June 7, 2022 Fermilab - UVA Seminar

Global extraction of quark unpolarized Transverse Momentum Distributions at N3LL

Chiara Bissolotti Argonne National Laboratory

Work done in collaboration with: A. Bacchetta, V. Bertone, G. Bozzi, M. Cerutti, F. Piacenza, M. Radici, A. Signori

European Research Council

Transverse Momentum Distributions

TMD PDFs		quark polarization				
		U	L	T		
	U	f_1		h_1^{\perp}		
nucleon polarization	L		$g_{1\mathrm{L}}$	h_{11}^{\perp}		
	Т	$f_{1\mathrm{T}}^{\perp}$	$g_{1\mathrm{T}}$	h_1, l		

Image: style="text-align: center;">

Image: mailtown of the system of

Transverse Momentum Distributions

TMD PDFs		quark polarization				
			U		L	T
nucleon polarization	U		f_1			h_1^{\perp}
	L				$g_{1\mathrm{L}}$	h_{11}^{\perp}
	Т		$f_{1\mathrm{T}}^{\perp}$		$g_{1\mathrm{T}}$	h_1, l

Fragmentation Functions

hadro polarizat

Parton Distribution Functions

TMD FFs		quark polarization					
		U	L	Т			
	U	D_1		H_1^{\perp}			
lron zation	L		$G_{1\mathrm{L}}$	$H_{1\mathrm{L}}^{\perp}$			
	Т	$D_{1\mathrm{T}}^{\perp}$	$G_{1\mathrm{T}}$	$H_{1\mathrm{T}}, H_{1\mathrm{T}}^{\perp}$			

in these cases, TMD factorization is well understood

see, e.g., Ji, Ma, Yuan, PRD 71 **Collins, "Foundations of Perturbative QCD"** Rogers, Aybat, PRD 83 Echevarria, Idilbi, Scimemi JHEP 1207

 $\left(\frac{d\sigma}{dq_T}\right)_{\rm res.} \propto H(Q,\mu) \int \frac{d^2 \mathbf{b}}{4\pi} e^{i\mathbf{b}\cdot\mathbf{b}\cdot\mathbf{c}}$ $\overline{dq_T}$ $\langle ag_1 \rangle$ res.

$$\mathbf{q}_T x_1 f_1^q(x_1, \mathbf{b}; \mu, \zeta_1) x_2 f_1^{\bar{q}}(x_2, \mathbf{b}; \mu, \zeta_2)$$

SDS **Semi-Inclusive Deep Inelastic Scattering** $\ell(l) + N(p) \to \ell(l') + h(P_h) + X$

TMD factorization

 $P_{hT}^2 \ll Q^2$

 $\frac{d\sigma}{dq_T} \propto F_{UU,T}(x, z, q_T; Q^2) \propto \int \frac{d^2 \mathbf{b}}{4\pi} e^{i\mathbf{b}\cdot\mathbf{q}_T} f_1^q(x, \mathbf{b}; \mu) D_1^{q \to h}(z, \mathbf{b}; \mu)$

nucleon

SIDS Semi-Inclusive Deep Inelastic Scattering $\ell(l) + N(p) \rightarrow \ell(l') + h(P_h) + X$

$$F_{UU,T}(x, z, \boldsymbol{P}_{hT}^{2}, Q^{2}) = \sum_{a} \mathcal{H}_{UU,T}^{a}(Q^{2})$$

$$\times x \int d^{2}\boldsymbol{k}_{\perp} d^{2}\boldsymbol{P}_{\perp} f_{1}^{a}(x, Q^{2}) + Y_{UU,T}(Q^{2}, \boldsymbol{P}_{hT}^{2}) + \mathcal{O}(Q^{2})$$
Y term

SIDIS Semi-Inclusive Deep Inelastic Scattering $\ell(l) + N(p) \rightarrow \ell(l') + h(P_h) + X$

