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INTRODUCTION

= Hadron Structure -2 PDFs, GPDs and TMDs

(number densities with probablilistic interpretations within parton model)

= The mechanism that enables accessing Hadron Structure is “asymptotic freedom”

which enables the factorization of cross-sections (at high energy) into hard-part and soft-
part.

Soft-part: Non-perturbative part

2 ; 2
oprs(z, Q) = Z Hpis ® fi] (z, Q%)
= Distribution functions depend on “processes’” which reflect to '
renormalization scale.

= Example: Cross-section for inclusive unpolarized DIS

7
Hard-part (Calculable)

= That’s not an issue because data sets can be evolved in the same scale using perturbation
theory. Thus, data sets from different processes can be analyzed.



INTRODUCTION
RECENT PROGRESS FROM LATTICE (CD COMMUNITY

= Kaon distribution amplitudes (arXiv: 2003.14128)
= X dependence of PDfs for the Decuplet (Spin 3/2) Delta baryons (arXiv: 2002.12044)
= Exploration of machine learning methods for Pion & Kaon PDFs (arXiv: 2005.13955)

= Lattice calculations of matrix elements with non- local operators related to TMDs,
their renormalization

= First explorations of TMDs from lattice QCD
ArXiv:0908.1283,1011.1213,1111.4249, 1506.07826, 1706.03406, 1701.01536, PoS
SPIN2018, 047 (2018), and an overview 2006.08636(2020)




INTRODUCTION

= PDFs, GPDs and TMDs are light-cone correlation functions and cannot be accessed from
the Euclidean formulation of lattice QCD. Can be accessed via Mellin moments, and OPE,
but it’s challenging.

= Alternative methods: Use of smeared operators, Large momentum effective theory (LaMET), etc.

= Thus, lattice QCD studies are based on calculating hadron matrix elements of the type
~ 1
Ol = (P, 5'|q(=b/2)T U[-b/2,b/2q(b/2)|P, S)

= An arbitrary Dirac structure ‘I’ is allowed for, and the states can also carry definite spin in
addition to momentum.

= In a concrete lattice calculation, the staple-shaped gauge connection between the quark
operators d, , summarized here by U, has finite extent; in the following, the vector v specifies
the direction of the staple legs, with their length scaled by the parameter n. For n = 0O, the path
becomes a straight link between the quark operators.

= Standard TMD observables are obtained by extrapolating the obtained data to n - .

= The TMD observables considered in the following are, however, appropriate ratios in which the
soft factors (divergences) are canceled. Q



SIVERS SHIFT

= For example, in the I = y+ channel, for a proton,

2P+

7]

= Aop +impye;biS;A12B

z Ai B essentially correspond to Fourier- transformed TMD PDFs. Through them, one can finally

define observables such as the generalized Sivers shift

= Generalizing these calculations to a scan of the
(b - P )- dependence allows one to access also the dependence
on x, which is Fourier conjugate to (b - P) .

= A complementary
approach to the

x-dependence
of TMD PDFs based on
quasi-TMD PDFs
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FIG. 30 Left: Proton Sivers shift as a function of staple length for fixed br and f ; n — oo defines the SIDIS limit. Right:
Extrapolation of the SIDIS-limit data for the pion Boer-Mulders shift to large ¢ at fixed br (Engelhardt et al., 2016). Open

symbols represent a partial contribution that dominates at large f , providing further insight into the approach to the asymptotic

regime.



0RM

= With nonzero transverse momentum transfer AT =P’ - P, one can correlate quark transverse

momentum with position,;

AT 1s Fourier conjugate to the quark impact parameter rT.
This allows one to directly access longitudinal quark orbital angular momentum (OAM), (T X kT)

= The choice of gauge link U corresponds to different decompositions of proton spin. A staple link

extending to infinity, such as used in standard TMD PDF studies, yields Jaffe-Manohar OAM,

whereas the n = 0 limit yields Ji OAM
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FIG. 32 Left: Comparison between SIDIS-limit data for the proton Sivers shift obtained for two distinct lattice discretizations,
as a function of by at fixed ¢ (Yoon et al., 2017). The data are compatible within uncertainties, suggesting that no significant
violations of multiplicative renormalization are present. Right: Longitudinal quark OAM in the proton L3 as a function of
staple length at fixed ¢ (Engelhardt et al., 2018). The limit n = 0 yields Ji OAM, n — +oo Jaffe-Manohar OAM. The ratio of
L3 to the number of valence quarks n is evaluated to cancel multiplicative renormalizations, analogous to Eq. (63). Data are

shown in units of the absolute value of Ji OAM.




Quasi-TMD approach

n 113;]51 1:zilltelrnative approach to calculating TMD PDFs from lattice QCD using so-called quasi-TMD
S

= The light-cone TMD PDFs involve matrix elements of non-local operators containing a staple-
shaped Wilson line.

