TMDs in
 diquark spectator model

Ishara Fernando

University of Virginía

References:

arXiv:hep-ph/9704335,arXiv:hep-ph/0209085, arXiv:hep-ph/0201296,
arXiv:hep-ph/0310319,arXiv:0807.0323,
https://inspirehep.net/files/2dc0be6b78d490f716d88a17aa689ff3

Cross-section to TMDs

$$
\begin{aligned}
\frac{d \sigma}{d Q^{2} d^{2} \mathbf{q}_{\mathbf{T}}} & =\sum_{i, j} H_{i j}(Q) \int_{0}^{1} d \xi_{a} d \xi_{b} \int d^{2} \mathbf{b}_{\mathbf{T}} e^{i \mathbf{b}_{\mathbf{T}} \cdot \mathbf{q}_{\mathbf{T}}} f_{i / P_{a}}\left(\xi_{a}, \mathbf{b}_{\mathbf{T}}\right) f_{j / P_{b}}\left(\xi_{b}, \mathbf{b}_{\mathbf{T}}\right) \\
& \times\left[1+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}}{Q}, \frac{\mathbf{q}_{\mathbf{T}}}{Q}\right)\right]
\end{aligned}
$$

Momentum-space version of $f_{i / P_{a}}\left(\xi_{a}, \mathbf{b}_{\mathbf{T}}\right)$ (or $\left.f_{j / P_{b}}\left(\xi_{b}, \mathbf{b}_{\mathbf{T}}\right)\right)$ was decomposed into 8 leading TMD PDFs

$$
\begin{aligned}
\Phi\left(x, k_{T}, P, S\right) & =f_{1}\left(x, k_{T}^{2}\right) \frac{\not P}{2}+\frac{h_{1 T}\left(x, k_{T}^{2}\right)}{4} \gamma_{5}\left[\$_{T}, \not p\right]+\frac{S_{L}}{2} g_{1 L}\left(x, k_{T}^{2}\right) \gamma_{5} \not P+\frac{k_{T} \cdot S_{T}}{2 M} g_{1 T}\left(x, k_{T}^{2}\right) \gamma_{5} \not P \\
& +S_{L} h_{1 L}^{\perp}\left(x, k_{T}^{2}\right) \gamma_{5} \frac{\left[k h_{T}, \not p\right]}{4 M}+\frac{k_{T} \cdot S_{T}}{2 M} h_{1 T}^{\perp}\left(x, k_{T}^{2}\right) \gamma_{5} \frac{\left[k k_{T}, \not p\right]}{4 M} \\
& +i h_{1}^{\perp}\left(x, k_{T}^{2}\right) \frac{\left[k_{T}, \not p\right]}{4 M}-\frac{\epsilon_{T}^{k_{T} S_{T}}}{4 M} f_{1 T}^{\perp}\left(x, k_{T}^{2}\right) \not P \quad+16 \text { Terms (Twist 3) }+8 \text { Terms (Twist 4) }+\ldots .
\end{aligned}
$$

Momenta in light-cone coordinates

A generic 4-vector

$$
a=\left[a^{-}, a^{+}, \boldsymbol{a}_{T}\right]
$$

Proton momentum (with no transverse component

$$
P=\left[\frac{M^{2}}{2 P^{+}}, P^{+}, \mathbf{0}\right]
$$

$$
\begin{gathered}
\text { Quark momentum } \\
p=\left[\frac{p^{2}+\boldsymbol{p}_{T}^{2}}{2 x P^{+}}, x P^{+}, \boldsymbol{p}_{T}\right]
\end{gathered}
$$

Quark correlator

$$
\xi-\text { Ligh-cone space-time coordinates }
$$

$$
\begin{aligned}
& \Phi\left(x, \boldsymbol{p}_{T} ; S\right)=\left.\int \frac{d \xi^{-} d \boldsymbol{\xi}_{T}}{(2 \pi)^{3}} e^{i p \cdot \xi}\langle P, S| \bar{\psi}(0) \mathcal{U}_{[0, \xi]} \psi(\xi)|P, S\rangle\right|_{\xi+=0} \\
& \text { For ántiquark } \rightarrow \psi \rightarrow \psi^{c}=C \bar{\psi}^{T} \quad U_{[0, \xi]}=\mathcal{P} e^{-i g \int_{0}^{\xi} d w \cdot A(w)}
\end{aligned}
$$

