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2 Cross-section to TMDs

1.1 Formalism

Let’s consider a cross-section of Drell-Yan process for example. The transverse momentum dependent cross-

section can have two forms depending on the magnitude of the struck parton’s transverse momentum.
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Hij(Q) is “hard factor” which depends on the process, and bT is the Fourier conjugate to transverse

momentum kT.
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Hij(Q) is “hard factor” which depends on the process, and bT is the Fourier conjugate to transverse

momentum kT.

fi/Pa
(⇠a,bT) and fj/Pb

(⇠b,bT) have been defined as a hadron matrix elements in LQCD

Momentum-space version of fi/Pa
(⇠a,bT) (or fj/Pb

(⇠b,bT)) was decomposed into 8 leading TMD PDFs.
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MIT bag model [47, 48], in a constituent quark model [49] and in the spectator model for the pion [50]. A complete
calculation of all the leading-twist TMDs in a spectator model with scalar diquarks was presented in Ref. [27].
In this work, we choose a more phenomenological approach. We consider also axial-vector diquarks (in the following

often called simply vector diquarks), necessary for a realistic flavor analysis, and we further distinguish between
isoscalar (ud-like) and isovector (uu-like) spectators. We generate the relative phase necessary to produce T-odd
structures by approximating the gauge link operator with a one gluon-exchange interaction. We consider several
choices of form factors at the nucleon-quark-diquark vertex and several choices for the polarization states of the
diquark. All results are presented in analytic form and interpreted also in terms of overlaps of light-cone wave
functions, leading to a detailed analysis of the quantum numbers of the quark-diquark system. The free parameters of
the model are fixed by reproducing the phenomenological parametrization of unpolarized and longitudinally polarized
parton distributions at the lowest available scale.
The paper is organized as follows. In Sec. II, the analytic form for all the leading-twist TMDs is discussed for

the dipolar nucleon-diquark-quark form factor and for the light-cone choice of the diquark propagator, postponing
the results for the other explored combinations to the Appendices A (T-even TMDs) and B (T-odd TMDs). In
Sec. III, numerical results are shown and compared with phenomenological parametrizations, whenever available in
the literature. In Sec. IV, some conclusions are drawn.

II. ANALYTICAL RESULTS FOR TRANSVERSE-MOMENTUM-DEPENDENT PARTON DENSITIES

In this section we present the fundamentals of the model and we give in analytical form the results for the light-cone
wave functions (LCWFs) and the TMDs obtained in the model.

A. General framework

In the following we will make use of light-cone coordinates. We introduce the light-like vectors n± satisfying
n2
± = 0, n+ · n− = 1, and we describe a generic 4-vector a as

a = [a−, a+,aT ] (1)

where a± = a ·n∓. We will make use of the transverse tensor ϵijT = ϵµνijn+µn−ν , whose only nonzero components are
ϵ12
T

= −ϵ21
T

= 1. We choose a frame where the hadron momentum P has no transverse components, i.e.,

P =

[
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2P+
, P+,0

]

. (2)

The quark momentum can be written as

p =
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p2 + p2
T

2xP+
, xP+,pT

]

. (3)

In a hadronic state |P, S⟩ with momentum P and spin S, the density of quarks can be defined starting from the
quark-quark correlator (see, e.g., Ref. [15])

Φ(x,pT ;S) =

∫

dξ−dξT

(2π)3
eip·ξ ⟨P, S|ψ̄(0)U[0,ξ] ψ(ξ)|P, S⟩
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where

U[0,ξ] = P e−ig
R

ξ
0
dw·A(w) (5)

is the so-called gauge link operator, or Wilson line, connecting the two different space-time points 0, ξ, by all possible
ordered paths followed by the gluon field A, which couples to the quark field ψ through the coupling g. The gauge
link ensures that the matrix element of Eq. (4) is color-gauge invariant and arises from the interaction of the outgoing
quark field with the spectators inside the hadron. The leading contributions of the path [0, ξ] in space-time are
selected by the hard process in which the parton distributions appear, thus breaking standard universality of the
parton densities. For instance, in SIDIS the gauge link path in light-cone coordinates runs along

[0, ξ] ≡ (0, 0,0T ) → (0,∞,0T ) → (0,∞,∞T ) → (0,∞, ξT ) → (0, ξ−, ξT ) , (6)
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needed to calculate the leptoproduction cross sections in subleading order. We use the correlation function
Φα

A to identify interaction-dependent combinations in the distribution functions. As an example, from the first
relation above (Eq. 46) we obtain
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In this way we can rewrite all twist-three functions in a part containing twist-two distribution functions and
an interaction-dependent part, e.g., e = (m/Mx) f1 + ẽ. The results for all twist-three functions are explicitly
given in Appendix C, including results for the pT -integrated functions.
The antiquark distribution functions in a hadron are obtained from the matrix elements
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1

(2π)4

∫

d4x e−i p·x⟨P, S|L(0, x;n−)ψi(x)ψj(0)|P, S⟩. (52)

The antiquark distributions should be defined consistent with the replacement ψ → ψc = Cψ
T
, or Φ

[Γ]
= +Φc[Γ]

for Γ = γµ, iσµνγ5 and iγ5 and Φ
[Γ]

= −Φc[Γ] for Γ = 1 and γµγ5. Finally, the anticommutation relations for
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T ) = g1L(−x,p2
T ) and identically for h⊥1L, e, f

⊥, g′T , g
⊥
T , h

⊥
T and hT .

The procedure for the fragmentation functions obtained from the matrix element ∆(Ph, Sh; k) is similar. One
again starts with the general decomposition in twelve amplitudes Ai(k2, k ·Ph), replacing P → Ph and S → Sh.
In this case time reversal invariance cannot be applied, as the matrix elements ∆ij involve out-states containing
a hadron h, in contrast to the plane wave states in the case of the matrix elements Φij . A consequence is that
there are more fragmentation functions. The functions that appear in hard scattering processes can again be
expressed as specific Dirac projections of the correlation functions, integrated over k+,

∆[Γ](z,k′T ) =
1

4z

∫

dk+ Tr(∆Γ)

∣

∣

∣

∣

k−=P−
h /z, kT

=

∫

dξ+d2ξT
4z (2π)3

eik·ξ Tr⟨0|L(0, ξ;n+)ψ(ξ)a
†
hahψ(0)Γ|0⟩

∣

∣

∣

∣

ξ−=0

. (54)

The arguments of the functions are the lightcone fraction z = P−h /k− and the transverse momentum k′T = −zkT ,
which is the perpendicular momentum of the hadron h with respect to the quark momentum. In the definition of
the correlation functions ∆ the path is chosen in the plane x− = 0, in essence along the x+-direction, indicated
with ’path’ = n+ (see Appendix B). The spin vector is now parametrized as

Sh =

[

λh P
−
h

Mh
,−

λhM

2P−h
,ShT

]

=
λh zQ

Mh

√
2
n− +

λh Mh

zQ
√
2
n+ + ShT ≈ λh

Ph

Mh
+ ShT . (55)

