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§ Hadron Structure à PDFs, GPDs and TMDs 
(number densities with probablilistic interpretations within parton model)

§ The mechanism that enables accessing Hadron Structure is “asymptotic freedom”
which enables the factorization of cross-sections (at high energy) into hard-part and soft-
part.

§ Example:  Cross-section for inclusive unpolarized DIS

§ Distribution functions depend on “processes” which reflect to
renormalization scale.

§ That’s not an issue because data sets can be evolved in the same scale using perturbation 
theory.  Thus, data sets from different processes can be analyzed.
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Abstract. In this article, we review recent lattice calculations on the x-dependence of parton distributions,
with the latter providing information on hadron structure. These calculations are based on matrix ele-
ments of boosted hadrons coupled to non-local operators and can be related to the standard, light-cone
distribution functions via an appropriate factorization formalism. There is significant progress in several
directions, including calculations of flavor singlet parton distribution functions (PDFs), first calculations
of generalized parton distributions (GPDs), as well as the implementation of some of the approaches for
the transverse-momentum-dependent PDFs (TMD PDFs). This new direction of lattice calculations is
particularly interesting for phenomenological fits on experimental data sets, as the lattice results can help
to improve the constraints on the distribution functions.

PACS.

1 Introduction

The quest for an in-depth understanding of hadrons and
their interactions dates back to the mid-20th century. Pro-
gress was rapidly made in both the experimental and the-
oretical frontiers, in particular after the formulation of
QCD, that lead to the systematic and quantitative study
of hadrons and their structure.

The QCD factorization formalism developed for col-
lider processes has been the foundation for understanding
hadrons in terms of their partonic content [1,2]. Such a
mapping of the hadron structure is achieved via a set
of quantities, that is, the parton distribution functions
(PDFs) [2], the generalized parton distributions (GPDs) [3,
4,5], and the transverse-momentum-dependent distribu-
tions (TMD PDFs) [6,7]. These distributions are number
densities and have a probabilistic interpretation within
the parton model. However, they are not directly measur-
able in experiments. The mechanism that enables access
to distribution functions, and therefore to the structure of
hadrons, is the asymptotic freedom of QCD. By virtue of
asymptotic freedom, the cross-section of high-energy pro-
cesses can be factorized into a hard part and a soft part.
For example, the cross sections for inclusive unpolarized
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Deep Inelastic Scattering (DIS) can be written as
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where i represents all types of partons, that is quarks,
anti-quarks and gluons. x is the Bjorken scaling variable,
and Q2 represents the scale of the hard interaction. H

DIS

is the hard part, it is process-dependent and calculable
in perturbative QCD. fi is the non-perturbative part of
the cross-section, characterizing the structure of hadrons.
In the case of the unpolarized DIS, the relevant distribu-
tion function is the spin-averaged (or unpolarized) PDF
for the ith type of partons. Typically, both functions H

DIS

and fi are given in the MS scheme. Unlike H, the distri-
bution functions are universal. Literally speaking, the dis-
tribution functions are not process-independent, as they
depend on the renormalization scale, which varies in di↵er-
ent processes. However, such a dependence does not pose
di�culties, as the data sets can be evolved in the same
scale using perturbation theory. Therefore, data sets from
di↵erent processes can be analyzed together within the
framework of global analysis. Factorization expressions
similar to Eq. (1) exist for other high-energy processes,
such as polarized DIS and Drell-Yan. Their corresponding
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Soft-part: Non-perturbative part

Hard-part (Calculable)
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§ Kaon distribution amplitudes (arXiv: 2003.14128 )

§ x dependence of PDfs for the Decuplet (Spin 3/2) Delta baryons (arXiv: 2002.12044)

§ Exploration of machine learning methods for Pion & Kaon PDFs (arXiv: 2005.13955 )

§ Lattice calculations of matrix elements with non- local operators related to TMDs, 
their renormalization 

§ First explorations of TMDs from lattice QCD 
ArXiv: 0908.1283, 1011.1213, 1111.4249, 1506.07826, 1706.03406, 1701.01536, PoS 
SPIN2018, 047 (2018), and an overview 2006.08636(2020)



§ PDFs, GPDs and TMDs are light-cone correlation functions and cannot be accessed from 
the Euclidean formulation of lattice QCD. Can be accessed via Mellin moments, and OPE,
but it’s challenging.

§  Alternative methods: Use of smeared operators, Large momentum effective theory (LaMET), etc.

§ Thus, lattice QCD studies are based on calculating hadron matrix elements of the type 

§ An arbitrary Dirac structure ‘Γ’ is allowed for, and the states can also carry definite spin in 
addition to momentum. 

§ In a concrete lattice calculation, the staple-shaped gauge connection between the quark 
operators q	̄, q, summarized here by U, has finite extent; in the following, the vector v specifies 
the direction of the staple legs, with their length scaled by the parameter η. For η = 0, the path 
becomes a straight link between the quark operators. 