Gauge link path for SIDIS process:
$[0, \xi] \equiv\left(0,0, \mathbf{0}_{T}\right) \rightarrow\left(0, \infty, \mathbf{0}_{T}\right) \rightarrow\left(0, \infty, \infty_{T}\right) \rightarrow\left(0, \infty, \boldsymbol{\xi}_{T}\right) \rightarrow\left(0, \xi^{-}, \boldsymbol{\xi}_{T}\right)$
Gauge link path for Drell-Yan process:
Runs in the opposite direction via $\infty \rightarrow-\infty$

Gauge link (Wilson line):
Which connects two different spacetime points by all possible gluon field paths ' A ', coupling to qaurks with coupling constant ' g '

diquark spectator model for T-even terms

After inserting complete set of intermediate states and truncating the summation to a single on-shell spectator state with mass ' $M x$ ' gives,

$$
\left.\Phi\left(x, \boldsymbol{p}_{T}, S\right) \sim \frac{1}{(2 \pi)^{3}} \frac{1}{2(1-x) P^{+}} \overline{\mathcal{M}}^{(0)}(S) \mathcal{M}^{(0)}(S)\right|_{p^{2}=\tau\left(x, \boldsymbol{p}_{T}\right)}
$$

p is the phomentum of the active quark, m its mass, and the on-shell condition $(P-p)^{2}=M_{X}^{2}$
Therefore, quark-off shell condition is, $\quad p^{2} \equiv \tau\left(x, \boldsymbol{p}_{T}\right)=-\frac{\boldsymbol{p}_{T}^{2}+L_{X}^{2}\left(m^{2}\right)}{1-x}+m^{2}$

$$
L_{X}^{2}\left(m^{2}\right)=x M_{X}^{2}+(1-x) m^{2}-x(1-x) M^{2}
$$

Notice that the Proton (nucleon) can couple to a quark (active) and to a spectator diquark with spin 0 or 1 as well as isospin 0 and 1.

Diquark spectator model for T-even functions

$$
\left.\Phi\left(x, \boldsymbol{p}_{T}, S\right) \sim \frac{1}{(2 \pi)^{3}} \frac{1}{2(1-x) P^{+}} \overline{\mathcal{M}}^{(0)}(S) \mathcal{M}^{(0)}(S)\right|_{p^{2}=\tau\left(x, \boldsymbol{p}_{T}\right)}
$$

Therefore, tree-level scattering amplitude:

$$
\mathcal{M}^{(0)}(S)=\langle P-p| \psi(0)|P, S\rangle= \begin{cases}\frac{i}{\not p-m} \mathcal{Y}_{s} U(P, S) & \text { scalar diquark } \\ \frac{i}{\not p-m} \varepsilon_{\mu}^{*}\left(P-p, \lambda_{a}\right) \mathcal{Y}_{a}^{\mu} U(P, S) & \text { axial-vector diquark }\end{cases}
$$ 4 -vector polarization of the spin-1 vector diquark with momentum $P-p$ and helicity states λ_{a} When summing over all possible polarization states:

Nucleon-quark-diquark vetex

$$
\begin{gathered}
d^{\mu \nu}=\sum_{\lambda_{a}} \varepsilon_{\left(\lambda_{a}\right)}^{* \mu} \varepsilon_{\left(\lambda_{a}\right)}^{\nu} \\
d^{\mu \nu}(P-p)=\left\{\begin{array}{c}
-g^{\mu \nu}+\frac{(P-p)^{\mu} n_{-}^{\nu}+(P-p)^{\nu} n_{-}^{\mu}}{(P-p) \cdot n_{-}}-\frac{M_{a}^{2}}{\left[(P-p) \cdot n_{-}\right]^{2}} n_{-}^{\mu} n_{-}^{\nu} \\
-g^{\mu \nu}+\frac{(P-p)^{\mu}(P-p)^{\nu}}{M_{a}^{2}} \\
-g^{\mu \nu}+\frac{P^{\mu} P^{\nu}}{M_{a}^{2}}
\end{array}\right. \\
\text { Different Choices for different } \quad-g^{\mu \nu}
\end{gathered},
$$