In the last expression the contribution proportional to n+, which is irrelevant up to subleading order is omitted.
The role of the final state spin vector in determining the polarization of the produced hadrons is explained in
Appendix A. The following fragmentation functions appear at leading order (Mh/P

−
h )0 (twist-two),

∆[γ−](z,k′T ) = D1(z,k
′2
T ) +

ϵT ij kiTS
j
hT

Mh
D⊥1T (z,k

′2
T ), (56)

∆[γ−γ5](z,k′T ) = G1s(z,k
′
T ) (57)

∆[iσi−γ5](z,k′T ) = Si
hT H1T (z,k

′2
T ) +

kiT
Mh

H⊥1s(z,k
′
T ) +

ϵijT kTj

Mh
H⊥1 (z,k′2T ). (58)

At subleading order (Mh/P
−
h )1 (twist-three) one finds

∆[1](z,k′T ) =
Mh

P−h
E(z,k′2T ), (59)
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MIT bag model [47, 48], in a constituent quark model [49] and in the spectator model for the pion [50]. A complete
calculation of all the leading-twist TMDs in a spectator model with scalar diquarks was presented in Ref. [27].
In this work, we choose a more phenomenological approach. We consider also axial-vector diquarks (in the following

often called simply vector diquarks), necessary for a realistic flavor analysis, and we further distinguish between
isoscalar (ud-like) and isovector (uu-like) spectators. We generate the relative phase necessary to produce T-odd
structures by approximating the gauge link operator with a one gluon-exchange interaction. We consider several
choices of form factors at the nucleon-quark-diquark vertex and several choices for the polarization states of the
diquark. All results are presented in analytic form and interpreted also in terms of overlaps of light-cone wave
functions, leading to a detailed analysis of the quantum numbers of the quark-diquark system. The free parameters of
the model are fixed by reproducing the phenomenological parametrization of unpolarized and longitudinally polarized
parton distributions at the lowest available scale.
The paper is organized as follows. In Sec. II, the analytic form for all the leading-twist TMDs is discussed for

the dipolar nucleon-diquark-quark form factor and for the light-cone choice of the diquark propagator, postponing
the results for the other explored combinations to the Appendices A (T-even TMDs) and B (T-odd TMDs). In
Sec. III, numerical results are shown and compared with phenomenological parametrizations, whenever available in
the literature. In Sec. IV, some conclusions are drawn.

II. ANALYTICAL RESULTS FOR TRANSVERSE-MOMENTUM-DEPENDENT PARTON DENSITIES

In this section we present the fundamentals of the model and we give in analytical form the results for the light-cone
wave functions (LCWFs) and the TMDs obtained in the model.

A. General framework

In the following we will make use of light-cone coordinates. We introduce the light-like vectors n± satisfying
n2
± = 0, n+ · n− = 1, and we describe a generic 4-vector a as

a = [a−, a+,aT ] (1)

where a± = a ·n∓. We will make use of the transverse tensor ϵijT = ϵµνijn+µn−ν , whose only nonzero components are
ϵ12
T

= −ϵ21
T

= 1. We choose a frame where the hadron momentum P has no transverse components, i.e.,

P =

[

M2

2P+
, P+,0

]

. (2)

The quark momentum can be written as

p =

[

p2 + p2
T

2xP+
, xP+,pT

]

. (3)

In a hadronic state |P, S⟩ with momentum P and spin S, the density of quarks can be defined starting from the
quark-quark correlator (see, e.g., Ref. [15])

Φ(x,pT ;S) =

∫

dξ−dξT

(2π)3
eip·ξ ⟨P, S|ψ̄(0)U[0,ξ] ψ(ξ)|P, S⟩

∣

∣

∣

ξ+=0
, (4)

where

U[0,ξ] = P e−ig
R

ξ
0
dw·A(w) (5)

is the so-called gauge link operator, or Wilson line, connecting the two different space-time points 0, ξ, by all possible
ordered paths followed by the gluon field A, which couples to the quark field ψ through the coupling g. The gauge
link ensures that the matrix element of Eq. (4) is color-gauge invariant and arises from the interaction of the outgoing
quark field with the spectators inside the hadron. The leading contributions of the path [0, ξ] in space-time are
selected by the hard process in which the parton distributions appear, thus breaking standard universality of the
parton densities. For instance, in SIDIS the gauge link path in light-cone coordinates runs along

[0, ξ] ≡ (0, 0,0T ) → (0,∞,0T ) → (0,∞,∞T ) → (0,∞, ξT ) → (0, ξ−, ξT ) , (6)

Gauge link path for SIDIS process:

Gauge link path for Drell-Yan process:
Runs in the opposite direction via

The TMDs can be written in-terms of these correlators…

Sign difference in SIDIS and DY
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while in the Drell–Yan case it runs in the opposite direction through −∞. This fact leads to a sign difference in T-odd
parton densities, as mentioned for the first time in Ref. [16].
Similarly to Ref. [42], we evaluate the correlator of Eq. (4) in the spectator approximation, i.e. we insert a com-

pleteness relation and at tree-level we truncate the sum over final states to a single on-shell spectator state with mass
MX , thus getting the analytic form

Φ(x,pT , S) ∼
1

(2π)3
1

2(1− x)P+
M(0)

(S)M(0)(S)
∣

∣

∣

p2=τ(x,p
T
)
, (7)

where p is the momentum of the active quark, m its mass, and the on-shell condition (P −p)2 = M2
X for the spectator

implies for the quark the off-shell condition

p2 ≡ τ(x,pT ) = −
p2

T
+ L2

X(m2)

1− x
+m2 , L2

X(m2) = xM2
X + (1− x)m2 − x(1− x)M2 , (8)

with M the hadron mass.

P

p

p − P
Y

FIG. 1: Tree-level cut diagram for the calculation of T-even leading-twist parton densities. The dashed line indicates both
scalar and axial-vector diquarks.

We assume the spectator to be point-like, with the quantum numbers of a diquark. Hence, the proton can couple to
a quark and to a spectator diquark with spin 0 (scalar X = s) or spin 1 (axial-vector X = a), as well as with isospin
0 (isoscalar ud-like system) or isospin 1 (isovector uu-like system). Therefore, the tree-level “scattering amplitude”
M(0) is given by (see Fig. 1)

M(0)(S) = ⟨P − p|ψ(0)|P, S⟩ =

⎧

⎪

⎨

⎪

⎩

i

p/−m
Ys U(P, S) scalar diquark,

i

p/−m
ε∗µ(P − p,λa)Yµ

a U(P, S) axial-vector diquark,
(9)

and is actually a Dirac spinor because of the understood spinorial indices of the quark field ψ. The εµ(P − p,λa) is
the 4-vector polarization of the spin-1 vector diquark with momentum P − p and helicity states λa. When summing
over all polarizations states, several choices have been used for dµν =

∑

λa
ε∗µ(λa)

εν(λa)
:

dµν(P − p) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−gµν +
(P − p)µnν

− + (P − p)νnµ
−

(P − p) · n−
−

M2
a

[(P − p) · n−]2
nµ
− nν

− (see Ref. [51]),

−gµν +
(P − p)µ (P − p)ν

M2
a

(see Ref. [36]),

−gµν +
Pµ P ν

M2
a

(see Ref. [42]),

−gµν (see Ref. [46]).

