqs. (20-33) we see that the actual number of linearly independent structures in the TMDs is 5, namely

I. t20

II. k̂z t0t1

III. t21, k̂
2
z t

2
1

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

↔
{

f q
1 , g

q
1, h

q
1, h

⊥q
1T (twist 2)

eq, gqT , h
q
L, g

⊥q
T (twist 3)

⇒ relations (39, 40, 43, 45, 46)

IV. t0t1

V. k̂z t
2
1

⎫
⎬

⎭↔
{

g⊥q
1T , h

⊥q
1L (twist 2)

f⊥q, g⊥q
L , h⊥q

T , hq
T (twist 3)

⇒ relations (41, 42, 44, 47)

(49)

where we show respectively to which TMDs the different structures contribute. We observe that in some sense there
are two ’disconnected subspaces’: one is due to the structures I, II, III, and the other due to the structures IV, V.
The structures II and IV, k̂zt0t1 and t0t1, are linearly independent, as there is no way of relating one with the other

in a model-independent way. Indeed, in order to do this, one should multiply a TMD by a factor including kz which
explicitly depends on parameters of the bag model, as is evident from Eq. (18), and we discard such a manipulation
as a model-dependent operation. For the same reason the structures in III and V are linearly independent.
But k̂2zt

2
1 and t21 in point III are linearly dependent: if we multiply t21 (actually in relevant expressions M̂2

N t21 appears)

by the model-independent factor k2⊥/M
2
N and add k̂2z t

2
1 we obtain just t21 which happens in Eqs. (45, 46). Clearly, the

multiplication of TMDs by k2⊥/(2M
2
N) is a model-independent manipulation leading to transverse moments in (11).

To summarize, there are 5 linearly independent structures in the bag model and 14 T-even TMDs. This implies
9 linear relations, and Eqs. (39–47) represent one way of writing these relations. These findings mean that one can
choose, in the bag model, a basis of 5 linearly independent TMDs, and construct the other TMDs from this basis.
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B. Linear relations in bag model

In the bag model, there are 9 linear relations among the 14 (twist-2 and 3) T-even TMDs, which can be written as
follows

Dq f q
1 (x, k⊥) + gq1(x, k⊥) = 2hq

1(x, k⊥) (39)

Dq eq(x, k⊥) + hq
L(x, k⊥) = 2gqT (x, k⊥) (40)

Dq f⊥q(x, k⊥) = h⊥q
T (x, k⊥) (41)

g⊥q
1T (x, k⊥) = − h⊥q

1L(x, k⊥) (42)

g⊥q
T (x, k⊥) = − h⊥q

1T (x, k⊥) (43)

g⊥q
L (x, k⊥) = − hq

T (x, k⊥) (44)

gq1(x, k⊥)− hq
1(x, k⊥) = h⊥(1)q

1T (x, k⊥) (45)

gqT (x, k⊥)− hq
L(x, k⊥) = h⊥(1)q

1T (x, k⊥) (46)

hq
T (x, k⊥)− h⊥q

T (x, k⊥) = h⊥q
1L (x, k⊥) (47)

where the ’dilution factor’ is defined as

Dq =
Pq

Nq
. (48)

In the relations (45, 46) some TMDs need to be multiplied by the model-independent factor k2⊥/(2M
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a ‘legitimate linear operation’ in our context (the meaning of that will be explained shortly). The ’(unintegrated)
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where we show respectively to which TMDs the different structures contribute. We observe that in some sense there
are two ’disconnected subspaces’: one is due to the structures I, II, III, and the other due to the structures IV, V.
The structures II and IV, k̂zt0t1 and t0t1, are linearly independent, as there is no way of relating one with the other

in a model-independent way. Indeed, in order to do this, one should multiply a TMD by a factor including kz which
explicitly depends on parameters of the bag model, as is evident from Eq. (18), and we discard such a manipulation
as a model-dependent operation. For the same reason the structures in III and V are linearly independent.
But k̂2zt
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1 and t21 in point III are linearly dependent: if we multiply t21 (actually in relevant expressions M̂2

N t21 appears)

by the model-independent factor k2⊥/M
2
N and add k̂2z t

2
1 we obtain just t21 which happens in Eqs. (45, 46). Clearly, the

multiplication of TMDs by k2⊥/(2M
2
N) is a model-independent manipulation leading to transverse moments in (11).

To summarize, there are 5 linearly independent structures in the bag model and 14 T-even TMDs. This implies
9 linear relations, and Eqs. (39–47) represent one way of writing these relations. These findings mean that one can
choose, in the bag model, a basis of 5 linearly independent TMDs, and construct the other TMDs from this basis.

Dilution factor
9

E. A special linear relation among collinear functions

By taking linear combinations of (39–47) one can obtain many more linear relations. It is worth to discuss in some
more detail one particularly interesting relation, which can be obtained in this way. By eliminating the transverse
moment of the pretzelosity distribution from Eqs. (45, 46), and integrating over transverse momenta, we obtain

gq1(x) − hq
1(x) = gqT (x) − hq

L(x) . (53)

This relation holds also in its unintegrated form. There are several reasons, why this relation is interesting.
First, it involves only collinear parton distribution functions, which is the only relation of such type in bag model.

(Actually (39, 40) are also of such type, but they include the ’dilution factor’ and are supported only in models with
simplest spin-flavor structures, see Sec. III D.) The QCD evolution equation for all these functions are known, and
they are different, which shows the limitation of this relation: even if for some reason (53) was valid in QCD at a
certain renormalization scale µ0, it would break down at any other scale µ ̸= µ0. This is by no means surprising, and
we expect such limitations for all model relations.
Second, for the first Mellin moment this relation is valid model-independently. Hereby we strictly speaking presume

the validity of the Burkardt-Cottingham sum rule, which is equivalent to the statement
∫
dx gqT (x) =

∫
dx gq1(x), and

an analog sum rule for hq
L(x) and hq

1(x). In QCD there are doubts especially concerning the validity of the Burkardt-
Cottingham sum rule. However, it is valid in many models such as bag [103] or chiral quark soliton model [118].
Third, though it certainly is not exact in QCD, it would be interesting to learn whether (53) is satisfied in nature

approximately. Also this relation can be tested on the lattice, especially for low Mellin moments and in the flavour
non-singlet case. Lattice QCD calculations for Mellin moments of gqT (x) were reported in [112].
Forth, the relation (53) can be tested in models where collinear parton distribution functions were studied. Some

results can be found in literature. For example, calculations of parton distribution functions in bag models [103, 115]
support this relation (the bag model version of [103] coincides with the one used here). Moreover, the spectator
model [79] supports this relation: it is equivalent to gq2(x) =