§ Standard TMD observables are obtained by extrapolating the obtained data to η → ∞.

§ The TMD observables considered in the following are, however, appropriate ratios in which the 
soft factors  (divergences) are canceled. 
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Wang et al., 2019a). Work is needed to understand and
resolve this tension.

One consequence of the large transverse momentum
contribution is that the relationship between the TMD
and collinear versions of factorization is not a simple
integration over transverse momentum. That is, from
Eq. (59),

Z
d2qT

d�

dQ2d2qT
6=

Z
d2qT W . (60)

Ultra-violet divergences in the transverse momentum
integrals of TMD functions are one symptom of
the absence of a Y term in the treatment. The
sensitivity to the ultraviolet transverse momentum can
be nontrivial (Qiu et al., 2020). More work in
the direction of quantifying and understanding these
ultraviolet e↵ects is needed.

When the large transverse momentum q
T

becomes
even larger than Q, both observed momentum scales are
in the perturbative regime. In the case of the Drell-Yan
process, since the transverse momentum of the colliding
partons is su�ciently smaller than both Q and q

T

, the
Drell-Yan cross section can be factorized in terms of
PDFs convoluted with a perturbatively calculable short-
distance hard part. However, due to the large di↵erence
of the two observed momentum scales, q

T

� Q, the
large logarithms log(q

T

/Q) of the short-distance hard
part need to be resummed, and can be systematically
subsumed into an e↵ective fragmentation function for a
parton to fragment into a Drell-Yan lepton pair (Berger
et al., 2002a; Fai et al., 2003).

IV.3. TMD observables from lattice QCD

An ongoing program of evaluating transverse-
momentum–dependent observables in hadrons within
lattice QCD has been reported in Refs. (Engelhardt,
2017; Engelhardt et al., 2018, 2016; Hagler et al., 2009;
Musch et al., 2012, 2011; Yoon et al., 2017). These
studies are based on calculating hadron matrix elements
of the type

e�[�] ⌘ 1

2
hP 0, S0|q̄(�b/2)�U [�b/2, b/2]q(b/2)|P, Si ;

(61)
e� is a version of the unsubtracted TMD PDF defined in
the first line of (51) cast purely in terms of spacetime
separations, i.e., even the dependence on momentum
fraction x has been replaced by a dependence on the
Fourier-conjugate longitudinal separation b� (cf. also
the complementary definition (58), which instead is cast
purely in momentum space). Several generalizations
and adjustments are made to arrive at a formulation
suitable for lattice calculations. An arbitrary Dirac
structure � is allowed for, and the states can also carry

definite spin in addition to momentum. Also o↵-forward
matrix elements, P 0 6= P , are of interest, as will be
detailed further below. In a concrete lattice calculation,
the staple-shaped gauge connection between the quark
operators q̄, q, summarized here by U , has finite extent;
in the following, the vector v specifies the direction of the
staple legs, with their length scaled by the parameter ⌘.
For ⌘ = 0, the path becomes a straight link between
the quark operators. Standard TMD observables are
obtained by extrapolating the obtained data to ⌘ ! 1.
As discussed further above, unsubstracted matrix

elements of the type (61) contain divergences, which
have to be absorbed into corresponding multiplicative
soft factors. The TMD observables considered in the
following are, however, appropriate ratios in which the
soft factors cancel. As a result, the soft factors do not
need to be specified in detail for present purposes. To
regulate rapidity divergences, the staple direction v is
taken o↵ the lightcone into the spacelike domain (Collins,
2011). This scheme is particularly suited for the
connection to lattice QCD, as will become clear presently.
A useful parameter characterizing how close v is to the
lightcone is the Collins-Soper type parameter ⇣̂ = v ·
P/(|v||P |), in terms of which the lightcone is approached
for ⇣̂ ! 1.
The application of standard lattice QCD methods to

evaluate (61) requires the operator in (61) to exist at
a single time; given that b and v are spacelike (the
latter by virtue of the rapidity regulator scheme), there
is no obstacle to boosting the problem to a Lorentz
frame in which this is the case. The transformation
of the results back to the original frame is facilitated
by a decomposition of (61) into Lorentz invariants that
parallels the decomposition (58) of the momentum space
correlator into TMD PDFs. For example, in the � = �+

channel, for a proton (Musch et al., 2012),

1

2P+
e�[�+] = eA2B + im

N

✏
ij

b
i

S
j

eA12B (62)

The invariants eA
iB

essentially correspond to Fourier-
transformed TMD PDFs. Through them, one can
finally define observables such as the generalized Sivers
shift (Musch et al., 2012),

hk
T

i
TU

(b2, b · P, ⇣̂, ⌘v · P, . . .) =

�m
N

eA12B(b2, b · P, ⇣̂, ⌘v · P, . . .)
eA2B(b2, b · P, ⇣̂, ⌘v · P, . . .)