(10)

The different forms for the diquark propagator correspond to different physical theories and lead to different results
for the parton distribution functions. We have analyzed all of them except for the third one, which was extensively
studied already in Ref. [42]. However, we think that the first one is preferable to the others. The motivation is
that in the spectator model we have to take into account that the diquarks have an electric charge and can couple
to the virtual photon in DIS. In other words, in this model the quarks are not the only charged partons in the
proton: the diquarks are also charged partons and they have spin different from 1

2 . The scalar diquark couples only
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Notice that the Proton (nucleon) can couple to a quark (active) and
to a spectator diquark with spin 0 or 1 as well as isospin 0 and 1.
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diquark models

Nucleon-quark-diquark vetex

4

to longitudinally polarized photons and gives contribution to the structure function FL. This leads to a violation
of the Callan–Gross relation, but leaves unchanged the (leading-order) interpretation of the structure function FT

as a charge-weighted sum of quark distribution functions. This seems the best way to reduce the phenomenological
impact of the problem represented by the presence of the diquarks. For the vector diquark, we checked that the same
situation occurs when only the light-cone transverse polarization states of the diquark are propagated, i.e., when the
first choice of Eq. (10) for the polarization sum is used. In the other cases, the diquark would give a contribution
also to the structure function FT . On top of this, we remark that the last choice of Eq. (10) for the polarization sum
introduces unphysical polarization states of the vector diquark (see discussion in next section). In conclusion, in the
following we shall consider only light-cone transverse polarizations of the diquark, make only a few comments on the
other choices, and leave the complete list of results in the Appendices.
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p − P
Y

FIG. 2: Tree-level cut diagram for the calculation of T-even leading-twist parton densities for an active scalar or vector diquark
(dashed line), with a spectator quark (solid line).

Equation (9) can be further elaborated by choosing the nucleon-quark-diquark vertex Y. We choose the scalar and
vector vertices to be

Ys = igs(p
2) 1l , Yµ

a = i
ga(p2)√

2
γµ γ5 , (11)

where gX(p2) is a suitable form factor. Other choices are possible (see, e.g., Refs [36, 42]), but we limit ourselves to
these ones, which are the simplest. For the form factor, we explored three possible choices:

gX(p2) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

gp.l.X point-like,

gdipX

p2 −m2

|p2 − Λ2
X |2

dipolar,

gexpX e (p2−m2)/Λ2
X exponential,

(12)

where gX and ΛX are appropriate coupling constants and cutoffs, respectively, to be considered as free parameters
of the model together with the mass of the diquark MX . All these parameters can in principle be different for each
type of diquark. Only the point-like coupling can be derived from a specific Lagrangian with protons, quarks and
diquarks as fundamental degrees of freedom, and meant to effectively describe QCD in the nonperturbative regime.
Since our interest here is mainly phenomenological, we prefer to introduce form factors. They smoothly suppress the
influence of high pT — where our theory cannot be trusted — and eliminate the logarithmic divergences arising after
pT integration when using a point-like coupling. For later use, we note that the dipolar form factor can be usefully
rewritten, using Eq. (8), as

gX(p2) = gdipX

p2 −m2

|p2 − Λ2
X |2

= gdipX

(p2 −m2) (1 − x)2

(p2
T
+ L2

X(Λ2
X))

2 . (13)

In summary, we have analyzed in total nine combinations of nucleon-quark-diquark form factors and forms for the
diquark propagator. As mentioned above, we will discuss analytical and numerical results involving the dipolar form
factor and the first choice of Eq. (10) (transverse diquark polarizations only), listing the formulae for the other cases
in the Appendices A and B. To keep the notation lighter, we will denote the coupling gdipX simply as gX from now on.
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situation occurs when only the light-cone transverse polarization states of the diquark are propagated, i.e., when the
first choice of Eq. (10) for the polarization sum is used. In the other cases, the diquark would give a contribution
also to the structure function FT . On top of this, we remark that the last choice of Eq. (10) for the polarization sum
introduces unphysical polarization states of the vector diquark (see discussion in next section). In conclusion, in the
following we shall consider only light-cone transverse polarizations of the diquark, make only a few comments on the
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Equation (9) can be further elaborated by choosing the nucleon-quark-diquark vertex Y. We choose the scalar and
vector vertices to be
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γµ γ5 , (11)

where gX(p2) is a suitable form factor. Other choices are possible (see, e.g., Refs [36, 42]), but we limit ourselves to
these ones, which are the simplest. For the form factor, we explored three possible choices:
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where gX and ΛX are appropriate coupling constants and cutoffs, respectively, to be considered as free parameters
of the model together with the mass of the diquark MX . All these parameters can in principle be different for each
type of diquark. Only the point-like coupling can be derived from a specific Lagrangian with protons, quarks and
diquarks as fundamental degrees of freedom, and meant to effectively describe QCD in the nonperturbative regime.
Since our interest here is mainly phenomenological, we prefer to introduce form factors. They smoothly suppress the
influence of high pT — where our theory cannot be trusted — and eliminate the logarithmic divergences arising after
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In summary, we have analyzed in total nine combinations of nucleon-quark-diquark form factors and forms for the
diquark propagator. As mentioned above, we will discuss analytical and numerical results involving the dipolar form
factor and the first choice of Eq. (10) (transverse diquark polarizations only), listing the formulae for the other cases
in the Appendices A and B. To keep the notation lighter, we will denote the coupling gdipX simply as gX from now on.
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Some results for T-even functions7
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C. T-even functions

The simplest example of T-even parton density is the unpolarized quark distribution f1(x,pT ), defined as

f1(x,pT ) =
1

4
Tr

[

(Φ(x,pT , S) + Φ(x,pT ,−S)) γ+
]

+ h.c.

=
1

4

1

(2π)3
1

2(1− x)P+
Tr

[(

M(0)
(S)M(0)(S) +M(0)

(−S)M(0)(−S)
)

γ+
]

+ h.c. .
(43)

By inserting in M(0) of Eq. (9) the rules (11) for the nucleon-quark-diquark vertex, the dipolar form factor of Eq. (13),
and the first choice in Eq. (10) for the sum of the polarization states of the diquark (transverse polarizations only),
we get

f q(s)
1 (x,pT ) =

g2s
(2π)3

[(m+ xM)2 + p2
T
] (1− x)3

2 [p2
T
+ L2

s(Λ
2
s)]

4
(44)

f q(a)
1 (x,pT ) =

g2a
(2π)3

[p2
T (1 + x2) + (m+ xM)2 (1− x)2] (1 − x)

2 [p2
T + L2

a(Λ2
a)]4

. (45)

The same result can be recovered through the alternative definition

f q(s)
1 (x,p2

T ) =
1

16π3

1

2

∑

λN=±

∑

λq=±

|ψλN

λq
|2 =

1

16π3

(

|ψ+
+ |2 + |ψ+

−|2
)