$$
\mathcal{Y}_{s}=i g_{s}\left(p^{2}\right) \mathbb{1} \quad \mathcal{Y}_{a}^{\mu}=i \frac{g_{a}\left(p^{2}\right)}{\sqrt{2}} \gamma^{\mu} \gamma_{5}
$$

$$
g_{X}\left(p^{2}\right)=\left\{\begin{array}{cl}
g_{X}^{p . l .} & \text { point-like } \\
g_{X}^{g_{X}^{\text {dip }}} \frac{p^{2}-m^{2}}{p^{2}-\left.\left(\Lambda_{X}^{2}\right)\right|^{2}} & \text { dipolar, } \\
g_{X}^{\exp } e^{\left(p^{2}-m^{2}\right) / \Lambda_{X}^{2}} & \text { exponential }
\end{array}\right.
$$

Some results for T-even functions

Unpolarized quark distribution:

$$
\begin{aligned}
f_{1}\left(x, \boldsymbol{p}_{T}\right) & =\frac{1}{4} \operatorname{Tr}\left[\left(\Phi\left(x, \boldsymbol{p}_{T}, S\right)+\Phi\left(x, \boldsymbol{p}_{T},-S\right)\right) \gamma^{+}\right]+\text {h.c. } \\
& =\frac{1}{4} \frac{1}{(2 \pi)^{3}} \frac{1}{2(1-x) P^{+}} \operatorname{Tr}\left[\left(\overline{\mathcal{M}}^{(0)}(S) \mathcal{M}^{(0)}(S)+\overline{\mathcal{M}}^{(0)}(-S) \mathcal{M}^{(0)}(-S)\right) \gamma^{+}\right]+\text {h.c. }
\end{aligned}
$$

Using the choices (mentioned in the previous slide) for a dipolar form factor,

$$
\begin{aligned}
f_{1}^{q(s)}\left(x, \boldsymbol{p}_{T}\right) & =\frac{g_{s}^{2}}{(2 \pi)^{3}} \frac{\left[(m+x M)^{2}+\boldsymbol{p}_{T}^{2}\right](1-x)^{3}}{2\left[\boldsymbol{p}_{T}^{2}+L_{s}^{2}\left(\Lambda_{s}^{2}\right)\right]^{4}} \\
f_{1}^{q(a)}\left(x, \boldsymbol{p}_{T}\right) & =\frac{g_{a}^{2}}{(2 \pi)^{3}} \frac{\left[\boldsymbol{p}_{T}^{2}\left(1+x^{2}\right)+(m+x M)^{2}(1-x)^{2}\right](1-x)}{2\left[\boldsymbol{p}_{T}^{2}+L_{a}^{2}\left(\Lambda_{a}^{2}\right)\right]^{4}}
\end{aligned}
$$

Similarly the results for the rest of T-even functions can be obtained....

Diquark spectator model for T-odd functions

$$
\begin{aligned}
\frac{\varepsilon_{T}^{i j} p_{T i} S_{T j}}{M} f_{1 T}^{\perp}\left(x, \boldsymbol{p}_{T}^{2}\right) & =-\frac{1}{4} \operatorname{Tr}\left[\left(\Phi\left(x, \boldsymbol{p}_{T}, S\right)-\Phi\left(x, \boldsymbol{p}_{T},-S\right)\right) \gamma^{+}\right]+\text {h.c. } \\
\frac{\varepsilon_{T}^{i j} p_{T j}}{M} h_{1}^{\perp}\left(x, \boldsymbol{p}_{T}^{2}\right) & =\frac{1}{4} \operatorname{Tr}\left[\left(\Phi\left(x, \boldsymbol{p}_{T}, S\right)+\Phi\left(x, \boldsymbol{p}_{T},-S\right)\right) i \sigma^{i+} \gamma_{5}\right]+\text { h.c. }
\end{aligned}
$$