. (63)

In the b
T

! 0 limit, (63) formally represents the
average transverse momentum k

T

of unpolarized (“U”)
quarks orthogonal to the transverse (“T”) spin of the
proton, normalized to the corresponding number of
valence quarks. Note that any multiplicative soft factors
renormalizing the eA

iB

are canceled by forming this type
of ratio.



§ For example, in the Γ = γ+ channel, for a proton,

§ essentially correspond to Fourier- transformed TMD PDFs. Through them, one can finally 
define observables such as the generalized Sivers shift 

§ Generalizing these calculations to a scan of the 
(b · P )- dependence allows one to access also the dependence 
on x, which is Fourier conjugate to (b · P) . 

§ A complementary 
approach to the 
x-dependence 
of TMD PDFs based on 
quasi-TMD PDFs 

5

2020 PDFLattice Report 46

Wang et al., 2019a). Work is needed to understand and
resolve this tension.

One consequence of the large transverse momentum
contribution is that the relationship between the TMD
and collinear versions of factorization is not a simple
integration over transverse momentum. That is, from
Eq. (59),

Z
d2qT

d�

dQ2d2qT
6=

Z
d2qT W . (60)

Ultra-violet divergences in the transverse momentum
integrals of TMD functions are one symptom of
the absence of a Y term in the treatment. The
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Drell-Yan cross section can be factorized in terms of
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of the two observed momentum scales, q
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� Q, the
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/Q) of the short-distance hard
part need to be resummed, and can be systematically
subsumed into an e↵ective fragmentation function for a
parton to fragment into a Drell-Yan lepton pair (Berger
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momentum–dependent observables in hadrons within
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purely in momentum space). Several generalizations
and adjustments are made to arrive at a formulation
suitable for lattice calculations. An arbitrary Dirac
structure � is allowed for, and the states can also carry

definite spin in addition to momentum. Also o↵-forward
matrix elements, P 0 6= P , are of interest, as will be
detailed further below. In a concrete lattice calculation,
the staple-shaped gauge connection between the quark
operators q̄, q, summarized here by U , has finite extent;
in the following, the vector v specifies the direction of the
staple legs, with their length scaled by the parameter ⌘.
For ⌘ = 0, the path becomes a straight link between
the quark operators. Standard TMD observables are
obtained by extrapolating the obtained data to ⌘ ! 1.
As discussed further above, unsubstracted matrix

elements of the type (61) contain divergences, which
have to be absorbed into corresponding multiplicative
soft factors. The TMD observables considered in the
following are, however, appropriate ratios in which the
soft factors cancel. As a result, the soft factors do not
need to be specified in detail for present purposes. To
regulate rapidity divergences, the staple direction v is
taken o↵ the lightcone into the spacelike domain (Collins,
2011). This scheme is particularly suited for the
connection to lattice QCD, as will become clear presently.
A useful parameter characterizing how close v is to the
lightcone is the Collins-Soper type parameter ⇣̂ = v ·
P/(|v||P |), in terms of which the lightcone is approached
for ⇣̂ ! 1.
The application of standard lattice QCD methods to

evaluate (61) requires the operator in (61) to exist at
a single time; given that b and v are spacelike (the
latter by virtue of the rapidity regulator scheme), there
is no obstacle to boosting the problem to a Lorentz
frame in which this is the case. The transformation
of the results back to the original frame is facilitated
by a decomposition of (61) into Lorentz invariants that
parallels the decomposition (58) of the momentum space
correlator into TMD PDFs. For example, in the � = �+
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essentially correspond to Fourier-
transformed TMD PDFs. Through them, one can
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In the b
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! 0 limit, (63) formally represents the
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of unpolarized (“U”)
quarks orthogonal to the transverse (“T”) spin of the
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§ With nonzero transverse momentum transfer ∆T = P ʹ − P , one can correlate quark transverse 
momentum with position; 
∆T is Fourier conjugate to the quark impact parameter rT.
This allows one to directly access longitudinal quark orbital angular momentum (OAM), ⟨rT × kT⟩

§ The choice of gauge link U corresponds to different decompositions of proton spin. A staple link 
extending to infinity, such as used in standard TMD PDF studies, yields Jaffe-Manohar OAM, 
whereas the η = 0 limit yields Ji OAM 
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§ An alternative approach to calculating TMD PDFs from lattice QCD using so-called quasi-TMD 
PDFs 

§ The light-cone TMD PDFs involve matrix elements of non-local operators containing a staple-
shaped Wilson line. 

§ Method: calculating correlation functions with space-like separated partons, as done for PDFs 
and GPDs, and then properly match them to their light-cone counterparts. 

