TMDs in in the Bag model

Ishara Fernando

University of Virginía

Reference:

https://arxiv.org/abs/1001.5467

Background information of this work

- Considered SIDIS process
- Gaussian Ansatz for TMDs
- Only focused on Time-reversal (T) - even TMDs

Definitions

Light-front quark correlator

$$
\phi\left(x, \vec{p}_{T}\right)_{i j}=\left.\int \frac{\mathrm{d} z^{-} \mathrm{d}^{2} \vec{z}_{T}}{(2 \pi)^{3}} e^{i p z}\langle N(P, S)| \bar{\psi}_{j}(0) \mathcal{W}(0, z ; \text { path }) \psi_{i}(z)|N(P, S)\rangle\right|_{z^{+}=0, p^{+}=x P^{+}}
$$

Projections of the quark correlator

$$
\begin{aligned}
\frac{1}{2} \operatorname{tr}\left[\gamma^{+} \phi\left(x, \vec{p}_{T}\right)\right] & =f_{1}-\frac{\varepsilon^{j k} p_{T}^{j} S_{T}^{k}}{M_{N}} f_{1 T}^{\perp} \\
\frac{1}{2} \operatorname{tr}\left[\gamma^{+} \gamma_{5} \phi\left(x, \vec{p}_{T}\right)\right] & =S_{L} g_{1}+\frac{\vec{p}_{T} \cdot \vec{S}_{T}}{M_{N}} g_{1 T}^{\perp} \\
\frac{1}{2} \operatorname{tr}\left[i \sigma^{j+} \gamma_{5} \phi\left(x, \vec{p}_{T}\right)\right] & =S_{T}^{j} h_{1}+S_{L} \frac{p_{T}^{j}}{M_{N}} h_{1 L}^{\perp}+\frac{\left(p_{T}^{j} p_{T}^{k}-\frac{1}{2} \vec{p}_{T}^{2} \delta^{j k}\right) S_{T}^{k}}{M_{N}^{2}} h_{1 T}^{\perp}+\frac{\varepsilon^{j k} p_{T}^{k}}{M_{N}} h_{1}^{\perp}
\end{aligned}
$$

Definitions

Projections of the quark correlator

$$
\begin{array}{rlr}
\frac{1}{2} \operatorname{tr}\left[\gamma^{+} \phi\left(x, \vec{p}_{T}\right)\right] & =f_{1}-\frac{\varepsilon^{j k} p_{T}^{j} S_{T}^{k}}{M_{N}} f_{1 T}^{\perp} & \text { + sub-। } \\
\frac{1}{2} \operatorname{tr}\left[\gamma^{+} \gamma_{5} \phi\left(x, \vec{p}_{T}\right)\right] & =S_{L} g_{1}+\frac{\vec{p}_{T} \cdot \vec{S}_{T}}{M_{N}} g_{1 T}^{\perp} & \text { term } \\
\frac{1}{2} \operatorname{tr}\left[i \sigma^{j+} \gamma_{5} \phi\left(x, \vec{p}_{T}\right)\right] & =S_{T}^{j} h_{1}+S_{L} \frac{p_{T}^{j}}{M_{N}} h_{1 L}^{\perp}+\frac{\left(p_{T}^{j} p_{T}^{k}-\frac{1}{2} \vec{p}_{T}^{2} \delta^{j k}\right) S_{T}^{k}}{M_{N}^{2}} h_{1 T}^{\perp}+\frac{\varepsilon^{j k} p_{T}^{k}}{M_{N}} h_{1}^{\perp}
\end{array}
$$

Parton distribution functions: $\quad j^{a}(x)=\int \mathrm{d}^{2} \vec{p}_{T} j^{a}\left(x, \vec{p}_{T}^{2}\right)$
And (1)-moments:

$$
j=f_{1}, g_{1}, h_{1}, e,, g_{T}, h_{L}
$$

$$
j^{(1) q}\left(x, k_{\perp}\right)=\frac{k_{\perp}^{2}}{2 M_{N}^{2}} j^{q}\left(x, k_{\perp}\right), \quad j^{(1) q}(x)=\int \mathrm{d}^{2} k_{\perp} \frac{k_{\perp}^{2}}{2 M_{N}^{2}} j^{q}\left(x, k_{\perp}\right)
$$

$$
(1 / 2) \text {-moments } \quad f_{1}^{(1 / 2) q}(x)=\int \mathrm{d}^{2} k_{\perp} \frac{k_{\perp}}{2 M_{N}} f_{1}^{q}\left(x, k_{\perp}\right)
$$