At tree-level, these functions vanish because no interaction between the active quark and diquark (no interference between the scattering amplitudes); but one can generate such a non-zero contribution by considering the interference between tree-level scattering amplitude and One-gluon-exchange between active quark and diquark. [corresponds toleading-twist one-gluon-exchange operator of the gauge-link]

single-gluon-exchange scattering amplitude in eikonal approximation Feynman Rules: $\quad \underset{\rho}{\dot{\rho}}=-i e_{c} n_{-}^{\rho} \quad \xrightarrow{(-l)} \begin{aligned} & \text { This sign is } \\ & \text { for SIDIS }\end{aligned}$
$\left.\Phi^{(1)}\left(x, \boldsymbol{p}_{T}, S\right) \sim \frac{1}{(2 \pi)^{3}+i \epsilon} \frac{1}{2(1-x) P^{+}}\left(\overline{\mathcal{M}}^{(0)}(S) \mathcal{M}^{(1)}(S)+\overline{\mathcal{M}}^{(1)}(S) \mathcal{M}^{(0)}(S)\right)\right|_{p^{2}=\tau\left(x, \boldsymbol{p}_{T}\right)}$
V

$$
\mathcal{M}^{(1)}(S)= \begin{cases}-\int \frac{d^{4} l}{(2 \pi)^{4}} \frac{i e_{c} \Gamma_{s \rho} n_{-}^{\rho}(\not p-l+m) \mathcal{Y}_{s} U(P, S)}{\left(D_{1}+i \varepsilon\right)\left(D_{2}-i \varepsilon\right)\left(D_{3}+i \varepsilon\right)\left(D_{4}+i \varepsilon\right)} & \text { scalar diquark, } \\ -\int \frac{d^{4} l}{(2 \pi)^{4}} \frac{i e_{c} \varepsilon_{\sigma}^{*}\left(P-p, \lambda_{a}\right) \Gamma_{a \rho}^{\nu \sigma} n_{-}^{\rho}(\not p-l+m) d_{\mu \nu}(p-l-P) \mathcal{Y}_{a}^{\mu} U(P, S)}{\left(D_{1}+i \varepsilon\right)\left(D_{2}-i \varepsilon\right)\left(D_{3}+i \varepsilon\right)\left(D_{4}+i \varepsilon\right)} & \text { axial-vector diquark }\end{cases}
$$

Diquark spectator model for T-odd functions

$D_{1}=l^{2}-m_{g}^{2}$,

$$
D_{2}=l^{+}
$$

$$
\begin{gathered}
\left.\Phi^{(1)}\left(x, \boldsymbol{p}_{T}, S\right) \sim \frac{1}{(2 \pi)^{3}} \frac{1}{2(1-x) P^{+}}\left(\overline{\mathcal{M}}^{(0)}(S) \mathcal{M}^{(1)}(S)+\overline{\mathcal{M}}^{(1)}(S) \mathcal{M}^{(0)}(S)\right)\right|_{p^{2}=\tau\left(x, \boldsymbol{p}_{T}\right)} \\
\mathcal{M}^{(1)}(S)= \begin{cases}-\int \frac{d^{4} l}{(2 \pi)^{4}} \frac{i e_{c} \Gamma_{s \rho} n_{-}^{\rho}(\not p-\nmid+m) \mathcal{Y}_{s} U(P, S)}{\left(D_{1}+i \varepsilon\right)\left(D_{2}-i \varepsilon\right)\left(D_{3}+i \varepsilon\right)\left(D_{4}+i \varepsilon\right)} & \text { scalar diquark, } \\
-\int \frac{d^{4} l}{(2 \pi)^{4}} \frac{i e_{c} \varepsilon_{\sigma}^{*}\left(P-p, \lambda_{a}\right) \Gamma_{a \rho}^{\nu \sigma} n_{-}^{\rho}(\not p-l+m) d_{\mu \nu}(p-l-P) \mathcal{Y}_{a}^{\mu} U(P, S)}{\left(D_{1}+i \varepsilon\right)\left(D_{2}-i \varepsilon\right)\left(D_{3}+i \varepsilon\right)\left(D_{4}+i \varepsilon\right)} & \text { axial-vector diquark }\end{cases}
\end{gathered}
$$