§ First attempts: 
ArXiv: 1405.7640, 1801.05930, 1811.00026, 1901.03685, 1910.08569, 1910.11415, 1911.03840, 
2002.07527
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FIG. 31 Mixing pattern in the RI’/MOM scheme for quark bilinear operators constructed using improved Wilson fermions
with staple-shaped gauge connections. The quark operator separation b is purely transverse, with b

T

/a = 3, 7, 11 from left to
right, where a = 0.06 fm denotes the lattice spacing. The staple length is given by ⌘/a = 14. Colors indicate mixing strengths.
White circles indicate mixings already obtained in one-loop lattice perturbation theory (Constantinou et al., 2019).

interpolation between the two is obtained (Engelhardt,
2017). Fig. 32 (right) displays corresponding results
reported in Ref. (Engelhardt et al., 2018). Ja↵e-Manohar
orbital angular momentum is enhanced in magnitude
compared to its Ji counterpart.

IV.4. Quasi-TMD PDFs

An alternative approach to calculating TMD PDFs
from lattice QCD using so-called quasi-TMD PDFs (Ji,
2013, 2014) has been been explored recently by several
groups (Ebert et al., 2020a, 2019a,b, 2020b; Ji et al.,
2019a,b,c, 2020, 2015b; Vladimirov and Schäfer, 2020).
Here, the key idea is to construct an equal-time correlator
by replacing lightlike separations in (51) by a spacelike
separation along the z direction alone. Under a Lorentz
boost, these spacelike directions approach the lightcone,
with the mismatch being accounted for by a perturbative
matching.

Following the notation of Ref. (Ebert et al., 2019b), we
define the quasi-TMD PDF analogous to (50) as

f̃
i/P

(x,bT, µ, P
z) = lim

a!0
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Here, the lattice spacing a acts as UV regulator, ⌘ limits
the length of the Wilson lines, and �̃q

S

is a quasi-soft
factor required to cancel divergences as ⌘/b

T

! 1.
While it has been shown in Ref. (Ebert et al., 2019b)
that there is no straightforward construction of a quasi-
soft factor directly related to the soft functions appearing
in (50), Ref. (Ji et al., 2019b) recently proposed to
calculate it within lattice QCD, employing a formulation
based on heavy-quark e↵ective theory. Importantly,
this factor cancels in ratios of quasi-TMD PDFs, and

hence, similarly to the method discussed in IV.3, a
determination of �̃q

S

is not needed to access such ratios.
The unsubtracted quasi-TMD PDF is defined as
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where bµ = (0,bT, bz), and the Wilson line path Ũ
is chosen such that it connects b/2 ! (0,bT/2, ⌘) !
(0,�bT/2, ⌘) ! �b/2. For unpolarized TMD PDFs, the
Dirac structure can be chosen as �̃ = �0, �3, with the
normalization factor N

�

0 = 1, N
�

3 = P z/P 0.
For polarized quarks and protons, one can generalize

(66) using di↵erent Dirac structures �̃. However, the
relation between quasi-TMD PDFs and TMD PDFs has
been argued to be spin-independent (Ebert et al., 2020a;
Vladimirov and Schäfer, 2020), and hence the following
results also apply to the polarized case.
The key relation between quasi-TMD PDFs and TMD

PDFs is (Ebert et al., 2019b; Ji et al., 2019c, 2020;
Vladimirov and Schäfer, 2020)

f̃ns(x,bT, µ, P
z) = Cns(µ, xP
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which holds up to corrections in b
T

/⌘, 1/(b
T

P z) and
1/(P z⌘). In (67), the quasi-TMD PDF f̃ns in the
nonsinglet ns = u � d channel is related to the TMD
PDF fns through a perturbative kernel Cns, which is
known at one loop (Ebert et al., 2019b). It also
involves a nonperturbative factor gS

q

because the quasi-
TMD PDF was not defined with the physical soft
function. In the approach of Ref. (Ji et al., 2019b), it
corresponds to the reduced soft factor, gS

q

=
p
S
r

, see also
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reported in Ref. (Engelhardt et al., 2018). Ja↵e-Manohar
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compared to its Ji counterpart.
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is chosen such that it connects b/2 ! (0,bT/2, ⌘) !
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reported in Ref. (Engelhardt et al., 2018). Ja↵e-Manohar
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compared to its Ji counterpart.
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matching.