W term dominates in the region where $P_{hT} \ll Q$

$$\begin{split} F_{UU,T}(x,z,\boldsymbol{P}_{hT}^2,Q^2) &= \sum_a \mathcal{H}_{UU,T}^a(Q^2) \\ &\times x \int d^2 \boldsymbol{k}_\perp \, d^2 \boldsymbol{P}_\perp \, f_1^a \left(x, +Y_{UU,T} \left(Q^2,\boldsymbol{P}_{hT}^2\right) + \mathcal{O}\left(y \, \mathbf{F}_{hT}^2\right)\right) \end{split}$$

SIDS Semi-Inclusive Deep Inelastic Scattering $\ell(l) + N(p) \rightarrow \ell(l') + h(P_h) + X$

W term dominates in the region where $P_{hT} \ll Q$ V term not included in the Pavia analyses

$$\begin{split} F_{UU,T}(x,z,\boldsymbol{P}_{hT}^2,Q^2) &= \sum_a \mathcal{H}_{UU,T}^a(Q^2) \\ &\times x \int d^2 \boldsymbol{k}_{\perp} \, d^2 \boldsymbol{P}_{\perp} \, f_1^a \left(x, +Y_{UU,T} \left(Q^2,\boldsymbol{P}_{hT}^2\right) + \mathcal{O}(\boldsymbol{k}_{\perp}^2) \right) \end{split}$$

b* prescription

non perturbative

Non perturbative function depends on the choice of b*-prescription

invalidates perturbative calculations

unpolarized Transverse Momentum Dependent Parton Distribution Functions

$f_1^q(x,b;\mu,\zeta) = \sum_j \left(C_j \otimes f\right)$

$$f^{j})(x, b_{*}; \mu_{b})e^{R(b_{*}; \mu_{b}, \mu)}f_{NP}(x, b)$$

unpolarized Transverse Momentum Dependent Parton Distribution Functions

$f_1^q(x,b;\mu,\zeta) = \sum_j \left(C_j \otimes f^j \right) (x,b_*;\mu_b) e^{R(b_*;\mu_b,\mu)} f_{\mathrm{NP}}(x,b)$

------ collinear PDFs

unpolarized Transverse Momentum Dependent Parton Distribution Functions matching to the ----- collinear PDFs collinear region $\otimes f^j)(x,b_*;\mu_b)e^{R(b_*;\mu_b,\mu)}f_{\mathrm{NP}}(x,b)$ J J perturbative perturbative expansion

$$f_1^q(x,b;\mu,\zeta) = \sum_i (C_j \otimes$$

in $\alpha_{s}(\mu)$

evolution

unpolarized Transverse Momentum Dependent Parton Distribution Functions matching to the ----- collinear PDFs collinear region $\sum_{j} \left(C_{j} \otimes f^{j} \right) (x, b_{*}; \mu_{b}) e^{R(b_{*}; \mu_{b}, \mu)} f_{\mathrm{NP}}(x, b)$ perturbative

$$f_1^q(x,b;\mu,\zeta) = \sum_{i=1}^{q} f_1^q(x,b;\mu,\zeta) = \sum_{i=1}^{q} f_1^q(x,b;\mu,\zeta)$$

perturbative expansion in $\alpha_{s}(\mu)$

$$L = \ln \frac{Q^2}{\mu_b^2}$$

resummation of large logarithms

- evolution

unpolarized Transverse Momentum Dependent Parton Distribution Functions

matching to the collinear region

$$f_1^q(x,b;\mu,\zeta) = \sum_{i=1}^{q} f_1^q(x,b;\mu,\zeta) = \sum_{i=1}^{q} f_1^q(x,b;\mu,\zeta)$$