1
2h

q
2(x) in the notation of [79], and also the unintegrated

version of (53) is valid there. One counter-example is known though: the chiral quark-soliton model does not support
this relation [118, 126]. This observation could provide a hint in which models (53) is valid. The models where
(53) holds include only the components in the nucleon wave-function with the quark orbital angular momenta up to
L = 0, 1, 2 at most. The chiral quark soliton model, which does not support (53), contains all quark angular momenta
L = 0, 1, 2, 3, 4, . . . but this point deserves further investigation.
Fifth, an important aspect of model relations is that they inspire interpretations. The relation (53) means that the

difference between gqT and hq
L is to the same extent a ’measure of relativistic effects in the nucleon’ as the difference

between helicity and transversity [103]. Both these differences are related to the transverse moment of pretzelosity,
see Eqs. (45, 46) and [80].

F. Inequalities

Finally, we discuss inequalities among leading twist TMDs, which are valid in QCD and all models [21]

f q
1 (x, k⊥) ≥ 0 , |gq1(x, k⊥)| ≤ f q

1 (x, k⊥) , |hq
1(x, k⊥)| ≤ f q

1 (x, k⊥) , (54)

|hq
1(x, k⊥)| ≤

1

2

(
f q
1 (x, k⊥) + gq1(x, k⊥)

)
, (55)

|h⊥q
1T (x, k⊥)| ≤

1

2

(
f q
1 (x, k⊥)− gq1(x, k⊥)

)
, (56)

g⊥(1)q
1T (x, k⊥)

2 + f⊥(1)q
1T (x, k⊥)

2 ≤
k2⊥

4M2
N

(
f q
1 (x, k⊥)

2 − gq1(x, k⊥)
2

)
, (57)

h⊥(1)q
1L (x, k⊥)

2 + h⊥(1)q
1 (x, k⊥)

2 ≤
k2⊥

4M2
N

(
f q
1 (x, k⊥)

2 − gq1(x, k⊥)
2

)
, (58)

where we have to keep in mind that in the present quark model framework the inequalities simplify, due the absence
of the T-odd TMDs f⊥q

1T and h⊥q
1 . In App. B we demonstrate explicitly that the bag model expressions for the

quark TMDs satisfy (54–58). It is interesting to remark that for the nucleon, except for f q
1 (x, k⊥) ≥ 0, all the other

inequalities in (54–58) are ’true’ (i.e. never saturated) inequalities, see App. B for a detailed discussion.

Highlighted relation:

Ø Involves only collinear PDFs
Ø For the1st Mellin moments,

this relation is valid model independently
Ø Useful to compare OAM from different

models which satisfy this relation

https://arxiv.org/abs/1001.5467
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IV. PRETZELOSITY AND QUARK ORBITAL ANGULAR MOMENTUM

In quark models, in contrast to gauge theories, one may unambiguously define the quark orbital angular momentum
operator as L̂i

q = ψ̄qεiklr̂k p̂lψq where for clarity the ’hat’ indicates a quantum operator. This definition follows (in the
absence of gauge fields) uniquely, for instance, from identifying that part of the generator of rotations not associated
with the intrinsic quark spin. For the following it will be convenient to introduce a ’non-local version’ of this operator,
by defining (keep in mind that we work in non-gauge theory)

L̂i
q(0, z) = ψ̄q(0)ε

iklr̂k p̂lψq(z) . (59)

In the bag model it is convenient to work in momentum space where r̂k = i ∂
∂pk and p̂l = pl. Next let us define, in

analogy to Eq. (1) the following quantity

Lj
q(x, pT ) =

∫
dz−d2z⃗T
(2π)3

eipz ⟨N(P, S3)|L̂i
q(0, z)|N(P, S3)⟩

∣∣∣∣
z+=0, p+=xP+

. (60)

In order to find a connection to TMDs we must consider a longitudinally polarized nucleon, choosing the polarization
vector as S = (0, 0, 1) for definiteness, and we must focus on the j = 3 component in (60), i.e. on the component of
the angular momentum operator along the light-cone space-direction. This is because the transverse momenta p⃗T of
the quarks generate orbital angular momentum which is oriented perpendicular to p⃗T (and to the transverse position
of quarks inside the nucleon, which can be quantified rigorously in the impact parameter space in terms of generalized
parton distribution functions, but we do not need this notion here).
In a quark model, where the ambiguities of gauge field theories are absent, the partonic interpretation of (60) is

the following. For example, in a longitudinally polarized nucleon L3
q(x, pT )d

2p⃗Tdx tells how much the orbital angular
momentum of a quark of flavour q, which carries the longitudinal momentum fraction x and the transverse momentum
pT = |p⃗T |, contributes to the nucleon spin. (In QCD such an interpretation for the light-cone plus-component L+

q
would also be possible, in an appropriately fixed gauge.)
Evaluating the expression (60) in the bag model we obtain

L3
q(x, pT ) = (− 1)h⊥(1)q

1T (x, pT ) . (61)

In order to demonstrate the consistency of this result we compute the contribution to the total angular momentum
of the nucleon J3

q due to flavour q. J3
q is composed of contributions from intrinsic quark spin, S3

q = 1
2

∫
dxgq1(x), and

quark orbital angular momentum L3
q =

∫
dx
∫
d2p⃗TL3

q(x, pT ). We obtain

2J3
q =

∫
dx

∫
d2k⊥

[
gq1(x, k⊥)− 2 h⊥(1)q

1T (x, k⊥)

]

= Pq
A

MN

∫
d3k

[
t20 + 2k̂z t0t1 + (2k̂2z − 1 + 2

k2⊥
k2

) t21

]

= Pq
A

MN

∫
d3k
[
t20 + t21

]

= Pq (62)

where we first substituted x → kz ≡ xMN − ω/R (recalling that x-integration is carried over entire x-axis, Sec. II),

then used that under the integral over d3k for symmetry reasons k̂z = kz/k drops out while k2z → 1
3 k

2 and k2⊥ → 2
3 k

2,
and finally observed the same integral which appears in the normalization of the unpolarized distribution.
Eq. (62) is the correct SU(6) quark model result for the contributions of various flavours to the total nucleon spin.