Following the notation of Ref. (Ebert et al., 2019b), we
define the quasi-TMD PDF analogous to (50) as

f̃
i/P

(x,bT, µ, P
z) = lim

a!0
⌘!1

Z̃i

uv(µ, a)

⇥ f̃0 (u)
i/P

�
x,bT, a, ⌘, P

z

�
�̃q

S

(bT, a, ⌘) . (65)

Here, the lattice spacing a acts as UV regulator, ⌘ limits
the length of the Wilson lines, and �̃q

S

is a quasi-soft
factor required to cancel divergences as ⌘/b

T

! 1.
While it has been shown in Ref. (Ebert et al., 2019b)
that there is no straightforward construction of a quasi-
soft factor directly related to the soft functions appearing
in (50), Ref. (Ji et al., 2019b) recently proposed to
calculate it within lattice QCD, employing a formulation
based on heavy-quark e↵ective theory. Importantly,
this factor cancels in ratios of quasi-TMD PDFs, and

hence, similarly to the method discussed in IV.3, a
determination of �̃q

S

is not needed to access such ratios.
The unsubtracted quasi-TMD PDF is defined as

f̃0 (u)
i/P

(x,bT, a, ⌘, P
z) =

Z
dbz

2⇡
eib

z(xP z) N�̃

⇥
⌦
P
��q̄(b/2) Ũ �̃
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§ However, the relation between quasi-TMD PDFs and TMD PDFs has been argued 
to be spin-independent.

§ The key relation between quasi-TMD PDFs and TMD PDFs is, 

§ the quasi-TMD PDF f	̃ in the nonsinglet ‘ns’ = u − d channel is related to the TMD 
PDF fns through a perturbative kernel Cns, which is known at one loop.

§ The Collins-Soper kernel γζ (see the next slide) is required to relate TMD PDFs at 
different hadron energies, and thus its nonperturbative determination from lattice 
QCD is of key interest.

8

2020 PDFLattice Report 48

FIG. 31 Mixing pattern in the RI’/MOM scheme for quark bilinear operators constructed using improved Wilson fermions
with staple-shaped gauge connections. The quark operator separation b is purely transverse, with b

T

/a = 3, 7, 11 from left to
right, where a = 0.06 fm denotes the lattice spacing. The staple length is given by ⌘/a = 14. Colors indicate mixing strengths.
White circles indicate mixings already obtained in one-loop lattice perturbation theory (Constantinou et al., 2019).

interpolation between the two is obtained (Engelhardt,
2017). Fig. 32 (right) displays corresponding results
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TMD PDF was not defined with the physical soft
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§ x : the fraction of the hadron momentum carried by the struck parton

§ bT: the Fourier-Conjugate of the transverse momentum qT

§ \mu: Virtuality scale

§ \zeta: a scale related to the momentum of the hadron / hard-scale of the scattering process.

§ First exponential: \mu evolution

§ Second exponential: Collins-Sopper evolution (which includes the Collins-Sopper Kernal
[often denoted by K])
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At small transverse momentum qT , transverse-momentum dependent parton distribution functions
(TMDPDFs) arise as genuinely nonperturbative objects that describe Drell-Yan like processes in
hadron collisions as well as semi-inclusive deep-inelastic scattering. TMDPDFs naturally depend on
the hadron momentum, and the associated evolution is determined by the Collins-Soper equation.
For qT ⇠ ⇤QCD the corresponding evolution kernel (or anomalous dimension) is nonperturbative
and must be determined as an independent ingredient in order to relate TMDPDFs at di↵erent
scales. We propose a method to extract this kernel using lattice QCD and the Large-Momentum
E↵ective Theory, where the physical TMD correlation involving light-like paths is approximated by
a quasi-TMDPDF, defined using equal-time correlation functions with a large-momentum hadron
state. The kernel is determined from a ratio of quasi-TMDPDFs extracted at di↵erent hadron
momenta.

I. INTRODUCTION

In the past decades, advances in theory and experi-
ment have made it possible to explore the structure of
the proton beyond the simplest longitudinal momentum
distributions. Key observables are transverse momentum
distributions (TMDs), which measure the intrinsic trans-
verse momentum q

T

of partons in the proton, as well as
describing the probability to produce particles at larger
q
T

in high energy collisions. These TMDs are probed di-
rectly by experiments on Drell-Yan, semi-inclusive deep
inelastic scattering (SIDIS), and other processes. Re-
cently, progress has been made in determining TMD-
PDFs by using lattice QCD [1–6] to study equal-time
correlators. Such correlators are a key ingredient in the
large-momentum e↵ective theory (LaMET) [7, 8], where
one computes a lightcone correlator using an equal-time
correlator in a boosted proton state. For TMDPDFs the
first theoretical studies in LaMET have been carried out
in Refs. [9–11].