perturbative expansion in $\alpha_{s}(\mu)$

$$L = \ln \frac{Q^2}{\mu_b^2}$$

resummation of large logarithms

$$\begin{split} \textbf{Logarithmic accuracy} \\ \begin{pmatrix} \frac{d\sigma}{dq_T} \end{pmatrix} \propto H(Q,\mu) \int \frac{d^2 \mathbf{b}}{4\pi} e^{i\mathbf{b}\cdot\mathbf{q}_T} x_1 f_1^q(x_1,\mathbf{b};\mu,\zeta_1) x_2 f_1^{\overline{q}}(x_2,\mathbf{b};\mu,\zeta_2) \\ f_1^q(x,b;\mu,\zeta) &= \sum_j \left(C_{q/j} \otimes f^j \right) (x,b_s;\mu_b) \\ \times \exp\left\{ K(\mu_0) \ln \frac{\sqrt{\zeta}}{\sqrt{\zeta_0}} + \int_{\mu_0}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_F(\alpha_s(\mu')) - \gamma_K(\alpha_s(\mu')) \ln \frac{\sqrt{\zeta}}{\mu'} \right] \right\} \\ \times f_{\mathrm{NP}}(x,b;\zeta) \\ \frac{Accuracy}{\mathrm{NLL}} \frac{\gamma_K}{a_s^2} \frac{\gamma_F}{a_s} \frac{1}{\mathrm{NLL}} \frac{1}{a_s^2} \frac{1}{a_s$$

perturbative expansion in $\alpha_s(\mu)$

uracy	γĸ	γ _F	K	C _f /j	H
L	$lpha_s$	_	_	1	1
LL	α_s^2	$lpha_s$	$lpha_s$	1	1
LL'	α_s^2	$lpha_s$	α_s	α_s	α_s
² LL	$\alpha_s{}^3$	α_s^2	α_s^2	α_s	α_s
LL'	$\alpha_s{}^3$	α_s^2	α_s^2	α_s^2	α_s^2
3LL	$\alpha_s{}^4$	$\alpha_s{}^3$	$\alpha_s{}^3$	α_s^2	α_s^2
EL'	$\alpha_s{}^4$	$\alpha_s{}^3$	$\alpha_s{}^3$	$\alpha_s{}^3$	$\alpha_s{}^3$

perturbative expansion in $\alpha_s(\mu)$

0 - 1 -	
L 0 1 LO	
i 1 1 NLO	
L 1 2 3 NLO	
L' 2 2 3 NNLO	
L 2 3 4 NNLO	

from Valerio Bertone's talk at https://indico.cern.ch/event/849342/

Recent TMD fits of unpolarized data

	Framework	HERMES	COMPASS	DY	Z production	N of points	χ²/N _{points}
Pavia 2017 <mark>arXiv:1703.10157</mark>	NLL		•	~	~	8059	1.55
SV 2017 arXiv:1706.01473	NNLL'	*	×	~	~	309	1.23
BSV 2019 arXiv:1902.08474	NNLL'	×	×	~	•	457	1.17
SV 2019 arXiv:1912.06532	NNLL'	•	•	~	~	1039	1.06
Pavia 2019 arXiv:1912.07550	N ³ LL	×	×	•	~	353	1.02

Recent TMD fits of unpolarized data

	Framework	HERMES	COMPASS	DY	Z production	N of points	χ²/N _{points}
Pavia 2017 <mark>arXiv:1703.10157</mark>	NLL	~	~		~	8059	1.55
SV 2017 arXiv:1706.01473	NNLL'	×	×		•	309	1.23
BSV 2019 arXiv:1902.08474	NNLL'	×	×	~	~	457	1.17
SV 2019 arXiv:1912.06532	NNLL'	•	~	~	~	1039	1.06
Pavia 2019 arXiv:1912.07550	N ³ LL	×	×	•	~	353	1.02