(46)

f q(a)
1 (x,p2

T
) =

1

16π3

1

2

∑

λN=±

∑

λq=±

∑

λa=±

|ψλN

λqλa
|2 =

1

16π3

(

|ψ+
++|2 + |ψ+

+−|2 + |ψ+
−+|2 + |ψ+

−−|2
)

, (47)

and replacing the results for the LCWFs using Eqs. (20) and (32) for the scalar and vector diquark, respectively.
If we use, instead, the second option of Eq. (10) for the sum over polarizations of the vector diquark (transverse

and longitudinal polarizations), we obtain

f q(a)
1 (x,pT ) +

1

16π3

(

|ψ+
+0|

2 + |ψ+
−0|

2
)

. (48)

The complete expression is given in Eq. (A22) and corresponds to Eq. (10) of Ref. [36] with Rg = 0.
Finally, the results with the last choice of Eq. (10) (transverse, longitudinal, and time-like polarizations) can be

written as

f q(a)
1 (x,pT ) +

1

16π3

(

|ψ+
+0|

2 + |ψ+
−0|

2
)

−
1

16π3

(

|ψ+
+t|2 + |ψ+

−t|2
)

. (49)

Note that the contribution of the diquark time-like polarization states enters with an overall negative sign. The
complete expression is given in Eq. (A26) and corresponds to Eq. (8) of Ref. [46].
Turning back to our preferred choice, i.e. the first option of Eq. (10) (light-cone transverse polarizations only), we

now compute all other T-even, leading-twist TMDs. Their definition in terms of traces of the quark-quark correlator
can be derived from, e.g., Eqs. (3.19) and ff. in Ref. [15]. To write them in terms of LCWFs, we need to introduce
the polarization state in a generic direction ŜT = (cosφS , sinφS) in the transverse plane

U(P, ↑) =
1√
2

(

U(P,+) + eiφSU(P,−)
)

, (50)

U(P, ↓) =
1√
2

(

U(P,+) + ei(φS+π)U(P,−)
)

. (51)

For φS = 0,π/2, we recover the (positive) polarizations along the x̂ and ŷ axis, respectively [53]. For the quark, we
will use similar decompositions and use the notation ŜqT and φSq , i.e.,

ū(p, ↑) =
1√
2

(

ū(p,+) + e−iφSq ū(p,−)
)

, (52)

ū(p, ↓) =
1√
2

(

ū(p,+) + e−i(φSq+π)ū(p,−)
)

. (53)

Unpolarized quark distribution:

Using the choices (mentioned in the previous slide) for a dipolar form factor,
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Note that the contribution of the diquark time-like polarization states enters with an overall negative sign. The
complete expression is given in Eq. (A26) and corresponds to Eq. (8) of Ref. [46].
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Similarly the results for the rest of T-even functions can be obtained….
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FIG. 3: Interference between the one-gluon exchange diagram in eikonal approximation and the tree level diagram in the
spectator model. The Hermitean conjugate diagram is not shown.

For the moment, we use Abelian gluons. The QCD color structure will be recovered at the end. The Feynman rules
to be used for the eikonal vertex and propagator are [1, 56]

ρ

= −iec n
ρ
− ,

(−l)
=

i

−l+ + iϵ
, (82)

where ec is the color charge of the quark and the sign of iϵ for the eikonal line corresponds to the gauge link of SIDIS.
In cut diagrams one must take the complex conjugate of these expressions for vertices and propagators on the right
of the final-state cut.
The explicit form of the contribution Φ(1) to the correlation function corresponding to Fig. 3 is

Φ(1)(x,pT , S) ∼
1

(2π)3
1

2(1− x)P+

(

M(0)
(S)M(1)(S) +M(1)

(S)M(0)(S)
)
∣

∣

∣

p2=τ(x,p
T
)
, (83)

where τ(x,p
T
) is defined in Eq. (8) and

M(1)(S) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−
∫

d4l

(2π)4
iec Γs ρ n

ρ
−( p/− l/+m)Ys U(P, S)

(D1 + iε) (D2 − iε) (D3 + iε) (D4 + iε)
scalar diquark,

−
∫

d4l

(2π)4
iec ε∗σ(P − p,λa)Γνσ

a ρ n
ρ
−( p/− l/+m) dµν(p− l − P )Yµ

a U(P, S)

(D1 + iε) (D2 − iε) (D3 + iε) (D4 + iε)
axial-vector diquark,

(84)
where for convenience we have introduced the notation

D1 = l2 −m2
g,

D2 = l+,

D3 = (p− l)2 −m2,

D4 = (P − p+ l)2 −M2
X .

(85)

In order to explicitly calculate M(1), we need to model the gluon vertex with the scalar (Γs) and axial vector (Γa)
diquark in Fig. 3:

Γρ
s = iec (2P − 2p+ l)ρ

Γνσ
a ρ = −iec

[

(2P − 2p+ l)ρ g
νσ − (P − p+ (1 + κa)l)

σgνρ − (P − p− κal)
ν gσρ

]

, (86)

where ec is the diquark color charge, which is the same for scalar and vector ones and identical to that of the quark; κa
is the diquark anomalous chromomagnetic moment. The structure of the vector diquark-gluon vertex resembles the
one for the coupling between the photon and a spin-1 particle (see, e.g., Ref. [57]); for κa = 1 the standard point-like
photon-W coupling is recovered (see, e.g., Ref. [58]).
The Sivers and Boer-Mulders functions can then be computed as

εijT pTiSTj

M
f⊥
1T (x,p

2
T ) = −

1

4

1

(2π)3
1

2(1− x)P+
Tr

[(

M(1)(S)M(0)
(S)−M(1)(−S)M(0)

(−S)
)

γ+
]

+ h.c. , (87)

εijT pTj

M
h⊥
1 (x,p

2
T
) =

1

4

1

(2π)3
1

2(1− x)P+
Tr

[(

M(1)(S)M(0)
(S) +M(1)(−S)M(0)

(−S)
)

iσi+ γ5
]

+ h.c. . (88)

9

Some interesting relations can be evinced from the above expressions. For example, the transversity with scalar
diquark saturates the Soffer bound, while for axial-vector diquarks the relation is more involved:

hq(s)
1 (x,p2

T ) =
1

2

(

f q(s)
1 (x,p2

T ) + gq(s)1 (x,p2
T )
)

, (70)

hq(a)
1 (x,p2

T
) = −

x

1 + x2

1

2

(

f q(a)
1 (x,p2

T
) + gq(a)1 (x,p2

T
)
)

. (71)

When restricting to the results with scalar diquark, the g1T distribution is connected to two other partners by the
relations

gq(s)1T (x,p2
T ) = −h⊥ q(s)

1L (x,p2
T ) , gq(s)1T (x,p2

T ) =
2M

m+ xM
hq(s)
1 (x,p2

T ) , (72)

while for axial-vector diquarks we have

gq(a)1T (x,p2
T
) = xh⊥ q(a)

1L (x,p2
T
) . (73)

This relation is however different when considering spectator diquarks with more degrees of freedom (see App. A).
Our results seem to indicate that no general relation exists between g1T and h⊥