The TMDPDF fTMD
i

(x,~b
T

, µ, ⇣) for a parton of flavor
i depends on x, the fraction of the hadron momentum
carried by the struck parton, ~b

T

, the Fourier-conjugate
of the transverse momentum ~q

T

, and on a virtuality scale
µ. In addition, it depends on a scale ⇣, which is related
to the momentum of the hadron or equivalently the hard
scale of the scattering process. Measuring nonperturba-
tive TMDPDFs, whether from experiment or lattice, thus
requires to specify the scales (µ0, ⇣0) where the TMD-
PDF is extracted. For instance, lattice calculations are
restricted to µ2

0 ⇠ ⇣0 ⇠ O(4 GeV2) due to finite lat-
tice spacing, while for example the application to Drell-
Yan production uses µ2 ⇠ ⇣ ⇠ m2

Z

⇡ (91 GeV)2. The
TMDPDFs thus need be evolved from (µ0, ⇣0) to the phe-
nomenologically relevant scales (µ, ⇣), using

fTMD
i

(x,~b
T

, µ, ⇣) = fTMD
i

(x,~b
T

, µ0, ⇣0)

⇥ exp

Z
µ

µ0

dµ0

µ0 �
i

µ

(µ0, ⇣0)

�
exp


1

2
�i

⇣

(µ, b
T

) ln
⇣

⇣0

�
. (1)

The first exponential in Eq. (1) is the µ evolution and

the second exponential is the Collins-Soper evolution in
⇣ [12–14] in the formulation of Ref. [15], with �i

µ

and �i

⇣

being the associated anomalous dimensions. Here �i

⇣

is

the Collins-Soper kernel, often denoted by K̃.
The µ evolution in Eq. (1) is perturbative as long

as both µ0, µ � ⇤QCD, analogous to the perturbative
DGLAP evolution for collinear PDFs. In contrast, the
Collins-Soper kernel involves the b

T

-dependent anoma-
lous dimension �i

⇣

(µ, b
T

), which becomes nonperturbative

in the region b�1
T

⇠ q
T

⇠ ⇤QCD, even if µ � ⇤QCD. Re-
lating the nonperturbative TMDPDF extracted at some
reference scales (µ0, ⇣0) to the phenomenologically rele-
vant scales (µ, ⇣) thus crucially relies on the nonpertur-
bative knowledge of the Collins-Soper kernel.
Due to the simple form of Eq. (1), the Collins-Soper

evolution can be factored out by taking the ratio of two
TMDPDFs extracted at di↵erent values ⇣1 6= ⇣2,

�i

⇣

(µ, b
T

) =
2

ln(⇣1/⇣2)
ln

fTMD
i

(x,~b
T

, µ, ⇣1)

fTMD
i

(x,~b
T

, µ, ⇣2)
. (2)

One option is to extract �i

⇣

(µ, b
T

) experimentally. For
example, one can use Drell-Yan production at small q

T

⌧
Q, where Q is the invariant mass of the Drell-Yan pair,
and use di↵erent values of Q to obtain fTMD

i=q

(x,~b
T

, µ, ⇣)
at di↵erent ⇣ values. This can be done using results from
global fits, see e.g. Refs. [16, 17]. Experimentally, the
TMDPDF is extracted as a function of ~q

T

, which makes
it challenging to use Eq. (2) since it requires the Fourier

transformation into ~b
T

space. Interestingly, Eq. (2) is
independent of the momentum fraction x and choice of
⇣1,2, which is useful to assess associated systematics and
to validate the applicability of TMD factorization.
In this paper, we propose a first-principle method of

determining the nonperturbative �q

⇣

using lattice QCD. A
potential benefit is that one has, in principle, more con-
trol over the systematics in the calculation. The TMD-
PDFs in Eq. (2) are not directly computable on the lat-
tice because they involve time dependent operators with
Wilson lines on (or close to) the light cone. We therefore
consider the LaMET approach for calculating the ratio
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distributions. Key observables are transverse momentum
distributions (TMDs), which measure the intrinsic trans-
verse momentum q

T

of partons in the proton, as well as
describing the probability to produce particles at larger
q
T

in high energy collisions. These TMDs are probed di-
rectly by experiments on Drell-Yan, semi-inclusive deep
inelastic scattering (SIDIS), and other processes. Re-
cently, progress has been made in determining TMD-
PDFs by using lattice QCD [1–6] to study equal-time
correlators. Such correlators are a key ingredient in the
large-momentum e↵ective theory (LaMET) [7, 8], where
one computes a lightcone correlator using an equal-time
correlator in a boosted proton state. For TMDPDFs the
first theoretical studies in LaMET have been carried out
in Refs. [9–11].