Notice that J3
u + J3

d = 1
2 . This confirms that the connection of pretzelosity and the quark orbital angular momentum

content of the nucleon is consistent. Thus, our results, supported by the light-cone SU(6) quark-diquark model [84],
suggest that

L3
q = (− 1)

∫
dx h⊥(1)q

1T (x) . (63)

It is important to observe that the relation of pretzelosity and orbital angular momentum, Eqs. (61) and (63), is at the
level of matrix elements of operators, and there is no a priori operator identity which would make such a connection.

In the absence of gauge-fields:
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IV. PRETZELOSITY AND QUARK ORBITAL ANGULAR MOMENTUM

In quark models, in contrast to gauge theories, one may unambiguously define the quark orbital angular momentum
operator as L̂i

q = ψ̄qεiklr̂k p̂lψq where for clarity the ’hat’ indicates a quantum operator. This definition follows (in the
absence of gauge fields) uniquely, for instance, from identifying that part of the generator of rotations not associated
with the intrinsic quark spin. For the following it will be convenient to introduce a ’non-local version’ of this operator,
by defining (keep in mind that we work in non-gauge theory)

L̂i
q(0, z) = ψ̄q(0)ε

iklr̂k p̂lψq(z) . (59)

In the bag model it is convenient to work in momentum space where r̂k = i ∂
∂pk and p̂l = pl. Next let us define, in

analogy to Eq. (1) the following quantity

Lj
q(x, pT ) =

∫
dz−d2z⃗T
(2π)3

eipz ⟨N(P, S3)|L̂i
q(0, z)|N(P, S3)⟩
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z+=0, p+=xP+

. (60)

In order to find a connection to TMDs we must consider a longitudinally polarized nucleon, choosing the polarization
vector as S = (0, 0, 1) for definiteness, and we must focus on the j = 3 component in (60), i.e. on the component of
the angular momentum operator along the light-cone space-direction. This is because the transverse momenta p⃗T of
the quarks generate orbital angular momentum which is oriented perpendicular to p⃗T (and to the transverse position
of quarks inside the nucleon, which can be quantified rigorously in the impact parameter space in terms of generalized
parton distribution functions, but we do not need this notion here).
In a quark model, where the ambiguities of gauge field theories are absent, the partonic interpretation of (60) is

the following. For example, in a longitudinally polarized nucleon L3
q(x, pT )d

2p⃗Tdx tells how much the orbital angular
momentum of a quark of flavour q, which carries the longitudinal momentum fraction x and the transverse momentum
pT = |p⃗T |, contributes to the nucleon spin. (In QCD such an interpretation for the light-cone plus-component L+

q
would also be possible, in an appropriately fixed gauge.)
Evaluating the expression (60) in the bag model we obtain

L3
q(x, pT ) = (− 1)h⊥(1)q

1T (x, pT ) . (61)

In order to demonstrate the consistency of this result we compute the contribution to the total angular momentum
of the nucleon J3

q due to flavour q. J3
q is composed of contributions from intrinsic quark spin, S3

q = 1
2

∫
dxgq1(x), and

quark orbital angular momentum L3
q =

∫
dx
∫
d2p⃗TL3

q(x, pT ). We obtain

2J3
q =

∫
dx

∫
d2k⊥

[
gq1(x, k⊥)− 2 h⊥(1)q

1T (x, k⊥)

]
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A

MN

∫
d3k

[
t20 + 2k̂z t0t1 + (2k̂2z − 1 + 2

k2⊥
k2

) t21

]

= Pq
A

MN

∫
d3k
[
t20 + t21

]

= Pq (62)

where we first substituted x → kz ≡ xMN − ω/R (recalling that x-integration is carried over entire x-axis, Sec. II),

then used that under the integral over d3k for symmetry reasons k̂z = kz/k drops out while k2z → 1
3 k

2 and k2⊥ → 2
3 k

2,
and finally observed the same integral which appears in the normalization of the unpolarized distribution.
Eq. (62) is the correct SU(6) quark model result for the contributions of various flavours to the total nucleon spin.

Notice that J3
u + J3

d = 1
2 . This confirms that the connection of pretzelosity and the quark orbital angular momentum

content of the nucleon is consistent. Thus, our results, supported by the light-cone SU(6) quark-diquark model [84],
suggest that

L3
q = (− 1)

∫
dx h⊥(1)q

1T (x) . (63)

It is important to observe that the relation of pretzelosity and orbital angular momentum, Eqs. (61) and (63), is at the
level of matrix elements of operators, and there is no a priori operator identity which would make such a connection.
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In order to find a connection to TMDs we must consider a longitudinally polarized nucleon, choosing the polarization
vector as S = (0, 0, 1) for definiteness, and we must focus on the j = 3 component in (60), i.e. on the component of
the angular momentum operator along the light-cone space-direction. This is because the transverse momenta p⃗T of
the quarks generate orbital angular momentum which is oriented perpendicular to p⃗T (and to the transverse position
of quarks inside the nucleon, which can be quantified rigorously in the impact parameter space in terms of generalized
parton distribution functions, but we do not need this notion here).
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q(x, pT )d

2p⃗Tdx tells how much the orbital angular
momentum of a quark of flavour q, which carries the longitudinal momentum fraction x and the transverse momentum
pT = |p⃗T |, contributes to the nucleon spin. (In QCD such an interpretation for the light-cone plus-component L+

q
would also be possible, in an appropriately fixed gauge.)
Evaluating the expression (60) in the bag model we obtain

L3
q(x, pT ) = (− 1)h⊥(1)q
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In order to demonstrate the consistency of this result we compute the contribution to the total angular momentum
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∫
dxgq1(x), and

quark orbital angular momentum L3
q =

∫
dx
∫
d2p⃗TL3

q(x, pT ). We obtain
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where we first substituted x → kz ≡ xMN − ω/R (recalling that x-integration is carried over entire x-axis, Sec. II),

then used that under the integral over d3k for symmetry reasons k̂z = kz/k drops out while k2z → 1
3 k
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2,
and finally observed the same integral which appears in the normalization of the unpolarized distribution.
Eq. (62) is the correct SU(6) quark model result for the contributions of various flavours to the total nucleon spin.

Notice that J3
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d = 1
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content of the nucleon is consistent. Thus, our results, supported by the light-cone SU(6) quark-diquark model [84],
suggest that
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It is important to observe that the relation of pretzelosity and orbital angular momentum, Eqs. (61) and (63), is at the
level of matrix elements of operators, and there is no a priori operator identity which would make such a connection.