1L, contrary to what is proposed in
Ref. [43]. The reason is connected to the difference between LCWFs with Lz = 1 and Lz = −1, as in Eqs. (24) and
(25). We also observe that in the vector-diquark case g1L − h1 and h⊥

1T are not simply related through the relation
suggested in Ref. [54]. We are led to conclude that such a relation is not general.
The pT -integrated results are

f q(s)
1 (x) =

g2s
(2π)2

[2 (m+ xM)2 + L2
s(Λ

2
s)] (1− x)3

24L6
s(Λ

2
s)

(74)

f q(a)
1 (x) =

g2a
(2π)2

[2 (m+ xM)2 (1 − x)2 + (1 + x2)L2
a(Λ

2
a)] (1− x)

24L6
a(Λ2

a)
(75)

gq(s)1 (x) =
g2s

(2π)2
[2 (m+ xM)2 − L2

s(Λ
2
s)] (1− x)3

24L6
s(Λ

2
s)

(76)

gq(a)1 (x) = −
g2a

(2π)2
[2 (m+ xM)2 (1− x)2 − (1 + x2)L2

a(Λ
2
a)] (1 − x)

24L6
a(Λ2

a)
(77)

hq(s)
1 (x) =

g2s
(2π)2

(m+ xM)2 (1− x)3

12L6
s(Λ

2
s)

(78)

hq(a)
1 (x) = −

g2a
(2π)2

x(1 − x)

12L4
a(Λ2

a)
. (79)

D. T-odd functions

The two leading-twist T-odd structures are the Sivers and Boer-Mulders distributions. They are defined as

εijT pTiSTj

M
f⊥
1T (x,p

2
T
) = −

1

4
Tr

[

(Φ(x,pT , S)− Φ(x,pT ,−S)) γ+
]

+ h.c. , (80)

εijT pTj

M
h⊥
1 (x,p

2
T ) =

1

4
Tr

[

(Φ(x,pT , S) + Φ(x,pT ,−S)) iσi+ γ5
]

+ h.c. . (81)

At tree level, these expressions vanish because there is no residual interaction between the active quark and the spec-
tators; equivalently, there is no interference between two competing channels producing the complex amplitude whose
imaginary part gives the T-odd contribution. We can generate such structures by considering the interference between
the tree-level scattering amplitude and the single-gluon-exchange scattering amplitude in eikonal approximation, as
shown in Fig. 3 (the Hermitean conjugate partner must also be considered). This corresponds just to the leading-twist
one-gluon-exchange approximation of the gauge link operator of Eq. (5) [55].

At tree-level, these functions vanish because no interaction between the active quark and diquark (no interference 
between the scattering amplitudes);  but one can generate such a non-zero contribution by considering the 
interference between tree-level scattering amplitude and One-gluon-exchange between active quark and diquark.
[corresponds to leading-twist one-gluon-exchange operator of the gauge-link]
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D. T-odd functions

The two leading-twist T-odd structures are the Sivers and Boer-Mulders distributions. They are defined as
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At tree level, these expressions vanish because there is no residual interaction between the active quark and the spec-
tators; equivalently, there is no interference between two competing channels producing the complex amplitude whose
imaginary part gives the T-odd contribution. We can generate such structures by considering the interference between
the tree-level scattering amplitude and the single-gluon-exchange scattering amplitude in eikonal approximation, as
shown in Fig. 3 (the Hermitean conjugate partner must also be considered). This corresponds just to the leading-twist
one-gluon-exchange approximation of the gauge link operator of Eq. (5) [55].
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For the moment, we use Abelian gluons. The QCD color structure will be recovered at the end. The Feynman rules
to be used for the eikonal vertex and propagator are [1, 56]
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, (82)

where ec is the color charge of the quark and the sign of iϵ for the eikonal line corresponds to the gauge link of SIDIS.
In cut diagrams one must take the complex conjugate of these expressions for vertices and propagators on the right
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∣

∣

∣

p2=τ(x,p
T
)
, (83)

where τ(x,p
T
) is defined in Eq. (8) and
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⎪
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⎨
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⎪

⎪

⎩
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In order to explicitly calculate M(1), we need to model the gluon vertex with the scalar (Γs) and axial vector (Γa)
diquark in Fig. 3:
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where ec is the diquark color charge, which is the same for scalar and vector ones and identical to that of the quark; κa
is the diquark anomalous chromomagnetic moment. The structure of the vector diquark-gluon vertex resembles the
one for the coupling between the photon and a spin-1 particle (see, e.g., Ref. [57]); for κa = 1 the standard point-like
photon-W coupling is recovered (see, e.g., Ref. [58]).
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In order to explicitly calculate M(1), we need to model the gluon vertex with the scalar (Γs) and axial vector (Γa)
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is the diquark anomalous chromomagnetic moment. The structure of the vector diquark-gluon vertex resembles the
one for the coupling between the photon and a spin-1 particle (see, e.g., Ref. [57]); for κa = 1 the standard point-like
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Again, results have been produced for the three different choices of both Eq. (12) for the form factors at the
nucleon-quark-diquark vertex, as well as of the axial-vector diquark propagator on each side of the diquark-gluon
vertex in Fig. 3. Consistently with the case of T-even parton densities, here we show the results for the dipolar form
factor of Eq. (13) and for the light-cone transverse polarizations of the vector diquark, i.e. the first choice in Eq. (10),
the other combinations being listed in App. B. Combining the rules (11) with the (86) ones, we can rewrite Eq. (87)
and (88) as

f⊥ q(s)
1T (x,p2

T ) = −
gs
4

1

(2π)3
M e2c

2(1− x)P+

(1− x)2

[p2
T + L2

s(Λ2
s)]2

2 ImJs
1 (89)

f⊥ q(a)
1T (x,p2

T ) =
ga
4

1

(2π)3
M e2c

4(1− x)P+

(1− x)2

[p2
T + L2

a(Λ2
a)]2

2 ImJa
1 , (90)

h⊥ q(s)
1 (x,p2

T ) = f⊥ q(s)
1T (x,p2

T ) (91)

h⊥ q(a)
1 (x,p2

T
) = −

1

x
f⊥ q(a)
1T (x,p2

T
). (92)

Note that for scalar diquarks the spectator model gives the same result for the Sivers and the Boer-Mulders functions,
independent of the choice of the nucleon-quark-diquark form factor (see App. B).
In Eqs. (89) and ff., the expressions J1 contain the integral over the loop momentum, the denominators D1,2,3,4

defined in Eq. (85), and the evaluation of the trace of the projected amplitude. For instance (see App. B1)

Js
1 =

∫

d4l

(2π)4
gs
(

(p− l)2
)

(D1 + iε) (D2 − iε) (D3 + iε) (D4 + iε)
4i
(

l+ + 2(1− x)P+
)(

l+M − P+(m+ xM)
lT · pT

p2
T

)

. (93)

To calculate its imaginary part, it is sufficient to make the replacements

1

D2 − iε
→ 2πiδ(D2),

1

D4 + iε
→ −2πiδ(D4) (94)

which corresponds to applying the Cutkosky rules [59], cutting the diquark propagator (D4) and the eikonalized quark
one (D2). We then get