Definitions

Quark field defined in the MIT bag model:

$$
\Psi_{\alpha}(\vec{x}, t)=\sum_{n>0, \kappa= \pm 1, m= \pm 1 / 2} N(n \kappa)\left\{b_{\alpha}(n \kappa m) \psi_{n \kappa j m}(\vec{x}, t)+d_{\alpha}^{\dagger}(n \kappa m) \psi_{-n-\kappa j m}(\vec{x}, t)\right\}
$$

Where,

$$
\psi_{n,-1, \frac{1}{2} m}(\vec{x}, t)=\frac{1}{\sqrt{4 \pi}}\binom{i j_{0}\left(\frac{\omega_{n,-1}|\vec{x}|}{R_{0}}\right) \chi_{m}}{-\vec{\sigma} \cdot \hat{x} j_{1}\left(\frac{\omega_{n,-1}|\vec{x}|}{R_{0}}\right) \chi_{m}} e^{-i \omega_{n,-1} t / R_{0}}
$$

For the lowest mode, we have $n=1, \kappa=-1$, and $\omega_{1,-1} \approx 2.04$ denoted as $\omega \equiv \omega_{1,-1}$ momentum space wave function for the lowest mode,

$$
\varphi_{m}(\vec{k})=i \sqrt{4 \pi} N R_{0}^{3}\binom{t_{0}(k) \chi_{m}}{\vec{\sigma} \cdot \hat{k} t_{1}(k) \chi_{m}} \quad N=\left(\frac{\omega^{3}}{2 R_{0}^{3}(\omega-1) \sin ^{2} \omega}\right)^{1 / 2}
$$

The two functions $t_{i}, i=0,1$ are defined as

$$
t_{i}(k)=\int_{0}^{1} u^{2} d u j_{i}\left(u k R_{0}\right) j_{i}(u \omega)
$$

Definitions

$A=\frac{16 \omega^{4}}{\pi^{2}(\omega-1) j_{0}^{2}(\omega) M_{N}^{2}}, \quad k=\sqrt{k_{z}^{2}+k_{\perp}^{2}}, \quad k_{z}=x M_{N}-\omega / R_{0}, \quad \widehat{k}_{z}=\frac{k_{z}}{k}, \quad \widehat{M}_{N}=\frac{M_{N}}{k}$
bag radius is fixed such that $R_{0} M_{N}=4 \omega$

$$
N_{u}=2, \quad N_{d}=1, \quad P_{u}=\frac{4}{3}, \quad P_{d}=-\frac{1}{3}
$$

Assumed $\operatorname{SU}(6)$ spin-flavor symmetry of the proton wave function,

- Spin-independent TMDs for a give flavor $=$ flavor factor $(\mathrm{N}) \times$ flavor less term
- Spin-dependent TMDs for a give flavor $=$ spin-flavor factor $(\mathrm{P}) \times$ flavor less term

Since there are no explicit gluon degrees of freedom, T-odd TMDs vanish in this model

Results

T-even leading twist TMDs are given by

$$
\begin{aligned}
f_{1}^{q}\left(x, k_{\perp}\right) & =N_{q} A\left[t_{0}^{2}+2 \widehat{k}_{z} t_{0} t_{1}+t_{1}^{2}\right] \\
g_{1}^{q}\left(x, k_{\perp}\right) & =P_{q} A\left[t_{0}^{2}+2 \widehat{k}_{z} t_{0} t_{1}+\left(2 \widehat{k}_{z}^{2}-1\right) t_{1}^{2}\right] \\
h_{1}^{q}\left(x, k_{\perp}\right) & =P_{q} A\left[t_{0}^{2}+2 \widehat{k}_{z} t_{0} t_{1}+\widehat{k}_{z}^{2} t_{1}^{2}\right] \\
g_{1 T}^{\perp q}\left(x, k_{\perp}\right) & =P_{q} A\left[2 \widehat{M}_{N}\left(t_{0} t_{1}+\widehat{k}_{z} t_{1}^{2}\right)\right] \\
h_{1 L}^{\perp q}\left(x, k_{\perp}\right) & =P_{q} A\left[-2 \widehat{M}_{N}\left(t_{0} t_{1}+\widehat{k}_{z} t_{1}^{2}\right)\right] \\
h_{1 T}^{\perp q}\left(x, k_{\perp}\right) & =P_{q} A\left[-2 \widehat{M}_{N}^{2} t_{1}^{2}\right]
\end{aligned}
$$