$$
\begin{aligned}
& D_{3}=(p-l)^{2}-m^{2}, \\
& D_{4}=(P-p+l)^{2}-M_{X}^{2}
\end{aligned} \frac{\varepsilon_{T}^{i j} p_{T i} S_{T j}}{M} f_{1 T}^{\perp}\left(x, \boldsymbol{p}_{T}^{2}\right)=-\frac{1}{4} \frac{1}{(2 \pi)^{3}} \frac{1}{2(1-x) P^{+}} \operatorname{Tr}\left[\left(\mathcal{M}^{(1)}(S) \overline{\mathcal{M}}^{(0)}(S)-\mathcal{M}^{(1)}(-S) \overline{\mathcal{M}}^{(0)}(-S)\right) \gamma^{+}\right]+\text {h.c. },
$$

$$
\frac{\varepsilon_{T}^{i j} p_{T j}}{M} h_{1}^{\perp}\left(x, \boldsymbol{p}_{T}^{2}\right)=\frac{1}{4} \frac{1}{(2 \pi)^{3}} \frac{1}{2(1-x) P^{+}} \operatorname{Tr}\left[\left(\mathcal{M}^{(1)}(S) \overline{\mathcal{M}}^{(0)}(S)+\mathcal{M}^{(1)}(-S) \overline{\mathcal{M}}^{(0)}(-S)\right) i \sigma^{i+} \gamma_{5}\right]+\text { h.c. }
$$

$$
\begin{aligned}
& f_{1 T}^{\perp q(s)}\left(x, \boldsymbol{p}_{T}^{2}\right)=-\frac{g_{s}}{4} \frac{1}{(2 \pi)^{3}} \frac{M e_{c}^{2}}{2(1-x)} \\
& f_{1 T}^{\perp q(a)}\left(x, \boldsymbol{p}_{T}^{2}\right)=\frac{g_{a}}{4} \frac{1}{(2 \pi)^{3}} \frac{M e_{c}^{2}}{4(1-x) P} \\
& h_{1}^{\perp q(s)}\left(x, \boldsymbol{p}_{T}^{2}\right)=f_{1 T}^{\perp q(s)}\left(x, \boldsymbol{p}_{T}^{2}\right) \\
& h_{1}^{\perp q(a)}\left(x, \boldsymbol{p}_{T}^{2}\right)=-\frac{1}{x} f_{1 T}^{\perp q(a)}\left(x, \boldsymbol{p}_{T}^{2}\right) .
\end{aligned}
$$

Diquark spectator model for T-odd functions

$$
\begin{aligned}
& f_{1 T}^{\perp q(s)}\left(x, \boldsymbol{p}_{T}^{2}\right)=-\frac{g_{s}}{4} \frac{1}{(2 \pi)^{3}} \frac{M e_{c}^{2}}{2(1-x) P^{+}} \frac{(1-x)^{2}}{\left[\boldsymbol{p}_{T}^{2}+L_{s}^{2}\left(\Lambda_{s}^{2}\right)\right]^{2}} 2 \operatorname{Im} J_{1}^{s} \\
& f_{1 T}^{\perp q(a)}\left(x, \boldsymbol{p}_{T}^{2}\right)=\frac{g_{a}}{4} \frac{1}{(2 \pi)^{3}} \frac{M e_{c}^{2}}{4(1-x) P^{+}} \frac{(1-x)^{2}}{\left[\boldsymbol{p}_{T}^{2}+L_{a}^{2}\left(\Lambda_{a}^{2}\right)\right]^{2}} 2 \operatorname{Im} J_{1}^{a}, \\
& h_{1}^{\perp q(s)}\left(x, \boldsymbol{p}_{T}^{2}\right)=f_{1 T}^{\perp q(s)}\left(x, \boldsymbol{p}_{T}^{2}\right) \\
& h_{1}^{\perp q(a)}\left(x, \boldsymbol{p}_{T}^{2}\right)=-\frac{1}{x} f_{1 T}^{\perp q(a)}\left(x, \boldsymbol{p}_{T}^{2}\right) .
\end{aligned}
$$