2 Im Js
1 =

∫

d4l

(2π)4
gs
(

(p− l)2
)

D1D3
4
(

l+ + 2(1− x)P+
)
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l+M − P+(m+ xM)
lT · pT

p2
T

)

(2πi) δ(D2) (−2πi) δ(D4)

= −4P+ (m+ xM) (1− x) gs I1 .
(95)

The calculation of I1 depends on the form factor used. Their calculation can be found in App. C. For the case of the
dipolar form factor we obtain

− 4P+ (m+ xM) (1− x) gs Idip
1 = gs

P+ (m+ xM) (1 − x)2

πL2
s(Λ2

s) [p2
T + L2

s(Λ2
s)]

. (96)

If the T-odd structures were deduced from the Drell–Yan amplitude, the M(1) of Eq. (84) would involve a (l++ iε)
propagator, leading to the opposite sign in the cutting rule for D2. In the spectator model, this is the origin of the
predicted sign change for f⊥

1T and h⊥
1 when extracting them in Drell–Yan spin asymmetries rather than in SIDIS

ones [16]. Analogously to Eq. (95), we obtain

2 Im Ja
1 = −8P+ x (m+ xM) ga Idip

1 = ga
2P+ x(1 − x) (m+ xM)

πL2
a(Λ

2
a) [p

2
T
+ L2

a(Λ
2
a)]

. (97)

By inserting these results in the model expressions of Eqs. (89) to (92), we come to the final form of the Sivers and
Boer-Mulders functions with scalar and axial vector diquarks:

Note: for scalar diquarks
Sivers function = Boer-Mulders function
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If the T-odd structures were deduced from the Drell–Yan amplitude, the M(1) of Eq. (84) would involve a (l++ iε)
propagator, leading to the opposite sign in the cutting rule for D2. In the spectator model, this is the origin of the
predicted sign change for f⊥
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By inserting these results in the model expressions of Eqs. (89) to (92), we come to the final form of the Sivers and
Boer-Mulders functions with scalar and axial vector diquarks:
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By inserting these results in the model expressions of Eqs. (89) to (92), we come to the final form of the Sivers and
Boer-Mulders functions with scalar and axial vector diquarks:
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To connect the “Abelian” version of the gluon interaction to the QCD color interaction we shall apply the replace-
ment [13]

e2c → 4πCFαs. (102)

The Sivers and Boer-Mulders functions obtained in our model behave as 1/p6
T
at high p2

T
, similarly to the f1 in

Eq. (44). As observed also in Ref. [60], this leads to a breaking of the positivity bounds [9] for sufficiently high
values of p2

T
. This problem is due to the fact that the T-odd functions have been calculated at order α1

S , while the
T-even functions at order α0

S . At high p2
T , QCD radiative corrections generate a 1/p2

T tail for f1 and a 1/p4
T tail for

f⊥
1T [12]. Our model is supposed to be valid for p2

T
∼ M2 and for reasonable choices of the parameters no problems

with positivity occurr in this region.
Often the following transverse-momentum moments of the Sivers and Boer-Mulders functions are used:
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In our model, they turn out to be
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E. T-odd functions: overlap representation

As already mentioned above, T-odd leading-twist parton distributions arise from the interference of two channels
leading to the same final state; for the case considered here (and depicted in Fig. 3), the two channels are given by

Diquark spectator model for T-odd functions
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E. T-odd functions: overlap representation

As already mentioned above, T-odd leading-twist parton distributions arise from the interference of two channels
leading to the same final state; for the case considered here (and depicted in Fig. 3), the two channels are given by

Also, transverse-momentum dependent moments can be calculated:

A smoking gun! J (or may be not L ): 
Angular motion of Partons
(for axial-vector diquark spectator)



Numerical Approach 

´ Normalization of distributions

´ For un-polarized distributions à ZEUS2002 (ZEUS, S. Chekanov et al., Phys. Rev. D67, 
012007 (2003), hep-ex/0208023)

´ For helicity distributions à GRSV2000 (M. Gluck, E. Reya, M. Stratmann, and W. 
Vogelsang, Phys. Rev. D63, 094005 (2001), hep-ph/0011215)
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Extracting the unknown parameters by fitting to known distribution functions
(Following are some example data sets)

15

For the helicity distributions gu1 and gd1 , we chose the leading-order (LO) version from Ref. [64] (GRSV2000) at
Q2 = 0.26 GeV2. Since this parametrization comes with no error estimate, we assigned a fixed relative error of 10%
and 25% to the up and down quark distributions, respectively, which is reasonably similar to the error estimates of
other parametrizations at higher Q2 (see, e.g., Ref. [65]).
Finally, in order to perform the fit we arbitrarily chose to select from each parametrization 25 equally spaced points

in the range x = 0.1 to 0.7.
The free parameters of the model include the quark mass m, the nucleon-quark-diquark coupling gX , the diquark

mass MX , and the cutoff ΛX in the nucleon-quark-diquark form factor, for X = s, a scalar and axial-vector diquarks.
It turns out that in order to achieve a good fit we need also to make a distinction between the two isospin states
of the vector diquark. Hence, we will use ga Ma, and Λa, for the coupling, mass and cutoff of the vector isoscalar
diquark with I3 = 0 (corresponding to the ud system), and g′a, M

′
a, and Λ′

a, for the normalization, mass and cutoff of
the vector isovector diquark with I3 = 1 (corresponding to the uu system).
In order to reduce the number of free parameters, we decided to fix the value of the constituent quark mass to

m = 0.3 GeV. We checked that the results are not very sensitive to the value of this parameter.

To perform the fit, we need to discuss the relation between the functions f q(s)
1 , f q(a)

1 and f q(a′)
1 , computed in the

model, and the functions fu
1 and fd

1 of the global fits. For ease of interpretation, it is better to use normalized versions

of the f q(X)
1 . Therefore, we write f q(X)

1 norm =
(

N2
X/g2X

)

f q(X)
1 where NX are normalization constants determined by

imposing

π

∫ 1

0
dx

∫ ∞

0
dp2

T
f q(X)
1 norm(x,p

2
T
) = 1. (121)

Quite generally, the relation between quark flavors and diquark types can be written as

fu
1 = c2s f

u(s)
1 norm + c2a f

u(a)
1 norm (122)

fd
1 = c′2a fd(a′)

1 norm . (123)

We will refer to the coefficients cX as “couplings”, although they differ from the original couplings gX by the normal-
ization constants NX . They are free parameters of the model.
In past versions of the spectator diquark model [42], the quarks were assumed to occupy the lowest-energy available

orbital with positive parity (JP = 1
2

+
); in this case, the proton wave function assumes an SU(4)=SU(2)⊗SU(2) spin-

isospin symmetry, leading to probabilistic weights 3:1:2 among the scalar isoscalar (quark u with diquark s), vector
isoscalar (quark u with diquark a), and vector isovector (quark d with diquark a′) configurations. Moreover, the overall
size of the couplings was adjusted to give a total number of three quarks. These choices led to the relations [42]

fu
1 =

3

2
fu(s)
1 norm +

1

2
fu(a)
1 norm (124)

fd
1 = fd(a′)