The TMDPDF fTMD
i

(x,~b
T

, µ, ⇣) for a parton of flavor
i depends on x, the fraction of the hadron momentum
carried by the struck parton, ~b

T

, the Fourier-conjugate
of the transverse momentum ~q

T

, and on a virtuality scale
µ. In addition, it depends on a scale ⇣, which is related
to the momentum of the hadron or equivalently the hard
scale of the scattering process. Measuring nonperturba-
tive TMDPDFs, whether from experiment or lattice, thus
requires to specify the scales (µ0, ⇣0) where the TMD-
PDF is extracted. For instance, lattice calculations are
restricted to µ2

0 ⇠ ⇣0 ⇠ O(4 GeV2) due to finite lat-
tice spacing, while for example the application to Drell-
Yan production uses µ2 ⇠ ⇣ ⇠ m2

Z

⇡ (91 GeV)2. The
TMDPDFs thus need be evolved from (µ0, ⇣0) to the phe-
nomenologically relevant scales (µ, ⇣), using

fTMD
i

(x,~b
T

, µ, ⇣) = fTMD
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The first exponential in Eq. (1) is the µ evolution and

the second exponential is the Collins-Soper evolution in
⇣ [12–14] in the formulation of Ref. [15], with �i

µ

and �i

⇣

being the associated anomalous dimensions. Here �i

⇣

is

the Collins-Soper kernel, often denoted by K̃.
The µ evolution in Eq. (1) is perturbative as long

as both µ0, µ � ⇤QCD, analogous to the perturbative
DGLAP evolution for collinear PDFs. In contrast, the
Collins-Soper kernel involves the b

T

-dependent anoma-
lous dimension �i

⇣

(µ, b
T

), which becomes nonperturbative

in the region b�1
T

⇠ q
T

⇠ ⇤QCD, even if µ � ⇤QCD. Re-
lating the nonperturbative TMDPDF extracted at some
reference scales (µ0, ⇣0) to the phenomenologically rele-
vant scales (µ, ⇣) thus crucially relies on the nonpertur-
bative knowledge of the Collins-Soper kernel.
Due to the simple form of Eq. (1), the Collins-Soper

evolution can be factored out by taking the ratio of two
TMDPDFs extracted at di↵erent values ⇣1 6= ⇣2,

�i
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) =
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ln
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. (2)

One option is to extract �i

⇣

(µ, b
T

) experimentally. For
example, one can use Drell-Yan production at small q

T

⌧
Q, where Q is the invariant mass of the Drell-Yan pair,
and use di↵erent values of Q to obtain fTMD

i=q

(x,~b
T

, µ, ⇣)
at di↵erent ⇣ values. This can be done using results from
global fits, see e.g. Refs. [16, 17]. Experimentally, the
TMDPDF is extracted as a function of ~q

T

, which makes
it challenging to use Eq. (2) since it requires the Fourier

transformation into ~b
T

space. Interestingly, Eq. (2) is
independent of the momentum fraction x and choice of
⇣1,2, which is useful to assess associated systematics and
to validate the applicability of TMD factorization.
In this paper, we propose a first-principle method of

determining the nonperturbative �q

⇣

using lattice QCD. A
potential benefit is that one has, in principle, more con-
trol over the systematics in the calculation. The TMD-
PDFs in Eq. (2) are not directly computable on the lat-
tice because they involve time dependent operators with
Wilson lines on (or close to) the light cone. We therefore
consider the LaMET approach for calculating the ratio
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FIG. 32 Left: Comparison between SIDIS-limit data for the proton Sivers shift obtained for two distinct lattice discretizations,
as a function of b

T

at fixed ⇣̂ (Yoon et al., 2017). The data are compatible within uncertainties, suggesting that no significant
violations of multiplicative renormalization are present. Right: Longitudinal quark OAM in the proton L

3

as a function of
staple length at fixed ⇣̂ (Engelhardt et al., 2018). The limit ⌘ = 0 yields Ji OAM, ⌘ ! ±1 Ja↵e-Manohar OAM. The ratio of
L

3

to the number of valence quarks n is evaluated to cancel multiplicative renormalizations, analogous to Eq. (63). Data are
shown in units of the absolute value of Ji OAM.

Ref. (Ji et al., 2020). Once calculations of this reduced
soft factor become available, quasi-TMD PDFs can be
formulated without this nonperturbative factor (Ji et al.,
2019b,c). Lastly, (67) also involves the nonperturbative
CS evolution kernel, see (56), which relates the hadron
energies P z and ⇣.

The Collins-Soper kernel �
⇣

is required to relate
TMD PDFs at di↵erent hadron energies, and thus its
nonperturbative determination from lattice QCD is of
key interest. Based on (67), Refs. (Ebert et al., 2019a,b)
proposed to determine it from ratios of quasi-TMD PDFs
at di↵erent momenta P z

1 6= P z

2 ,

�q

⇣

(µ, b
T

) =
1

ln(P z

1 /P
z

2 )
ln

Cns(µ, xP z

2 ) f̃ns(x,bT, µ, P z

1 )

Cns(µ, xP z

1 ) f̃ns(x,bT, µ, P z

2 )
,

(68)

see also Ref. (Vladimirov and Schäfer, 2020) for a related
proposal. In the ratio in (68), the quasi-soft factor
�̃q

S

cancels, and thus the Collins-Soper kernel can be
obtained from a ratio of unsubtracted (but renormalized)
quasi-TMD PDFs alone. Another key advantage is the
independence of (68) on the hadron state, and hence it
can be calculated in a pion state rather than a proton
state.