$$
J_{1}^{s}=\int \frac{d^{4} l}{(2 \pi)^{4}} \frac{g_{s}\left((p-l)^{2}\right)}{\left(D_{1}+i \varepsilon\right)\left(D_{2}-i \varepsilon\right)\left(D_{3}+i \varepsilon\right)\left(D_{4}+i \varepsilon\right)} 4 i\left(l^{+}+2(1-x) P^{+}\right)\left(l^{+} M-P^{+}(m+x M) \frac{\boldsymbol{l}_{T} \cdot \boldsymbol{p}_{T}}{\boldsymbol{p}_{T}^{2}}\right)
$$

$2 \operatorname{Im} J_{1}^{s}=\int \frac{d^{4} l}{(2 \pi)^{4}} \frac{g_{s}\left((p-l)^{2}\right)}{D_{1} D_{3}} 4\left(l^{+}+2(1-x) P^{+}\right)\left(l^{+} M-P^{+}(m+x M) \frac{\boldsymbol{l}_{T} \cdot \boldsymbol{p}_{T}}{\boldsymbol{p}_{T}^{2}}\right)(2 \pi i) \delta\left(D_{2}\right)(-2 \pi i) \delta\left(D_{4}\right)$

$$
=-4 P^{+}(m+x M)(1-x) g_{s} \mathcal{I}_{1} \cdot=g_{s} \frac{P^{+}(m+x M)(1-x)^{2}}{\pi L_{s}^{2}\left(\Lambda_{s}^{2}\right)\left[\boldsymbol{p}_{T}^{2}+L_{s}^{2}\left(\Lambda_{s}^{2}\right)\right]}
$$

$2 \operatorname{Im} J_{1}^{a}=-8 P^{+} x(m+x M) g_{a} \mathcal{I}_{1}^{d i p}=g_{a} \frac{2 P^{+} x(1-x)(m+x M)}{\pi L_{a}^{2}\left(\Lambda_{a}^{2}\right)\left[\boldsymbol{p}_{T}^{2}+L_{a}^{2}\left(\Lambda_{a}^{2}\right)\right]}$

Diquark spectator model for T-odd functions

$$
\begin{aligned}
f_{1 T}^{\perp q(s)}\left(x, \boldsymbol{p}_{T}^{2}\right) & =-\frac{g_{s}^{2}}{4} \frac{M e_{c}^{2}}{(2 \pi)^{4}} \frac{(1-x)^{3}(m+x M)}{L_{s}^{2}\left(\Lambda_{s}^{2}\right)\left[\boldsymbol{p}_{T}^{2}+L_{s}^{2}\left(\Lambda_{s}^{2}\right)\right]^{3}} \\
f_{1 T}^{\perp q(a)}\left(x, \boldsymbol{p}_{T}^{2}\right) & =\frac{g_{a}^{2}}{4} \frac{M e_{c}^{2}}{(2 \pi)^{4}} \frac{(1-x)^{2} x(m+x M)}{L_{a}^{2}\left(\Lambda_{a}^{2}\right)\left[\boldsymbol{p}_{T}^{2}+L_{a}^{2}\left(\Lambda_{a}^{2}\right)\right]^{3}} \\
h_{1}^{\perp q(s)}\left(x, \boldsymbol{p}_{T}^{2}\right)=f_{1 T}^{\perp q(s)}\left(x, \boldsymbol{p}_{T}^{2}\right) \quad & \quad \text { A smoking gun! © (or may be not ©): } \\
h_{1}^{\perp q(a)}\left(x, \boldsymbol{p}_{T}^{2}\right)=-\frac{1}{x} f_{1 T}^{\perp q(a)}\left(x, \boldsymbol{p}_{T}^{2}\right) . & \text { Angular motion of Partons }
\end{aligned}
$$