1 norm . (125)

There are two reasons to criticize this choice. First of all, in the present work the quark-diquark system can have a
nonvanishing relative orbital angular momentum, as shown in the previous section. Thus, the proton wave function
no longer displays an SU(4) symmetry. Secondly, strictly speaking the SU(4) decomposition gives coefficients that
are three times smaller then the ones in the above relation. This is because the total number of quarks “seen” in the
spectator model is only one, since the other two are always hidden inside the diquark. This is actually a fundamental
limitation of the spectator model, it is independent of the SU(4) choice, and in our opinion it has not been sufficiently
stressed in the literature. The only possible way out is to consider the diquark not as an elementary particle, but as
formed by two quarks that can be also probed by the photon (see, e.g., Ref. [66]).
A different way to see this problem is by considering the (longitudinal) momentum sum rule. Since also the diquarks

can carry momentum, they should be included in the corresponding sum rule.3 Using the handbag diagram of Fig. 2,

we calculated the corresponding diquark distribution function fX(q)
1 for the active diquark in the state X and the

spectator quark with flavor q, again using the first choice in Eq. (10) (independently of the choice of form factor). We
found the remarkable property

fX(q)
1 (x) = f q(X)

1 (1 − x). (126)

3 A similar approach has been used in Ref. [25] to verify in the spectator model the validity of the so-called Burkardt sum rule [67], which
is related to transverse-momentum conservation.
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′
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the vector isovector diquark with I3 = 1 (corresponding to the uu system).
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of the f q(X)
1 . Therefore, we write f q(X)

1 norm =
(

N2
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)
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π
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0
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2
T
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we calculated the corresponding diquark distribution function fX(q)
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Diquark MX (GeV) ΛX (GeV) cX

Scalar s (uu) 0.822 ± 0.053 0.609 ± 0.038 0.847 ± 0.111

Axial-vector a (ud) 1.492 ± 0.173 0.716 ± 0.074 1.061 ± 0.085

Axial-vector a′ (uu) 0.890 ± 0.008 0.376 ± 0.005 0.880 ± 0.008

TABLE I: Results for the model parameters with dipolar nucleon-quark-diquark form factor and light-cone transverse polariza-
tions of the vector diquark: the diquark masses MX , the cutoffs ΛX in the form factors, and the cX couplings for X = s, a, a′

scalar isoscalar, vector isoscalar, and vector isovector diquarks. The fit was performed using the MINUIT program on the
parametrization of f1(x) from Ref. [63] (ZEUS2002), and of g1(x) from Ref. [64] (GRSV2000) at LO, reaching a χ2/d.o.f. =
3.88.
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FIG. 5: The p2
T dependence of the unpolarized distribution f1(x,p

2
T ) for up (left panel) and down quark (right panel). Different

lines correspond to different values of x. The downturn of the function fu
1 at relatively small x is due to wavefunctions with

nonzero orbital angular momentum.

B. Unpolarized parton densities

With the above model parameters, the proton momentum fraction Pq carried by valence quarks, is

Pq =

∫ 1

0
dxx

[

c2s f
u(s)
1 norm(x) + c2a f

u(a)
1 norm(x) + c′2a fd(a′)

1 norm(x)
]

=

∫ 1

0
dxx

[

fu
1 (x) + fd

1 (x)
]

≈ 0.584± 0.010 , (128)

which is consistent with the ZEUS result of 0.55 [63].
While for fd

1 only the vector-isovector diquark plays a role, for fu
1 it turns out that the contributions from the scalar

and vector diquark have about the same size. The vector diquark is always dominant at high x. However, we know
that the model is not reliable in the limit x → 1. In fact, the behavior at high x does not follow the predictions of
Ref. [68], since our model does not correctly take into account the dominant dynamics in that region.
We consider now the p2

T dependence of the unpolarized distribution function obtained in our model. In Fig. 5 we
show the behavior of the up and down components as functions of p2

T
for a few values of the variable x.

First of all, we observe that fu
1 displays a nonmonotonic behavior at x ≤ 0.02. This is due to the contribution

from LCWFs with nonzero orbital angular momentum. Although the details of where and how this feature occurs
is model-dependent, it is generally true that the contribution of LCWFs with one unit of orbital angular momentum
falls linearly with p2

T
for p2

T
→ 0. This behavior is sharply different from the contribution of LCWFs with no orbital

angular momentum. This simple example shows how the study of the p2
T dependence of unpolarized TMDs can

therefore already expose some effects due to orbital angular momentum.
Finally, we observe that in our model the average quark transverse momentum decreases as x increases, and that

down quarks on average carry less transverse momentum than up quarks. Although this is just a model result, a
general message can be derived: the widely used assumption of a flavor-independent quark transverse momentum
distribution is already falsified in a relatively simple model (see also Ref. [69]).
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lines correspond to different values of x. The downturn of the function fu
1 at relatively small x is due to wavefunctions with

nonzero orbital angular momentum.

B. Unpolarized parton densities

With the above model parameters, the proton momentum fraction Pq carried by valence quarks, is

Pq =

∫ 1

0
dxx

[

c2s f
u(s)
1 norm(x) + c2a f

u(a)
1 norm(x) + c′2a fd(a′)

1 norm(x)
]

=

∫ 1

0
dxx

[

fu
1 (x) + fd

1 (x)
]

≈ 0.584± 0.010 , (128)

which is consistent with the ZEUS result of 0.55 [63].
While for fd

1 only the vector-isovector diquark plays a role, for fu
1 it turns out that the contributions from the scalar

and vector diquark have about the same size. The vector diquark is always dominant at high x. However, we know
that the model is not reliable in the limit x → 1. In fact, the behavior at high x does not follow the predictions of
Ref. [68], since our model does not correctly take into account the dominant dynamics in that region.
We consider now the p2

T dependence of the unpolarized distribution function obtained in our model. In Fig. 5 we
show the behavior of the up and down components as functions of p2

T
for a few values of the variable x.

First of all, we observe that fu
1 displays a nonmonotonic behavior at x ≤ 0.02. This is due to the contribution

from LCWFs with nonzero orbital angular momentum. Although the details of where and how this feature occurs
is model-dependent, it is generally true that the contribution of LCWFs with one unit of orbital angular momentum
falls linearly with p2

T
for p2

T
→ 0. This behavior is sharply different from the contribution of LCWFs with no orbital

angular momentum. This simple example shows how the study of the p2
T dependence of unpolarized TMDs can

therefore already expose some effects due to orbital angular momentum.
Finally, we observe that in our model the average quark transverse momentum decreases as x increases, and that

down quarks on average carry less transverse momentum than up quarks. Although this is just a model result, a
general message can be derived: the widely used assumption of a flavor-independent quark transverse momentum
distribution is already falsified in a relatively simple model (see also Ref. [69]).
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20

The reason for this sign change is that the contribution of the vector diquark is negative, as evident from Eq.(79). In
our model, at moderate x the scalar diquark contribution is dominant, whereas at sufficiently high x the contribution
of the vector diquark becomes in absolute size bigger, thus leading to the sign change. Other versions of the diquark
model, even with vector diquarks, may not show this property. This is already evident from inspecting the results
(listed in the appendices) for different choices of the diquark polarization sum. We don’t think that our model
calculation should be trusted more than others. Nevertheless, it might be interesting to contemplate the possibility
of a sign change when choosing a form for the parametrization of the transversity function in “global fits.”
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FIG. 9: Same as in the previous figure, but for the pT dependence of transversity at x = 0.1.