In a longitudinally polarized nucleon,
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IV. PRETZELOSITY AND QUARK ORBITAL ANGULAR MOMENTUM
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In the bag model it is convenient to work in momentum space where r̂k = i ∂
∂pk and p̂l = pl. Next let us define, in
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vector as S = (0, 0, 1) for definiteness, and we must focus on the j = 3 component in (60), i.e. on the component of
the angular momentum operator along the light-cone space-direction. This is because the transverse momenta p⃗T of
the quarks generate orbital angular momentum which is oriented perpendicular to p⃗T (and to the transverse position
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momentum of a quark of flavour q, which carries the longitudinal momentum fraction x and the transverse momentum
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q
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In order to demonstrate the consistency of this result we compute the contribution to the total angular momentum
of the nucleon J3

q due to flavour q. J3
q is composed of contributions from intrinsic quark spin, S3

q = 1
2

∫
dxgq1(x), and

quark orbital angular momentum L3
q =

∫
dx
∫
d2p⃗TL3

q(x, pT ). We obtain

2J3
q =

∫
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∫
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A
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∫
d3k
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]

= Pq (62)

where we first substituted x → kz ≡ xMN − ω/R (recalling that x-integration is carried over entire x-axis, Sec. II),

then used that under the integral over d3k for symmetry reasons k̂z = kz/k drops out while k2z → 1
3 k

2 and k2⊥ → 2
3 k

2,
and finally observed the same integral which appears in the normalization of the unpolarized distribution.
Eq. (62) is the correct SU(6) quark model result for the contributions of various flavours to the total nucleon spin.

Notice that J3
u + J3

d = 1
2 . This confirms that the connection of pretzelosity and the quark orbital angular momentum

content of the nucleon is consistent. Thus, our results, supported by the light-cone SU(6) quark-diquark model [84],
suggest that

L3
q = (− 1)

∫
dx h⊥(1)q

1T (x) . (63)

It is important to observe that the relation of pretzelosity and orbital angular momentum, Eqs. (61) and (63), is at the
level of matrix elements of operators, and there is no a priori operator identity which would make such a connection.
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Eq. (62) is the correct SU(6) quark model result for the contributions of various flavours to the total nucleon spin.

Notice that J3
u + J3

d = 1
2 . This confirms that the connection of pretzelosity and the quark orbital angular momentum

content of the nucleon is consistent. Thus, our results, supported by the light-cone SU(6) quark-diquark model [84],
suggest that

L3
q = (− 1)

∫
dx h⊥(1)q

1T (x) . (63)

It is important to observe that the relation of pretzelosity and orbital angular momentum, Eqs. (61) and (63), is at the
level of matrix elements of operators, and there is no a priori operator identity which would make such a connection.

https://arxiv.org/abs/1001.5467

The following quantity is defined following the general definition of matrix element(s)
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vector as S = (0, 0, 1) for definiteness, and we must focus on the j = 3 component in (60), i.e. on the component of
the angular momentum operator along the light-cone space-direction. This is because the transverse momenta p⃗T of
the quarks generate orbital angular momentum which is oriented perpendicular to p⃗T (and to the transverse position
of quarks inside the nucleon, which can be quantified rigorously in the impact parameter space in terms of generalized
parton distribution functions, but we do not need this notion here).
In a quark model, where the ambiguities of gauge field theories are absent, the partonic interpretation of (60) is

the following. For example, in a longitudinally polarized nucleon L3
q(x, pT )d

2p⃗Tdx tells how much the orbital angular
momentum of a quark of flavour q, which carries the longitudinal momentum fraction x and the transverse momentum
pT = |p⃗T |, contributes to the nucleon spin. (In QCD such an interpretation for the light-cone plus-component L+

q
would also be possible, in an appropriately fixed gauge.)
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and finally observed the same integral which appears in the normalization of the unpolarized distribution.
Eq. (62) is the correct SU(6) quark model result for the contributions of various flavours to the total nucleon spin.

Notice that J3
u + J3

d = 1
2 . This confirms that the connection of pretzelosity and the quark orbital angular momentum

content of the nucleon is consistent. Thus, our results, supported by the light-cone SU(6) quark-diquark model [84],
suggest that
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It is important to observe that the relation of pretzelosity and orbital angular momentum, Eqs. (61) and (63), is at the
level of matrix elements of operators, and there is no a priori operator identity which would make such a connection.

3

II. TMDS IN THE BAG MODEL

In the MIT bag model, the quark field has the following general form [104–106],

Ψα(x⃗, t) =
∑

n>0,κ=±1,m=±1/2

N(nκ){bα(nκm)ψnκjm(x⃗, t) + d†α(nκm)ψ−n−κjm(x⃗, t)} , (13)

where b†α and d†α create quark and anti-quark excitations in the bag with the wave functions

ψn,−1, 1
2
m(x⃗, t) =

1√
4π

(
ij0(

ωn,−1|x⃗|
R0

)χm

−σ⃗ · x̂ j1(
ωn,−1|x⃗|

R0
)χm

)
e−iωn,−1t/R0 . (14)

For the lowest mode, we have n = 1, κ = −1, and ω1,−1 ≈ 2.04 denoted as ω ≡ ω1,−1 in the following. In the above
equation, σ⃗ is the 2× 2 Pauli matrix, χm the Pauli spinor, R0 the bag radius, x̂ = x⃗/|x⃗|, and ji, are spherical Bessel
functions. Taking the Fourier transformation, we have the momentum space wave function for the lowest mode,

ϕm(k⃗) = i
√
4πNR3

0

(
t0(k)χm

σ⃗ · k̂ t1(k)χm

)
, (15)

where k̂ = k⃗/k with k = |⃗k| and the normalization factor N is,

N =

(
ω3

2R3
0(ω − 1) sin2 ω

)1/2

. (16)

The two functions ti, i = 0, 1 are defined as

ti(k) =

1∫

0

u2duji(ukR0)ji(uω) . (17)

From the above equations, we see that the bag model wave function Eq. (15) contains both S and P wave components.
Especially, t0 represents the S-wave component, whereas t1 represents the P -wave component of the proton wave
functions.
With the above wave functions, we can calculate all quark TMDs. For convenience we define the constant A, which

will be common to all TMDs, and the momenta kz and k as

A =
16ω4

π2(ω − 1)j20(ω)M
2
N

, k =
√
k2z + k2⊥ , kz = xMN − ω/R0 , k̂z =

kz
k

, M̂N =
MN

k
, (18)

where MN is the proton mass, and the bag radius is fixed such that R0MN = 4ω. Moreover, we assume SU(6)
spin-flavor symmetry of the proton wave function, such that spin-independent TMDs of definite flavor are given in
terms of respective ’flavor-less’ expressions multiplied by a ’flavor factor’ Nq, and spin-dependent TMDs of definite
flavor follow from multiplying the respective ’flavor-less’ expressions by a ’spin-flavor factor’ Pq with