Also, transverse-momentum dependent moments can be calculated:

$$
\begin{aligned}
f_{1 T}^{\perp(1)}(x) & =\int d \boldsymbol{p}_{T} \frac{\boldsymbol{p}_{T}^{2}}{2 M^{2}} f_{1 T}^{\perp}\left(x, \boldsymbol{p}_{T}^{2}\right) \\
f_{1 T}^{\perp(1 / 2)}(x) & =\int d \boldsymbol{p}_{T} \frac{\left|\boldsymbol{p}_{T}\right|}{2 M} f_{1 T}^{\perp}\left(x, \boldsymbol{p}_{T}^{2}\right)
\end{aligned}
$$

Numerical Approach

Extracting the unknown parameters by fitting to known distribution functions (Following are some example data sets)

- Normalization of distributions $\quad \pi \int_{0}^{1} d x \int_{0}^{\infty} d \boldsymbol{p}_{T}^{2} f_{1 \text { norm }}^{q(X)}\left(x, \boldsymbol{p}_{T}^{2}\right)=1$

$$
\begin{aligned}
f_{1}^{u} & =\frac{3}{2} f_{1 \text { norm }}^{u(s)}+\frac{1}{2} f_{1 \text { norm }}^{u(a)} \\
f_{1}^{d} & =f_{1 \text { norm }}^{d\left(a^{\prime}\right)} .
\end{aligned}
$$

- For un-polarized distributions \rightarrow ZEUS2002 (ZEUS, s. Chekanov et al., Phys. Rev. D67, 012007 (2003), hep-ex/0208023)
- For helicity distributions \rightarrow GRSV2000 (M. Gluck, E. Reya, M. Stratmann, and W. Vogelsang, Phys. Rev. D63, 094005 (2001), hep-ph/001 1215)

Selected Results

Un-polarized distributions

FIG. 5: The \boldsymbol{p}_{T}^{2} dependence of the unpolarized distribution $f_{1}\left(x, \boldsymbol{p}_{T}^{2}\right)$ for up (left panel) and down quark (right panel). Different lines correspond to different values of x. The downturn of the function f_{1}^{u} at relatively small x is due to wavefunctions with nonzero orbital angular momentum.

Selected Results

first-moments of Sivers distributions

FIG. 10: The first \boldsymbol{p}_{T}-moment $x f_{1 T}^{\perp(1)}(x)$ of the Sivers function; left (right) panel for up (down) quark. Solid line for the results of the spectator diquark model. Darker shaded area for the uncertainty band due to the statistical error of the quark parametrizations from Ref. [79], lighter one from Ref. [80].

15

Selected Results comparison (spec. diquark vs LFCQM)

$\mathbf{x f}_{1 T}^{1(1) d}(\mathbf{x}) \quad$ A. Bacchetta et al arXiv: 0807.0323

"In particular, we found that the Sivers function for both up and down quarks is dominated by the interference of S and $\mathrm{P}_{-\mathbf{0 . 0 5}}$ wave components, while the $\mathrm{P}-\mathrm{D}$ wave interference terms contribute at most by 20%. Oh the other side, the relative weight of the P-D wave interference terms increases in the case of the Boer-Mulders

 function, in particular for the down-quark component"

Fig. 1. Results for the first transverse-momentum moment of the Sivers and Boer Mulders functions for up and down quarks, as function of x. See text for the explanation of the different curves.

FIG. 11: The model result for the spin density of unpolarized quarks in transversely polarized protons (see text for the precise definition) in \boldsymbol{p}_{T} space at $x=0.1$. Left panel for up quark, right panel for down quark. The circle with the arrow indicates the direction of the proton polarization.
In a SIDIS experiment, typically P (proton momentum) is antialigned to the z -axis that points in the direction of the momentum transfer. Hence, if the proton polarization is chosen along the x -axis, the spin density shows an asymmetry in momentum space along the p_{y} direction, whose size is driven by the Sivers function. In Fig. 11, we show $f_{q \text { prt }}\left(0.1, p_{r}\right)$ for $q=u$ (left panel) and $q=d$ (right panel). Since the Sivers function for the up (down) quark is negative (positive), the density is deformed towards positive (negative) values of p_{y}.

Thank you