In Fig. 9, the same comparison is performed as in the previous figure, but for the pT dependence of the transversity
at x = 0.1, as it is deduced from Eqs. (68,69). Again, there is a reasonable agreement between model predictions
and parametrizations but for the trend of the result for the up quark at |pT | > 0.3 GeV/c. However, we stress that
the comparison may be affected by the different scale of the model results (Q2 = 0.3 GeV2) and the one at which
the parametrizations are extracted (Q2 = 2.5 GeV2). The proper evolution of the TMDs has not been considered
yet. It is interesting to point out that in our model hu

1 (x,p
2
T ) changes sign at pT ∼ 0.5 GeV. This is due to the fact

that the vector diquark contribution is always negative and dominant at high pT . For the down quark, we note that
hd
1(x, 0) = 0, because the vector-diquark contribution to h1 is entirely given by LCWFs with nonvanishing orbital

angular momentum.
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FIG. 10: The first pT -moment xf⊥ (1)
1T (x) of the Sivers function; left (right) panel for up (down) quark. Solid line for the

results of the spectator diquark model. Darker shaded area for the uncertainty band due to the statistical error of the quark
parametrizations from Ref. [79], lighter one from Ref. [80].
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“In particular, we found that the Sivers
function for both up and down quarks is 
dominated by the interference of S and P 
wave components, while the P − D wave 
interference terms contribute at most by 
20%. On the other side, the relative weight 
of the P − D wave interference terms 
increases in the case of the Boer-Mulders 
function, in particular for the down-quark 
component”
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Fig. 1. Results for the first transverse-momentum moment of the Sivers and Boer Mul-
ders functions for up and down quarks, as function of x. See text for the explanation of
the different curves.

Boer-Mulders functions. The dashed curves correspond to the results at
the hadronic scale of the model. The solid curves are the results evolved to
Q2 = 2.5 GeV2. Since the exact evolution equations for the T-odd quark
distributions are still under study, we used those evolution equations which
seem most promising to simulate the correct evolution. We evolved the first
transverse-momentum moment of the Sivers function by means of the evo-
lution pattern of the unpolarized parton distribution, while for the first
transverse-momentum moment of the Boer-Mulders we used the evolution
pattern of the transversity. After evolution, the model results are consistent
with the available parametrizations. For the Sivers function, the lighter and
darker shaded areas are the uncertainty bands due to the statistical error of
the parametrizations of Ref. [18] and Ref. [19], respectively, which refer to an
average scale of Q2 = 2.5 GeV2. For the Boer-Mulders function, the dashed-
dotted curves are the results of the phenomenological parametrization of
Refs. [20,21] at the average scale of Q2 = 2.4 GeV2, and the short-dashed
curves show the results of Refs. [22,23] valid at Q2 ≈ 1 GeV2, with the
shaded area describing the variation ranges allowed by positivity bounds.

We also note that a non trivial constraint in model calculations of the
Sivers function is given by the Burkardt sum rule24, which corresponds
to require that the net (summed over all partons) transverse momentum
due to final-state interaction is zero. Our model calculation of the Sivers
function reproduces exactly this sum rule.

4. Results for the Collins asymmetry

In Ref. [12] the present results for the T-even TMDs were applied to esti-
mate azimuthal asymmetries in SIDIS, discussing the range of applicability
of the model, especially with regard to the scale dependence of the ob-
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21

E. Sivers function

In Fig. 10, the xf⊥ (1)
1T (x) moment of the Sivers function, predicted using Eqs. (104) and (105), is given by the

solid line and it is compared with two different parametrizations of the same observable. The darker shaded area
represents the uncertainty due to the statistical errors in the parametrization of Ref. [79], while the lighter shaded
area corresponds to the same for Ref. [80]. Left panel refers to the up quark, right panel to down quark. First
of all, we observe the agreement between the signs of the various flavor components, which also agree with the
findings from calculations on the lattice [81]. Also the maxima are reached at approximately the same x ∼ 0.3 as the
parametrizations. Instead, the “strength” of the asymmetry (related to the modulus of each moment) is too much
weaker for the down quark, while it seems reasonable for the up one. Again, it must be stressed that no evolution
was applied in the displayed model results.
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FIG. 11: The model result for the spin density of unpolarized quarks in transversely polarized protons (see text for the precise
definition) in pT space at x = 0.1. Left panel for up quark, right panel for down quark. The circle with the arrow indicates
the direction of the proton polarization.

According to the Trento conventions [62], we define the spin density of unpolarized quarks with flavor q in trans-
versely polarized protons as

fq/p↑(x,pT ) = f q
1 (x,p

2
T )− f⊥ q

1T (x,p2
T )

(P̂ × pT ) · S
M

. (130)

In a SIDIS experiment, typically P̂ is antialigned to the ẑ axis that points in the direction of the momentum
transfer q. Hence, if the proton polarization is chosen along the x̂ axis, the spin density (130) shows an asymmetry in
momentum space along the py direction, whose size is driven by the Sivers function. In Fig. 11, we show fq/p↑(0.1,pT )
for q = u (left panel) and q = d (right panel). Since the Sivers function for the up (down) quark is negative (positive),
the density is deformed towards positive (negative) values of py. This feature is in agreement with the lattice results
of Ref. [81] and with the signs of the anomalous magnetic moments κq [61].

F. Boer-Mulders function

In Fig. 12, the xh⊥ (1)
1 (x) and xh⊥ (1/2)

1 (x) moments of the Boer-Mulders function, as deduced from Eqs. (106,107)
and (110,111), are displayed in the left and right panel, respectively. The solid lines correspond to the results for
the up quark; dashed lines for the down quark. For the Boer-Mulders function, the only available parametrization
appeared recently in [22], but the overall normalization depends on a parameter ω that cannot be fixed with available
experimental information. Our result agrees in sign and shape with that extraction. The absolute values of our
functions correspond to ω ≈ 0.3. We remark that there is full agreement between the sign of the u and d components
and the aforementioned lattice calculations [81], as observed also in a different version of the spectator model [36] and

In a SIDIS experiment, typically P (proton momentum) is antialigned to the z-axis that points in the 
direction of the momentum transfer. Hence, if the proton polarization is chosen along the x-axis, the spin 
density shows an asymmetry in momentum space along the py- direction, whose size is driven by the Sivers
function. In Fig. 11, we show fq/p↑ (0.1, pT ) for q = u (left panel) and q = d (right panel). Since the Sivers
function for the up (down) quark is negative (positive), the density is deformed towards positive (negative) 
values of py. 
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