Nu = 2 , Nd = 1 , Pu =
4

3
, Pd = −

1

3
. (19)

We recall that in the quark model formulated for a general (odd) number of colors Nc, these flavor factors are given
by Nu = (Nc + 1)/2 and Nd = (Nc − 1)/2 while Pu = (Nc + 5)/6 and Pd = (−Nc + 1)/6 [107].
We mention that the MIT bag model gives rise also to antiquark distributions, but to unphysical ones, since

f q̄
1 (x) < 0, which violates positivity. The TMDs receive non-vanishing support also from the regions |x| ≥ 1. Though
non-physical these contributions must be included when evaluating sum rules like

∫
dx f q

1 (x) = Nq or the momentum
sum rule

∑
q

∫
dxxf q

1 (x) = 1, i.e. sum rules are satisfied only when integrating over the whole x-axis.
In literature it was discussed how to deal with these caveats, see for example [108]. In this work, we limit ourselves

to the discussion of quark TMDs at 0 ≤ x ≤ 1, which should not be confused with ’valence distributions’, for example
f q
1 val(x) = f q

1 (x) − f q̄
1 (x). When discussing sum rules, however, integration over the whole x-axis is implied.

Since there are no explicit gluon degrees of freedom, T-odd TMDs vanish in this model [91]. In principle, one can
simulate the effect of the gauge link, which is crucial in QCD for T-odd effects [22–24], for example by introducing
’one-gluon-exchange’ [91, 92] or invoking instanton effects [93]. In this work we shall not consider such extensions of
the bag model, and restrict ourselves to the description of T-even distributions.
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In order to find a connection to TMDs we must consider a longitudinally polarized nucleon, choosing the polarization
vector as S = (0, 0, 1) for definiteness, and we must focus on the j = 3 component in (60), i.e. on the component of
the angular momentum operator along the light-cone space-direction. This is because the transverse momenta p⃗T of
the quarks generate orbital angular momentum which is oriented perpendicular to p⃗T (and to the transverse position
of quarks inside the nucleon, which can be quantified rigorously in the impact parameter space in terms of generalized
parton distribution functions, but we do not need this notion here).
In a quark model, where the ambiguities of gauge field theories are absent, the partonic interpretation of (60) is

the following. For example, in a longitudinally polarized nucleon L3
q(x, pT )d

2p⃗Tdx tells how much the orbital angular
momentum of a quark of flavour q, which carries the longitudinal momentum fraction x and the transverse momentum
pT = |p⃗T |, contributes to the nucleon spin. (In QCD such an interpretation for the light-cone plus-component L+

q
would also be possible, in an appropriately fixed gauge.)
Evaluating the expression (60) in the bag model we obtain

L3
q(x, pT ) = (− 1)h⊥(1)q

1T (x, pT ) . (61)

In order to demonstrate the consistency of this result we compute the contribution to the total angular momentum
of the nucleon J3

q due to flavour q. J3
q is composed of contributions from intrinsic quark spin, S3

q = 1
2

∫
dxgq1(x), and

quark orbital angular momentum L3
q =

∫
dx
∫
d2p⃗TL3

q(x, pT ). We obtain

2J3
q =

∫
dx

∫
d2k⊥

[
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where we first substituted x → kz ≡ xMN − ω/R (recalling that x-integration is carried over entire x-axis, Sec. II),

then used that under the integral over d3k for symmetry reasons k̂z = kz/k drops out while k2z → 1
3 k

2 and k2⊥ → 2
3 k

2,
and finally observed the same integral which appears in the normalization of the unpolarized distribution.
Eq. (62) is the correct SU(6) quark model result for the contributions of various flavours to the total nucleon spin.

Notice that J3
u + J3

d = 1
2 . This confirms that the connection of pretzelosity and the quark orbital angular momentum

content of the nucleon is consistent. Thus, our results, supported by the light-cone SU(6) quark-diquark model [84],
suggest that

L3
q = (− 1)

∫
dx h⊥(1)q

1T (x) . (63)

It is important to observe that the relation of pretzelosity and orbital angular momentum, Eqs. (61) and (63), is at the
level of matrix elements of operators, and there is no a priori operator identity which would make such a connection.

This supports SU(6) light-cone quark model result
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It is important to observe that the relation of pretzelosity and orbital angular momentum, Eqs. (61) and (63), is at the
level of matrix elements of operators, and there is no a priori operator identity which would make such a connection.

In the bag model for SU(6) symmetry,
for unpolarized TMDs the d-quark distributions are factor 2 smaller than the u-quark distributions. 
In the case of the polarized TMDs, the d-quark distributions are factor 4 smaller and have 
opposite sign compared to the u-quark distributions.

https://arxiv.org/abs/1001.5467
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V. NUMERICAL RESULTS

In this Section we discuss the numerical results for the TMDs. In Sec. VA we present the results for the integrated
TMDs as functions of x. In Sec. VB we focus on their k⊥-behaviour. Finally, in Sec. VC we investigate the question
whether the bag model results support the so-called Wandzura-Wilczek(-type) approximations.

A. Results for the integrated TMDs

As the flavour dependence governed by the spin-flavour SU(6) symmetry is trivial, we will show only results for the
u-flavor. For unpolarized TMDs the d-quark distributions are factor 2 smaller than the u-quark distributions. In the
case of the polarized TMDs, the d-quark distributions are factor 4 smaller and have opposite sign compared to the
u-quark distributions, according to Eq. (19). All results discussed below refer to the low scale of the bag model.
Let us start the discussion of the numerical results with unpolarized TMDs. Fig. 1a shows the twist-2 unpolarized

distribution function fu
1 (x), and the subleading twist functions f⊥u(x), eu(x). Only f⊥q(x) =

∫
d2k⊥f⊥q(x, k⊥) is

new in this figure. The remarkable observation is that f⊥q(x) is rather large, even larger than f q
1 (x) for x ! 0.7.