Recent TMD fits of unpolarized data

	Framework	HERMES	COMPASS	DY	Z production	N of points	χ²/N _{points}
Pavia 2017 <mark>arXiv:1703.10157</mark>	NLL	•	•	•	~	8059	1.55
SV 2017 arXiv:1706.01473	NNLL'	×	×	~	•	309	1.23
BSV 2019 arXiv:1902.08474	NNLL'	×	×	~	~	457	1.17
SV 2019 arXiv:1912.06532	NNLL'	•	•	•	•	1039	1.06
Pavia 2019 arXiv:1912.07550	N ³ LL	×	×	~	~	353	1.02

PV17

Bacchetta, Delcarro, Pisano, Radici, Signori arXiv:1703.10157

15 $d\sigma/dq_T$ (normalized)

global $\chi^2 = 1.55$

SIDIS

with normalization coefficients

N3LL Drell-Yan fit

A. Bacchetta, V. Bertone, C. Bissolotti, G. Bozzi, F. Delcarro, F. Piacenza, M. Radici JHEP 07 (2020) 117 e-Print: 1912.07550

NO normalization coefficients

GLOBAL ANALYSIS of Drell-Yan and Semi-Inclusive DIS data sets ----- 2031 data points Perturbative accuracy:

Normalization of SIDIS multiplicities beyond NLL

Global analysis of DY and SIDIS data sets 10^{5} Cuts on kinematics $\langle Q \rangle > 1.3 \,\,\mathrm{GeV}$ 10^{4} $0.2 < \langle z \rangle < 0.7$ $\begin{bmatrix} 10^3 \\ 0 \\ 0 \end{bmatrix}$ E605 DY E288 STAR PHENIX \mathbf{CDF} $\mathbf{D0}$ $q_T|_{\rm max} = 0.2Q$ LHCb 10^{1} CMS ATLAS HERMES COMPASS $10^0 \bigsqcup _{10^{-5}}$ SIDIS 10^{-2} 10^{-4} 10^{-3} 10^{-1} \boldsymbol{x} $P_{hT}|_{max} = \min[\min[0.2Q, 0.5zQ] + 0.3 \text{ GeV}, zQ]$ Total number of points = 2031

Perturbative accuracy: N³LL⁻ Orders in powers of α_s

Hard factor matching coe	and fficient	Ingredient Sudake	ts in perturbati ov form factor	ive
Accuracy	H and C	K and y _F	Ϋ́κ	PDF and α _s evol.
LL	0		1	
NLL	0	1	2	LO
NLĽ	1	1	2	NLO
NNLL	1	2	3	NLO
NNLĽ	2	2	3	NNLO
N ³ LL ⁻	2	3	4	NLO (FF only)
N ³ LL	2	3	4	NNLO
N ³ LĽ	3	3	4	N ³ LO

Extraction of unpolarized quark TMDs What's new?

GLOBAL ANALYSIS of Drell-Yan and Semi-Inclusive DIS data sets **2031** data points Perturbative accuracy: NBLL

Normalization of SIDIS multiplicities beyond NLL

Normalization of SIDIS multiplicities

High-Energy Drell-Yan beyond NLL

Piacenza, Radici, arXiv:1912.07550

Source of W term suppression Hard factor

 $\mathcal{H}_{ab}^{\rm SIDIS}(Q,Q) = e_a^2 \delta_{ab}$

$$\left(1+\frac{\alpha_S}{4\pi}C_F\left(-16+\frac{\pi^2}{3}\right)\right)$$

Source of W term suppression Hard factor

$\mathcal{H}_{ab}^{\text{SIDIS}}(Q,Q) = e_a^2 \delta_{ab}$

introducing $\mathcal{O}(\alpha_s)$ terms

reduces the structure function to about 60% of its original value.