"Lorentz-invariance relations" (LIRs)

$$
\begin{aligned}
g_{T}(x) & \stackrel{\text { LIR }}{=} g_{1}(x)+\frac{\mathrm{d}}{\mathrm{~d} x} g_{1 T}^{\perp(1)}(x) \\
h_{L}(x) & \stackrel{\text { LIR }}{=} h_{1}(x)-\frac{\mathrm{d}}{\mathrm{~d} x} h_{1 L}^{\perp(1)}(x) \\
h_{T}(x) & \stackrel{\text { LIR }}{=}-\frac{\mathrm{d}}{\mathrm{~d} x} h_{1 T}^{\perp(1)}(x), \\
g_{L}^{\perp}(x)+\frac{\mathrm{d}}{\mathrm{~d} x} g_{T}^{\perp(1)}(x) & \stackrel{\text { LIR }}{=} 0, \\
h_{T}\left(x, p_{T}\right)-h_{T}^{\perp}\left(x, p_{T}\right) & \stackrel{\text { LIR }}{=} h_{1 L}^{\perp}\left(x, p_{T}\right),
\end{aligned}
$$

Certain relations among TMDs must be valid in any quark model of the nucleon lacking gluon degrees of freedom "no-gluon models" the absence of the Wilson-link

Results

Linear relations in bag model:

$$
\begin{aligned}
& \mathcal{D}^{q} f_{1}^{q}\left(x, k_{\perp}\right)+g_{1}^{q}\left(x, k_{\perp}\right)=2 h_{1}^{q}\left(x, k_{\perp}\right) \\
& \mathcal{D}^{q} e^{q}\left(x, k_{\perp}\right)+h_{L}^{q}\left(x, k_{\perp}\right)=2 g_{T}^{q}\left(x, k_{\perp}\right) \\
& \mathcal{D}^{q} f^{\perp q}\left(x, k_{\perp}\right)=h_{T}^{\perp q}\left(x, k_{\perp}\right) \\
& \quad g_{1 T}^{\perp q}\left(x, k_{\perp}\right)=-h_{1 L}^{\perp q}\left(x, k_{\perp}\right) \\
& g_{T}^{\perp q}\left(x, k_{\perp}\right)=-h_{1 T}^{\perp q}\left(x, k_{\perp}\right) \\
& g_{L}^{\perp q}\left(x, k_{\perp}\right)=-h_{T}^{q}\left(x, k_{\perp}\right) \\
& \\
& \quad g_{1}^{q}\left(x, k_{\perp}\right)-h_{1}^{q}\left(x, k_{\perp}\right)=h_{1 T}^{\perp(1) q}\left(x, k_{\perp}\right) \\
& \quad g_{T}^{q}\left(x, k_{\perp}\right)-h_{L}^{q}\left(x, k_{\perp}\right)=h_{1 T}^{\perp(1) q}\left(x, k_{\perp}\right) \\
& \quad h_{T}^{q}\left(x, k_{\perp}\right)-h_{T}^{\perp q}\left(x, k_{\perp}\right)=h_{1 L}^{\perp q}\left(x, k_{\perp}\right)
\end{aligned}
$$

Dilution factor

$$
\mathcal{D}^{q}=\frac{P_{q}}{N_{q}}
$$

Highlighted relation:

$$
g_{1}^{q}(x)-h_{1}^{q}(x)=g_{T}^{q}(x)-h_{L}^{q}(x)
$$

> Involves only collinear PDFs
$>$ For the ${ }^{\text {st }}$ Mellin moments, this relation is valid model independently > Useful to compare OAM from different models which satisfy this relation

Orbital Angular Momentum

In the absence of gauge-fields:

$$
\hat{L}_{q}^{i}(0, z)=\bar{\psi}_{q}(0) \varepsilon^{i k l} \hat{r}^{k} \hat{p}^{l} \psi_{q}(z)
$$

$$
\text { where } \hat{r}^{k}=i \frac{\partial}{\partial p^{k}} \text { and } \hat{p}^{l}=p^{l}
$$

The following quantity is defined following the general definition of matrix element(s)

$$
L_{q}^{j}\left(x, p_{T}\right)=\left.\int \frac{\mathrm{d} z^{-} \mathrm{d}^{2} \vec{z}_{T}}{(2 \pi)^{3}} e^{i p z}\left\langle N\left(P, S^{3}\right)\right| \hat{L}_{q}^{i}(0, z)\left|N\left(P, S^{3}\right)\right\rangle\right|_{z^{+}=0, p^{+}=x P^{+}}
$$

In a longitudinally polarized nucleon, $L_{q}^{3}\left(x, p_{T}\right) \mathrm{d}^{2} \vec{p}_{T} \mathrm{~d} x$ tells how much OAM of a quark Which carries longitudinal momentum fraction ' x ' and transverse momentum PT , Contributes to the nucleon spin.