However, one has to keep in mind that there are no positivity bounds for twist-3 TMDs. Moreover, it is k⊥

M f⊥q(x, k⊥)
which enters in cross sections, and typically ⟨k⊥⟩ ≪ MN , which eventually guarantees positivity of cross sections. We
remark that QCD equations of motion [114] imply a δ(x)-contribution in eq(x), which is found in some [119, 120] but
not all effective approaches [79, 121], including the bag model, see [103, 115] and Fig. 1a.
Fig. 1b shows the polarized functions g⊥u

T (x), g⊥u
1T (x), hu

1 (x), g
u
1 (x). The TMDs h⊥a

1T (x) and h⊥a
1L (x) are simply

related to the shown TMDs according to h⊥a
1T (x) = −g⊥a

T (x) and h⊥a
1L (x) = −g⊥a

1T (x), such that the results for these
TMDs do not need to be shown. Also the results for d-quark distributions are not shown, as explained above. The
results for the TMDs g⊥a

T (x), g⊥a
1T (x), h⊥a

1L (x), h
⊥a
1T (x) are new, and it is interesting to observe that they are rather

sizable, but again there are no positivity constraints on these objects.
Fig. 1c shows the polarized functions g⊥u

L (x), g⊥u
T (x), hu

L(x), g
u
T (x). The TMD hu

T (x) is not shown, being related
to g⊥u

L (x) as hu
T (x) = −g⊥u

L (x). We see that h⊥u
T is rather sizable, it is even bigger than fu

1 (x) (the same scale is used
in Figs. 1a–c). Again there is no positivity constraint for this TMD, which would object this.
The large size of the integrated twist-2 TMDs g⊥a

1T (x), h⊥a
1L (x), h

⊥a
1T (x) can be understood qualitatively in the non-

relativistic limit which was formulated for an arbitrary number of colours Nc in [82], and can eventually be traced
back the convention of using the nucleon mass MN in order to compensate the dimension of the k⊥ factor(s) in the
decomposition of the correlators in Eq. (2–10).
It is interesting to notice that g⊥q

L (x) = −hq
T (x) are the only TMDs in the bag model which have a zero in the

valence-x region. This observation is actually not surprising but a consequence of the fact that the LIRs (36, 37) hold,

and g⊥(1)q
T (x) = −h⊥(1)q

1T (x) have extrema in the valence-x region.
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FIG. 1: (a) The unpolarized functions f⊥u(x), fu
1 (x), e

u(x) vs. x from the bag model at the low scale. The d-quark distributions
are factor two smaller compared to the unpolarized u-quark distributions according to the SU(6)-flavour factors in Eqs. (19, 27).
(b) The polarized functions g⊥u

T (x) = −h⊥u
1T (x), g⊥u

1T (x) = −h⊥u
1L (x), hu

1 (x), g
u
1 (x) vs. x. The d-quark distributions are factor

four smaller and have opposite sign compared to the u-quark distributions according to the SU(6)-flavour factors in Eqs. (19, 27).
(c) The polarized functions h⊥u

T (x), g⊥u
L (x) = −hu

T (x), g
u
T (x), h

u
L(x) vs. x. The d-quark functions are as in (b).
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FIG. 1: (a) The unpolarized functions f⊥u(x), fu
1 (x), e

u(x) vs. x from the bag model at the low scale. The d-quark distributions
are factor two smaller compared to the unpolarized u-quark distributions according to the SU(6)-flavour factors in Eqs. (19, 27).
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B. Transverse momentum dependence

In the context of TMDs the most interesting aspect is, of course, their transverse momentum dependence. In
principle, all information is contained in the two-dimensional functions j(x, k⊥) for a generic TMD, but here we shall
content ourselves to discuss ’one- or zero-dimensional’ projections of that information.
The first point we address is: what are the typical transverse momenta of unpolarized quarks in the bag TMDs?

For that we define for a generic TMD jq(x, k⊥) the following quantities

⟨pT ⟩ =
∫
dx
∫
d2k⊥ k⊥ jq(x, k⊥)∫

dx
∫
d2k⊥ j(x, k⊥)

, ⟨p2T ⟩ =
∫
dx
∫
d2k⊥ k2⊥ jq(x, k⊥)∫

dx
∫
d2k⊥ j(x, k⊥)

. (64)

Due to the simple spin flavor structure of the MIT bag model the ⟨pT ⟩ and ⟨p2T ⟩ are flavor-independent for all TMDs.
The first observation is that depending on the TMD ⟨pT ⟩ and ⟨p2T ⟩ in Eq. (64) may not exist in the bag model,

because the momentum-space wave-function components ti(k), Eq. (17), do not vanish sufficiently fast at large k.
This is the case especially for f q

1 (x, k⊥).

For the same reason also the (1)-moment f (1)q
1 (x) does not exist. However, the (1/2)-moment f (1/2)q

1 (x) defined
according to (12) exists, and can be used to introduce an x-dependent average transverse momentum ⟨pT (x)⟩ as

⟨pT (x)⟩ = 2MN
f (1/2)q
1 (x)

f q
1 (x)

. (65)

Fig. 2a shows the result for f (1/2)q
1 (x). (The divergence of ⟨pT ⟩ from (64) emerges when one tries to integrate f (1/2)q

1 (x)
over x, recalling that this integration extends to the entire x-axis, see Sec. II.)

Now the (1)-moment f (1)q
1 (x) is divergent, but its derivative with respect to x exists, see the dotted line in Fig. 2b.

Hereby it is understood that the (1)-moment is computed with a finite cutoff Λcut ≫ MN , then the derivative is
taken, and only then the limit Λcut → ∞ is performed.

By integrating the well-defined d
dxf

(1)q
1 (x) we can compute a regularized (1)-moment f (1)q

1 (x)reg . The result depends
on some arbitrary integration constant, which we fix such that the (1)-moment vanishes at x = 1. This choice is
reasonable but not unique, if we recall that in the MIT bag model TMDs in general have a non-zero (though small)
support for |x| ≥ 1, see Sec. II. Our main conclusions in this respect, to be presented below in this Section, depend
weakly on the chosen value of the integration constant, provided reasonable choices are made (such as, for example,

f (1)q
1 (x)reg = f (1/2)q

1 (x) at x = 1). The result for f (1)q
1 (1)reg defined in this way is shown as solid line in Fig. 2b.