$$\left(1 + \frac{\alpha_S}{4\pi}C_F\left(-16 + \frac{\pi^2}{3}\right)\right)$$

$$\left(1 + \frac{\alpha_S}{4\pi}C_F\left(-16 + \frac{\pi^2}{3}\right)\right)$$

integral of the TMD formula

collinear cross section

$$\frac{2}{dz}\Big|_{O(\alpha_S)}$$

Normalization of SIDIS multiplicities **Introduction of a normalization prefactor**

$$\frac{d\sigma^h}{dxdQ^2dz}\Big|_{O(\alpha_S)} = \sigma_0 \sum_{f,f'} \frac{e_f^2}{z^2} (\delta_{f'f} + \delta_{f'g}) \frac{\alpha_S}{\pi} \bigg\{ \Big[I \bigg]_{O(\alpha_S)} \bigg\} = \sigma_0 \sum_{f,f'} \frac{e_f^2}{z^2} (\delta_{f'f} + \delta_{f'g}) \frac{\alpha_S}{\pi} \bigg\} \bigg\}$$

$$\text{PREFACTOR}(x, z, Q) = \frac{\frac{d\sigma^{h}}{dx dQ^{2} dz}}{\int W d}$$

computed a priori, before the fit

 $\left[D_1^{h/f'} \otimes C_1^{f'f} \otimes f_1^{f/N}\right](x, z, Q)\right\}$

Depends on the collinear PDFs Ş

independent of the fitting parameters

Non-perturbative part of TMDs TMD PDF $f_{1NP}(x, b_T^2) \propto \text{F.T. of } \left(e^{-\frac{k_\perp^2}{g_{1A}}} + \lambda_B k_\perp^2 e^{-\frac{k_\perp^2}{g_{1B}}} + \lambda_C e^{-\frac{k_\perp^2}{g_{1C}}} \right)$ TMD FF $D_{1NP}(x, b_T^2) \propto \text{F.T. of} \left(e^{-\frac{P_{\perp}^2}{g_{3A}}} + \lambda_{FB} k_{\perp}^2 e^{-\frac{P_{\perp}^2}{g_{3B}}} \right)$

NP evolution $g_K(b_T^2) = -g_2^2 \frac{b_T^2}{\Lambda}$

$$g_1(x) = N_1 \ \frac{(1-x)}{(1-\hat{x})}$$

$$g_3(z) = N_3 \frac{(z^{\beta} + \delta)(1 - \delta)}{(\hat{z}^{\beta} + \delta)(1 - \delta)}$$

evolution $g_K(b_T^2) = -g_2^2 \frac{b_T^2}{\Lambda}$

$$g_1(x) = N_1 \ \frac{(1-x)}{(1-\hat{x})}$$

$$g_3(z) = N_3 \frac{(z^{\beta} + \delta)(1 - \delta)(1 - \delta)}{(\hat{z}^{\beta} + \delta)(1 - \delta)}$$

Fit results at N3LL : comparison with data

 $Q \; [GeV]$

SIDIS cut for data selection **COMPASS multiplicities**

$1.3 < Q < 1.73 \,\,{\rm GeV}$

0.3 < z < 0.4 (offset = 0)0.4 < z < 0.6 (offset = 0)0.6 < z < 0.8 (offset = 0)

max

DY description

DY description

GLOBAL X~1

Possible justifications:

- small experimental uncertainties
- approximation of lepton cuts
- effects of the matching between perturbative and non-perturbative physics

Fit results

TMD PDFs

Conclusions MAP22 GLOBAL FIT – A new extraction of quark TMDs in preparation

Global analysis of Drell-Yan and Semi-Inclusive DIS data sets Ş

Normalization of SIDIS multiplicities beyond NLL Ş

Number of parameters: 21

data points

$$F_{UU}^{1}(x_{A}, x_{B}, \boldsymbol{q}_{T}^{2}, Q^{2})$$

$$= \sum_{a} \mathcal{H}_{UU}^{1a}(Q^{2}, \mu^{2}) \int d^{2}\boldsymbol{k}_{\perp A} d^{2}\boldsymbol{k}_{\perp B} f_{1}^{a}(x_{A}, \boldsymbol{k}_{\perp A}^{2}; \mu^{2}) f_{1}^{\bar{a}}(x_{B}, \boldsymbol{k}_{\perp B}^{2}; \mu^{2}) \delta^{(2)}(\boldsymbol{k}_{\perp A} - \boldsymbol{q}_{T} + \boldsymbol{k}_{\perp B})$$