In the bag model: $\quad L_{q}^{3}\left(x, p_{T}\right)=(-1) h_{1 T}^{\perp(1) q}\left(x, p_{T}\right)$
Total Angular momentum $J_{q}^{3}=S_{q}^{3}+L_{q}^{3}$

$$
S_{q}^{3}=\frac{1}{2} \int \mathrm{~d} x g_{1}^{q}(x)
$$

$$
L_{q}^{3}=\int \mathrm{d} x \int \mathrm{~d}^{2} \vec{p}_{T} L_{q}^{3}\left(x, p_{T}\right)
$$

Orbital Angular Momentum

$$
\begin{aligned}
2 J_{q}^{3} & =\int \mathrm{d} x \int \mathrm{~d}^{2} k_{\perp}\left[g_{1}^{q}\left(x, k_{\perp}\right)-2 h_{1 T}^{\perp(1) q}\left(x, k_{\perp}\right)\right] \\
& =P_{q} \frac{A}{M_{N}} \int \mathrm{~d}^{3} k\left[t_{0}^{2}+2 \widehat{k}_{z} t_{0} t_{1}+\left(2 \widehat{k}_{z}^{2}-1+2 \frac{k_{\perp}^{2}}{k^{2}}\right) t_{1}^{2}\right] \\
& =P_{q} \frac{A}{M_{N}} \int \mathrm{~d}^{3} k\left[t_{0}^{2}+t_{1}^{2}\right] \\
& =P_{q} \quad N_{u}=2, \quad N_{d}=1, \quad P_{u}=\frac{4}{3}, \quad P_{d}=-\frac{1}{3} \\
\int_{u}^{3} & +\int \frac{1}{d}=\frac{1}{2}
\end{aligned}
$$

This supports SU(6) light-cone quark model result

$$
L_{q}^{3}=(-1) \int \mathrm{d} x h_{1 T}^{\perp(1) q}(x)
$$

In the bag model for $S U(6)$ symmetry,
for unpolarized TMDs the d-quark distributions are factor 2 smaller than the u-quark distributions.
In the case of the polarized TMDs, the d-quark distributions are factor 4 smaller and have opposite sign compared to the u-quark distributions.

Results: Integrated TMDs

These are predicted behavior of unpolarized (a) and polarized (b \& c) of Integrated TMDs for u-quarks

Results: Transverse momentum of unpolarized quarks

for a generic TMD $j^{q}\left(x, k_{\perp}\right) \quad\left\langle p_{T}\right\rangle=\frac{\int \mathrm{d} x \int \mathrm{~d}^{2} k_{\perp} k_{\perp} j^{q}\left(x, k_{\perp}\right)}{\int \mathrm{d} x \int \mathrm{~d}^{2} k_{\perp} j\left(x, k_{\perp}\right)}, \quad\left\langle p_{T}^{2}\right\rangle=\frac{\int \mathrm{d} x \int \mathrm{~d}^{2} k_{\perp} k_{\perp}^{2} j^{q}\left(x, k_{\perp}\right)}{\int \mathrm{d} x \int \mathrm{~d}^{2} k_{\perp} j\left(x, k_{\perp}\right)}$

$$
\left\langle p_{T}(x)\right\rangle=2 M_{N} \frac{f_{1}^{(1 / 2) q}(x)}{f_{1}^{q}(x)} \quad\left\langle p_{T}^{2}(x)\right\rangle=2 M_{N}^{2} \frac{f_{1}^{(1) q}(x)_{r e g}}{f_{1}^{q}(x)}
$$

(a)

(b) $\quad<p_{T}(x)>$
(c)

A similar result From light-cone Constituent model

[^0]httos://drviv.org/abs/1001.5467

The Gaussian model in the Bag model

$$
f_{1}^{q}\left(x, p_{T}\right)=f_{1}^{q}(x) \exp \left(-p_{T}^{2} /\left\langle p_{T}^{2}(x)\right\rangle_{\mathrm{Gauss}}\right) /\left(\pi\left\langle p_{T}^{2}(x)\right\rangle_{\mathrm{Gauss}}\right)
$$

(b)

Solid-line
$\left.\quad \begin{array}{l}\text { Solid-line }\end{array} p_{T}^{2}(x)\right\rangle=2 M_{N}^{2} \frac{f_{1}^{(1) q}(x)_{\text {reg }}}{f_{1}^{q}(x)}$
Dashed-line

$$
\left\langle p_{T}^{2}(x)\right\rangle_{\text {Gauss }}=\pi \frac{f_{1}^{q}(x, 0)}{f_{1}^{q}(x)}
$$

Also, other TMD pT dependence were examined in this work

Thank you

[^0]: (1)-moment is computed with a finite cutoff $\Lambda_{\text {cut }} \gg M_{N}$
 $\left\langle p_{T}(x)\right\rangle \approx 0.25 \mathrm{GeV}$ for $0.2 \lesssim x \lesssim 0.5$