With f (1)q
1 (x)reg we are in the position to define an x-dependent average transverse momentum square ⟨p2T (x)⟩ as

⟨p2T (x)⟩ = 2M2
N

f (1)q
1 (x)reg
f q
1 (x)

. (66)
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FIG. 2: For the unpolarized TMD fq
1 (x, k⊥) (a) the (1/2)-moment defined in Eq. (65), (b) the derivative of the (1)-moment

and the regularized (1)-moment as discussed in the text, and (c) ⟨pT (x)⟩ in comparison to (π⟨p2T (x)⟩/4)
1/2. In the Gauss-model

the two quantities would be equal. (The dotted marks the value ⟨pT (x)⟩ = 0.25GeV.)
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principle, all information is contained in the two-dimensional functions j(x, k⊥) for a generic TMD, but here we shall
content ourselves to discuss ’one- or zero-dimensional’ projections of that information.
The first point we address is: what are the typical transverse momenta of unpolarized quarks in the bag TMDs?

For that we define for a generic TMD jq(x, k⊥) the following quantities

⟨pT ⟩ =
∫
dx
∫
d2k⊥ k⊥ jq(x, k⊥)∫

dx
∫
d2k⊥ j(x, k⊥)

, ⟨p2T ⟩ =
∫
dx
∫
d2k⊥ k2⊥ jq(x, k⊥)∫

dx
∫
d2k⊥ j(x, k⊥)

. (64)

Due to the simple spin flavor structure of the MIT bag model the ⟨pT ⟩ and ⟨p2T ⟩ are flavor-independent for all TMDs.
The first observation is that depending on the TMD ⟨pT ⟩ and ⟨p2T ⟩ in Eq. (64) may not exist in the bag model,

because the momentum-space wave-function components ti(k), Eq. (17), do not vanish sufficiently fast at large k.
This is the case especially for f q

1 (x, k⊥).

For the same reason also the (1)-moment f (1)q
1 (x) does not exist. However, the (1/2)-moment f (1/2)q

1 (x) defined
according to (12) exists, and can be used to introduce an x-dependent average transverse momentum ⟨pT (x)⟩ as

⟨pT (x)⟩ = 2MN
f (1/2)q
1 (x)

f q
1 (x)

. (65)

Fig. 2a shows the result for f (1/2)q
1 (x). (The divergence of ⟨pT ⟩ from (64) emerges when one tries to integrate f (1/2)q

1 (x)
over x, recalling that this integration extends to the entire x-axis, see Sec. II.)

Now the (1)-moment f (1)q
1 (x) is divergent, but its derivative with respect to x exists, see the dotted line in Fig. 2b.

Hereby it is understood that the (1)-moment is computed with a finite cutoff Λcut ≫ MN , then the derivative is
taken, and only then the limit Λcut → ∞ is performed.

By integrating the well-defined d
dxf

(1)q
1 (x) we can compute a regularized (1)-moment f (1)q

1 (x)reg . The result depends
on some arbitrary integration constant, which we fix such that the (1)-moment vanishes at x = 1. This choice is
reasonable but not unique, if we recall that in the MIT bag model TMDs in general have a non-zero (though small)
support for |x| ≥ 1, see Sec. II. Our main conclusions in this respect, to be presented below in this Section, depend
weakly on the chosen value of the integration constant, provided reasonable choices are made (such as, for example,

f (1)q
1 (x)reg = f (1/2)q

1 (x) at x = 1). The result for f (1)q
1 (1)reg defined in this way is shown as solid line in Fig. 2b.

With f (1)q
1 (x)reg we are in the position to define an x-dependent average transverse momentum square ⟨p2T (x)⟩ as

⟨p2T (x)⟩ = 2M2
N

f (1)q
1 (x)reg
f q
1 (x)

. (66)
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Fig. 2c shows ⟨pT (x)⟩ as solid line. We observe that in the valence-x region at the low hadronic scale ⟨pT (x)⟩ very
weakly depends on x. Numerically we find

⟨pT (x)⟩ ≈ 0.25GeV for 0.2 ! x ! 0.5. (67)

(The ⟨pT (x)⟩ = 0.25GeV is marked as dotted line in Fig. 2c.) This is similar to results from the light-cone constituent
model [81] which also refer to a very low hadronic scale. In fact, keeping in mind the pT -broadening effects due to
gluon radiation with increasing normalization scale [11], this is a reasonable result at a low scale. (We remark that
in parton model approaches one finds comparably low values for ⟨pT (x)⟩ (albeit there the results refer to high scales)
[122, 123] models.)
In phenomenology at high scales, however, larger values are required [58–60]. For example, the interpretations of

SIDIS data from EMC [36] or HERMES [39] require

⟨pT (x)⟩Gauss =

{
0.64GeV from EMC data in [59],
0.56GeV from HERMES data in [60],

(68)

where the index “Gauss” indicates that the Gaussian model has been assumed in these studies. The Gaussian model
means that f q

1 (x, pT ) = f q
1 (x) exp(−p2T /⟨p2T (x)⟩Gauss)/(π⟨p2T (x)⟩Gauss). The width ⟨p2T (x)⟩Gauss could be a function

of x, but in practice it is often assumed to be a constant. Such an Ansatz works with sufficient precision for many
practical applications in phenomenological studies [58–60]. In the Gaussian model the relation holds

⟨pT (x)⟩Gauss =
[π
4
⟨p2T (x)⟩Gauss

]1/2
. (69)

Of course, in no model considered so far such a factorized x- and transverse parton momentum dependence was ever
observed, and in the bag model we do not observe it either. However, it is interesting to ask, for example, to which
extent the relation (69) is supported in a model. With ⟨p2T (x)⟩ defined in (66) we obtain for the expression on the RHS
of (69) the result plotted as dashed line in Fig. 2c. The remarkable observation is that (69) is supported within an
accuracy of O(10%) in the valence-x region. We remark that this conclusion is insensitive to the way the integration

constant in f (1)q
1 (x)reg is fixed, provided this is done in a reasonable way (see above).

However, the bag model supports the Gaussian model much more than that, in the following sense. In the Gauss
model we have f q

1 (x, pT ) = f q
1 (x, 0) exp(−p2T /⟨p2T (x)⟩Gauss) where, by definition, f q

1 (x, 0) = f q
1 (x)/(π⟨p2T (x)⟩Gauss).

When dealing with a model with non-Gauss-like transverse momentum dependence, this can be used to ’fit’ the
Gaussian width

⟨p2T (x)⟩Gauss = π
f q
1 (x, 0)

f q
1 (x)

(70)

such that the Gaussian model is exact at pT = 0. By continuity arguments the Gaussian model can be expected to
be a good approximation to the exact model results also for pT > 0 in some vicinity close to pT = 0. The question
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Of course, in no model considered so far such a factorized x- and transverse parton momentum dependence was ever
observed, and in the bag model we do not observe it either. However, it is interesting to ask, for example, to which
extent the relation (69) is supported in a model. With ⟨p2T (x)⟩ defined in (66) we obtain for the expression on the RHS
of (69) the result plotted as dashed line in Fig. 2c. The remarkable observation is that (69) is supported within an
accuracy of O(10%) in the valence-x region. We remark that this conclusion is insensitive to the way the integration

constant in f (1)q
1 (x)reg is fixed, provided this is done in a reasonable way (see above).