$$+ Y_{UU}^{1}(Q^{2}, \boldsymbol{q}_{T}^{2}) + \mathcal{O}(M^{2}/Q^{2})$$

Y term not included in the Pavia analyses

A. Bacchetta, F. Delcarro, C. Pisano, M. Radici, A. Signori arXiv:1703.10157

 Q^2 [GeV²] 10^{2}

cuts

 $Q^2 > 1.4 \text{ GeV}^2$ 0.2 < z < 0.7 $P_{hT}, q_T < Min[0.2 \ Q, 0.7 \ Qz] + 0.5 \ GeV$

Total number of points: 8059

PV17 non perturbative functions

A. Bacchetta, F. Delcarro, C. Pisano, M. Radici, A. Signori arXiv:1703.10157

$$f_{1\mathrm{NP}}^{a}(x,\mathbf{k}_{\perp}^{2}) = \frac{1}{\pi} \frac{\left(1+\lambda \mathbf{k}_{\perp}^{2}\right)}{g_{1a}+\lambda g_{1a}^{2}} e^{-\frac{\mathbf{k}_{\perp}^{2}}{g_{1a}}}$$

$$D_{1\mathrm{NP}}^{a\to h}(z,\mathbf{P}_{\perp}^2) = \frac{1}{\pi} \frac{1}{g_{3a\to h} + (\lambda_F/z^2)g_{4a\to h}^2} \left(e^{-\frac{\mathbf{P}_{\perp}^2}{g_{3a\to h}}} + \lambda_F \frac{\mathbf{P}_{\perp}^2}{z^2} e^{-\frac{\mathbf{P}_{\perp}^2}{g_{4a\to h}}}\right)$$

x-dependence

$$g_1(x) = N_1 \frac{(1-x)^{\alpha} x^{\sigma}}{(1-\hat{x})^{\alpha} \hat{x}^{\sigma}}$$

$$g_{3,4}(z) = N_{3,4} \frac{(z^{\beta} + \delta) (1 - z)^{\gamma}}{(\hat{z}^{\beta} + \delta) (1 - \hat{z})^{\gamma}}$$

11 free parameters

non-perturbative Sudakov factor

 $g_K(b_T) = -g_2 b_T^2/2$

$$\exp\left(-g_{1,B}(x)\frac{b^2}{4}\right)\right]$$

$$\left(g_2 + g_{2B}b^2\right)\log\left(\frac{\zeta}{Q_0^2}\right)\frac{b^2}{4}\right]$$

parameters

Normalization of SIDIS multiplicities

The discrepancy amounts to an almost **Constant factor**

Fit results: correlation matrix 250 Montecarlo replicas

$$\chi^{2} = \sum_{i,j=1}^{k} (m_{i} - t_{i}) V_{ij}^{-1} (m_{j} - t_{j})$$
predictions
$$\sigma_{i,\text{corr}}^{(l)} \equiv \delta_{i,\text{corr}}^{(l)} m_{i}$$

$$V_{ij} = s_{i}^{2} \delta_{ij} + \left(\sum_{l=1}^{k_{a}} \delta_{i,\text{add}}^{(l)} \delta_{j,\text{add}}^{(l)} + \sum_{l=1}^{k_{m}} \delta_{i,\text{mult}}^{(l)} \delta_{j,\text{mult}}^{(l)}\right) m_{i} m_{j}$$

$$\sigma_{i,\text{corr}}^{(1)} \pm \cdots \pm \sigma_{i,\text{corr}}^{(k)}$$

correlated

additive

multiplicative

Experimental uncertainties

$$m_{i} \pm \sigma_{i,\text{unc}} \pm \sigma_{i,\text{corr}}^{(1)} \pm \dots \pm \sigma_{i,\text{corr}}^{(k)}$$
correlated additive multiplicative