Without �̃q

S

, both numerator and denominator in
(68) su↵er from divergences associated with Wilson-
line self energies, that is, divergences in ⌘/b

T

. These
divergences cancel in the ratio, but in practice it can
be numerically more reliable to enforce this cancellation
separately in numerator and denominator. In Ref. (Ebert
et al., 2020b), it was suggested to insert a common
renormalization factor determined nonperturbatively in
the RI’/MOM scheme on the lattice, and its conversion
to the MS scheme was calculated at one loop. The
first lattice studies of this renormalization factor were

explored in Ref. (Shanahan et al., 2020b), revealing
significant operator mixing on the lattice, cf. Fig. 31,
which was treated by diagonalizing the renormalization
and matching matrices for the RI’/MOM scheme.

The feasibility of the above method of determining the
Collins-Soper kernel was demonstrated in Ref. (Shanahan
et al., 2020a) using a lattice of size L3 ⇥ T = (2 fm)3 ⇥
4 fm and lattice spacing a = 0.06 fm with a heavy
pion mass m

⇡

= 1.2 GeV. Taking advantage of (68)
being independent of the hadron state, the Collins-Soper
kernel for n

f

= 0 quark flavors was extracted from
a quenched calculation of quasi TMD PDFs in a pion
state with momenta P z 2 {1.29, 1.94, 2.58} GeV. The
study found that the extrapolation of the position-space
matrix element to bz ! 1 poses a key challenge in
the Fourier transform in (66). Two di↵erent fits to the
lattice data were performed using Bernstein and Hermite
polynomials, and strong sensitivity to the finite size of
the lattice was observed by comparing the extrapolations
of the two polynomial fits to bz > L/2. Additional
systematic e↵ects from the power corrections mentioned
below (67) could not be resolved with the limited data
from the employed lattice simulation. Nevertheless,
promising results were obtained, demonstrating that
lattice results for the CS kernel in the nonperturbative
region up to b

T

⇠ 1 fm are tractable provided that future
calculations are performed on significantly larger lattice
volumes.

Figure 33 shows the result of Ref. (Shanahan
et al., 2020a) for the b

T

-dependence of the CS kernel,
comparing their two extractions using Bernstein and
Hermite polynomials to perturbative predictions of the
same quantity. The perturbative results diverge at b

T

⇡
0.25 fm due to the Landau pole of the strong coupling,
while the lattice calculation yields encouraging results for

TMD Evolution Formula
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The calculation is performed in quenched LQCD with pion 
mass of 1.207 GeV. The hadron is boosted with P3 = 1.29, 1.94, 
2.58 GeV and for transverse parton momentum qT in the range of 
250 MeV and 2 GeV 

P. Shannahan et al.  ArXiv: 2003.06063 (2020) 

This indicates non-negligible systematic effects in the 
lattice data, such as power corrections in the small-bT

region. The challenges of the inverse problem arise in 
these calculations too, as the Fourier transform over bT

is required. However, an extensive study of the 
systematic uncertainties is necessary to control 
unwanted effects.
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§ The limited kinematic coverage for the differential cross sections provided by experimental 
data leads to a challenging inverse problem; it is unlikely, if not impossible, that one can 
completely fix the TMD PDFs as continuous functions over the full range of kinematics.

§ To pin down TMD PDFs to the best possible accuracy, we need data from multiple observables, 
experimentally measured or calculated within Lattice QCD, that are related to the same 
universal set of TMD PDFs, covering a wide kinematic regime, and to perform QCD global 
analyses and fits, similar to what is done to extract the PDFs.

§ TMD PDFs are associated with two momentum scales, Q and kT (or its Fourier conjugate bT ), 
QCD evolution involves two coupled evolution equations and covers a two- dimensional phase 
space, e.g., (Q,bT), where bT∈ [0,∞) 

§ Therefore, the path used in solving these two coupled equations is not unique, which could 
affect the size of higher order corrections, leading to an additional scheme dependence of the 
TMD PDFs 

§ The fundamental and most important difference from DGLAP evolution is that evolution kernels 
for evolving TMD PDFs from an input scale Q0 to any higher observed scale Q, referred as the 
Collins-Soper kernels, depend on the value of bT , and are not perturbatively calculable for the 
region where bT >1/Q0.

§ TMD observables at separations up to bT ∼ 1 fm at hadron momenta up to about 2GeV will be 
accessible at the physical pion mass in the medium term, where it can be expected that 
moments in the momentum fraction x will continue to be obtained with better precision than the 
x-dependent quantities, even as determinations of the latter are developed. 