However, the bag model supports the Gaussian model much more than that, in the following sense. In the Gauss
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(The ⟨pT (x)⟩ = 0.25GeV is marked as dotted line in Fig. 2c.) This is similar to results from the light-cone constituent
model [81] which also refer to a very low hadronic scale. In fact, keeping in mind the pT -broadening effects due to
gluon radiation with increasing normalization scale [11], this is a reasonable result at a low scale. (We remark that
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observed, and in the bag model we do not observe it either. However, it is interesting to ask, for example, to which
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B. Transverse momentum dependence

In the context of TMDs the most interesting aspect is, of course, their transverse momentum dependence. In
principle, all information is contained in the two-dimensional functions j(x, k⊥) for a generic TMD, but here we shall
content ourselves to discuss ’one- or zero-dimensional’ projections of that information.
The first point we address is: what are the typical transverse momenta of unpolarized quarks in the bag TMDs?

For that we define for a generic TMD jq(x, k⊥) the following quantities

⟨pT ⟩ =
∫
dx
∫
d2k⊥ k⊥ jq(x, k⊥)∫

dx
∫
d2k⊥ j(x, k⊥)

, ⟨p2T ⟩ =
∫
dx
∫
d2k⊥ k2⊥ jq(x, k⊥)∫

dx
∫
d2k⊥ j(x, k⊥)

. (64)

Due to the simple spin flavor structure of the MIT bag model the ⟨pT ⟩ and ⟨p2T ⟩ are flavor-independent for all TMDs.
The first observation is that depending on the TMD ⟨pT ⟩ and ⟨p2T ⟩ in Eq. (64) may not exist in the bag model,

because the momentum-space wave-function components ti(k), Eq. (17), do not vanish sufficiently fast at large k.
This is the case especially for f q

1 (x, k⊥).

For the same reason also the (1)-moment f (1)q
1 (x) does not exist. However, the (1/2)-moment f (1/2)q

1 (x) defined
according to (12) exists, and can be used to introduce an x-dependent average transverse momentum ⟨pT (x)⟩ as

⟨pT (x)⟩ = 2MN
f (1/2)q
1 (x)

f q
1 (x)

. (65)

Fig. 2a shows the result for f (1/2)q
1 (x). (The divergence of ⟨pT ⟩ from (64) emerges when one tries to integrate f (1/2)q

1 (x)
over x, recalling that this integration extends to the entire x-axis, see Sec. II.)

Now the (1)-moment f (1)q
1 (x) is divergent, but its derivative with respect to x exists, see the dotted line in Fig. 2b.

Hereby it is understood that the (1)-moment is computed with a finite cutoff Λcut ≫ MN , then the derivative is
taken, and only then the limit Λcut → ∞ is performed.

By integrating the well-defined d
dxf

(1)q
1 (x) we can compute a regularized (1)-moment f (1)q

1 (x)reg . The result depends
on some arbitrary integration constant, which we fix such that the (1)-moment vanishes at x = 1. This choice is
reasonable but not unique, if we recall that in the MIT bag model TMDs in general have a non-zero (though small)
support for |x| ≥ 1, see Sec. II. Our main conclusions in this respect, to be presented below in this Section, depend
weakly on the chosen value of the integration constant, provided reasonable choices are made (such as, for example,

f (1)q
1 (x)reg = f (1/2)q

1 (x) at x = 1). The result for f (1)q
1 (1)reg defined in this way is shown as solid line in Fig. 2b.

With f (1)q
1 (x)reg we are in the position to define an x-dependent average transverse momentum square ⟨p2T (x)⟩ as

⟨p2T (x)⟩ = 2M2
N

f (1)q
1 (x)reg
f q
1 (x)

. (66)
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Fig. 2c shows ⟨pT (x)⟩ as solid line. We observe that in the valence-x region at the low hadronic scale ⟨pT (x)⟩ very
weakly depends on x. Numerically we find

⟨pT (x)⟩ ≈ 0.25GeV for 0.2 ! x ! 0.5. (67)

(The ⟨pT (x)⟩ = 0.25GeV is marked as dotted line in Fig. 2c.) This is similar to results from the light-cone constituent
model [81] which also refer to a very low hadronic scale. In fact, keeping in mind the pT -broadening effects due to
gluon radiation with increasing normalization scale [11], this is a reasonable result at a low scale. (We remark that
in parton model approaches one finds comparably low values for ⟨pT (x)⟩ (albeit there the results refer to high scales)
[122, 123] models.)
In phenomenology at high scales, however, larger values are required [58–60]. For example, the interpretations of

SIDIS data from EMC [36] or HERMES [39] require

⟨pT (x)⟩Gauss =

{
0.64GeV from EMC data in [59],
0.56GeV from HERMES data in [60],

(68)

where the index “Gauss” indicates that the Gaussian model has been assumed in these studies. The Gaussian model
means that f q

1 (x, pT ) = f q
1 (x) exp(−p2T /⟨p2T (x)⟩Gauss)/(π⟨p2T (x)⟩Gauss). The width ⟨p2T (x)⟩Gauss could be a function

of x, but in practice it is often assumed to be a constant. Such an Ansatz works with sufficient precision for many
practical applications in phenomenological studies [58–60]. In the Gaussian model the relation holds
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. (69)

Of course, in no model considered so far such a factorized x- and transverse parton momentum dependence was ever
observed, and in the bag model we do not observe it either. However, it is interesting to ask, for example, to which
extent the relation (69) is supported in a model. With ⟨p2T (x)⟩ defined in (66) we obtain for the expression on the RHS
of (69) the result plotted as dashed line in Fig. 2c. The remarkable observation is that (69) is supported within an
accuracy of O(10%) in the valence-x region. We remark that this conclusion is insensitive to the way the integration

constant in f (1)q
1 (x)reg is fixed, provided this is done in a reasonable way (see above).

However, the bag model supports the Gaussian model much more than that, in the following sense. In the Gauss
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When dealing with a model with non-Gauss-like transverse momentum dependence, this can be used to ’fit’ the
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Also, other TMD pT dependence were examined in this work
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