$$\chi^{2} = \sum_{i,j=1}^{n} (m_{i} - t_{i}) V_{ij}^{-1} (m_{j} - t_{j})$$
predictions trix

$$s_{i}^{2} \delta_{ij} + \left(\sum_{l=1}^{k_{a}} \delta_{i,\text{add}}^{(l)} \delta_{j,\text{add}}^{(l)} + \sum_{l=1}^{k_{m}} \delta_{i,\text{mult}}^{(l)} \delta_{j,\text{mult}}^{(l)}\right) m_{i} m_{j}$$

covarianc

$$m_{i} \pm \sigma_{i,\text{unc}} \pm \sigma_{i,\text{corr}}^{(1)} \pm \dots \pm \sigma_{i,\text{corr}}^{(k)}$$
uncorrelated additive multiplicative

$$\chi^{2} = \sum_{i,j=1}^{n} (m_{i} - t_{i}) V_{ij}^{-1} (m_{j} - t_{j})$$
b predictions Ce matrix

$$V_{ij} = s_{i}^{2} \delta_{ij} + \left(\sum_{l=1}^{k_{a}} \delta_{i,\text{add}}^{(l)} \delta_{j,\text{add}}^{(l)} + \sum_{l=1}^{k_{m}} \delta_{i,\text{mult}}^{(l)} \delta_{j,\text{mult}}^{(l)}\right) m_{i} m_{i}$$

Experimental uncertainties

$$m_{i} \pm \sigma_{i,\text{unc}} \pm \sigma_{i,\text{corr}}^{(1)} \pm \dots \pm \sigma_{i,\text{corr}}^{(k)}$$
correlated additive multiplicative

$$\chi^{2} = \sum_{i,j=1}^{n} (m_{i} - t_{i}) V_{ij}^{-1} (m_{j} - t_{j})$$
b predictions trix

$$t_{0} \text{ prescription}$$
trix

$$t_{j} + \sum_{l=1}^{k_{a}} \delta_{i,\text{add}}^{(l)} \delta_{j,\text{add}}^{(l)} m_{i} m_{j} + \sum_{l=1}^{k_{m}} \delta_{i,\text{mult}}^{(l)} \delta_{j,\text{mult}}^{(l)} t_{i}^{(0)} t_{j}^{(0)}$$

cova

$$t_i + d_i$$

shifted prediction

$$\left(\frac{\overline{t}_{i}}{\overline{t}_{i}} \right)^{2} + \sum_{\alpha=1}^{k} \lambda_{\alpha}^{2}$$

ibution penalty term

Ş

What happens to TMDs ONCE We include EIC data?

Electron-Ion Collider to be built at Brookhaven National Lab

Impact studies starting point

EIC pseudodata

we took the average kinematic variables of each point and the relative uncertainty on the observable

PV17 TMDs predictions using global fit of Pavia 2017

Bacchetta, Delcarro, Pisano, Radici, Signori arXiv:1703.10157

EIC impact studies **SENSITIVITY COEFFICIENTS**

from E. Aschenauer, I. Borsa, G. Lucero, A. S. Nunes, R. Sassot arXiv:2007.08300

 $F_{UU,T}(x, z, q_T; Q^2)$ - observable

experimental uncertainty (from pseudodata)

theoretical uncertainty

EIC impact studies sensitivity coefficients

EIC impact studies sensitive coefficients

$$S[f_i, \mathcal{O}] = \frac{\langle \mathcal{O} \cdot f_i \rangle - \langle \mathcal{O} \rangle \langle f_i \rangle}{\xi \Delta \mathcal{O} \Delta f_i}$$

EIC impact studies REWEIGHING

from NNPDF Collaboration arXiv:1108.1758

with n= n.of points too few replicas survive

FIT NECESSARY

histogram of χ^2 distribution of 200 replicas