= Method: calculating correlation functions with space-like separated partons, as done for PDFs
and GPDs, and then properly match them to their light-cone counterparts.

= First attempts:

ArXiv: 1405.7640, 1801.05930, 1811.00026, 1901.03685, 1910.08569, 1910.11415, 1911.03840,
2002.07527

fisp(z, by, p, P?) = lim Zt (1, a)

=00 where b* = (0,br,b?), and the Wilson line path U

70 (u) 2\ A4 is ch h that it ts b/2 — (0,br/2,n) —

X ’ T b a P A 'b a 1S cnosen suc at 1t connects , DT N

i/ P ( » DT 4y 1 ) s(br,a,n) (0, —br/2,n) — —b/2. For unpolarized TMD PDFs, the
I Dirac structure can be chosen as I' = 7%, 3, with the

]Z;Q/gg) (z,br,a,n, P?) = / 2_€ibz(xPz) N: normalization factor Noo = 1, N.s = P#/PY.
7

x (P|g(b/2) UL q(—b/2)| P) @



Quasi-TMD approach (cont...)

= However, the relation between quasi-TMD PDFs and TMD PDF's has been argued
to be spin-independent.

= The key relation between quasi-TMD PDFs and TMD PDFs is,
fnS(mﬁ b, i, Pz) - CnS(M? lePz)gqs(bTv :LL)

1 2z P*)?
X exp —’yg(,u,bT)ln( C) fus(z, b, 1, )

2
= the quasi-TMD PDF f in the nonsinglet ‘ns’ = u - d channel is related to the TMD
PDF ins through a perturbative kernel Cns, which is known at one loop.

= The Collins-Soper kernel y{ (see the next slide) is required to relate TMD PDFs at
different hadron energies, and thus its nonperturbative determination from lattice
QCD is of key interest.




DETERMINING THE NON-PERTURBATIVE COLLINS-SOPPER KERNAL

TMD Evolution Formula
7 : 2 FIMD (4 by, C1)
FEMP (2, bp, p, Q) = FEMP (2, b7, 0, G L, br) = In 22 0T By
( “d,u) (z, br 10 0) X v¢ (1, br) In(C1/Ca) nfiTMD(x,bT,,u,@)
A A (b)) In ==
xexp[ 7 (1 Co)] eXp[ﬂg(u, T) HCJ

Ko

In lattice calculations: 2 ~ (o ~ O(4 GeV?)

Drell-Yan production: u* ~ ¢ ~ m% = (91 GeV)?

= X : the fraction of the hadron momentum carried by the struck parton

= bT: the Fourier-Conjugate of the transverse momentum qT

= \mu: Virtuality scale

= \zeta: a scale related to the momentum of the hadron / hard-scale of the scattering process.
= First exponential: \mu evolution

= Second exponential: Collins-Sopper evolution (which includes the Collins-Sopper Kernal

[often denoted by K]) -
1 11’1 CHS(/'vaPQZ) f;nS(x7bT7/J’7P1Z)
In(P7/P3)  Cns(p, ©PF) fos(z, br, p, P5) @

V¢ (1, br) =
Ebert et al. ArXiv:1811.00026



DETERMINING THE NON-PERTURBATIVE COLLINS-SOPPER KERNAL
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P. Shannahan et al. ArXiv: 2003.06063 (2020) @



Rpproach to Global Fits with some remarks

= The limited kinematic coverage for the differential cross sections provided by experimental
data leads to a challenging inverse problem, it is unlikely, if not impossible, that one can
completely fix the TMD PDFs as continuous functions over the full range of kinematics.

= To pin down TMD PDFs to the best possible accuracy, we need data from multiple observables,
experimentally measured or calculated within Lattice QCD, that are related to the same
universal set of TMD PDFs, covering a wide kinematic re]glgme, and to perform QCD global
analyses and fits, similar to what is done to extract the PDFs.

= TMD PDFs are associated with two momentum scales, Q and KT (or its Fourier conjugate bT ),
QCD evolution involves two coupled evolution equations and covers a two- dimensional phase
space, e.g., (Q,bT), where bT & [0,~)

= Therefore, the path used in solving these two coupled equations is not unique, which could

affect the size of higher order corrections, leading to an additional scheme dependence of the
TMD PDFs

= The fundamental and most important difference from DGLAP evolution is that evolution kernels
for evolving TMD PDFs from an input scale Q, to any higher observed scale Q, referred as the
Collins-Soper kernels, depend on the value of bT , and are not perturbatively calculable for the
region where bT >1/Q,

= TMD observables at separations up to bT ~ 1 fm at hadron momenta up to about 2GeV will be
accessible at the physical pion mass in the medium term, where it can be expected that
moments in the momentum fraction x will continue to be obtained with better precision than the
x-dependent quantities, even as determinations of the latter are developed. @



