Transverse spin asymmetries in J/ψ production at COMPASS

Jan Matoušek Faculty of Mathematics and Physics Charles University, Prague, Czechia

> Nuclear Physics Seminars University of Virginia 16. 11. 2021 via Zoom

CHARLES UNIVERSITY Faculty of mathematics and physics

Jan Matoušek (Charles University) TSAs in J/ ψ production at COMPASS

16. 11. 2021, UVA 1/20

(D) (A) (A) (A)

- Nucleon structure
- 2 COMPASS experiment
- (3) TSAs in J/ ψ leptoproduction
- (4) TSAs in $\pi^- p^{\uparrow}$ scattering
- 5 Conclusions

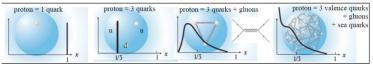
Jan Matoušek (Charles University) TSAs in J/ ψ production at COMPASS 16. 11. 2021, UVA 2/20

イロト イヨト イヨト イヨト

- 12

Nucleon structure: Parton distribution functions

- Parton model
 - Born in the late 60's,
 - \bullet to describe electron–proton scattering $\mathbf{e}(k) + \mathbf{p}(P) \rightarrow \mathbf{e}(k') + \mathbf{X}$


$$Q^{2} = -q^{2} = -(k'-k)^{2}, \qquad x = \frac{Q^{2}}{2P \cdot q}$$

• Deeply-Inelastic Scattering (DIS) limit and "infinite momentum frame": $P \to \infty, Q^2 \to \infty, x$ stays finite.

$$\frac{\mathrm{d}\sigma}{\mathrm{d}x\mathrm{d}Q^2} = \frac{4\pi\alpha^2}{Q^4}D(x,Q^2)\sum_i e_i^2 f_1^i(x$$

Point-like constituents (partons) with momentum and charge: k = xP, e = 2/3, -1/3.
f₁(x) - Parton Distribution Function (PDF),

• Drell–Yan reaction (1970)

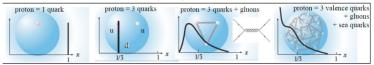
$$\frac{\mathrm{d}\sigma}{\mathrm{d}x_a\mathrm{d}x_b} = \frac{4\pi\alpha^2}{9q^2}\sum_i e_i^2 f_1^i(x_a) f_1^{\bar{i}}(x_b)$$

• QCD

• $f = f(x, Q^2)$, but the dependence on Q^2 is calculable (DGLABequations). $E \rightarrow 2$

Nucleon structure: Parton distribution functions

- Parton model
 - Born in the late 60's,
 - \bullet to describe electron–proton scattering $\mathbf{e}(k) + \mathbf{p}(P) \rightarrow \mathbf{e}(k') + \mathbf{X}$

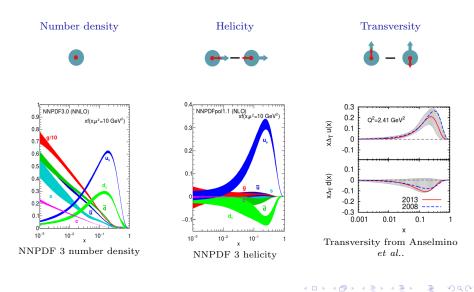

$$Q^{2} = -q^{2} = -(k'-k)^{2}, \qquad x = \frac{Q^{2}}{2P \cdot q}$$

• Deeply-Inelastic Scattering (DIS) limit and "infinite momentum frame": $P \to \infty, Q^2 \to \infty, x$ stays finite.

$$\frac{\mathrm{d}\sigma}{\mathrm{d}x\mathrm{d}Q^2} = \frac{4\pi\alpha^2}{Q^4}D(x,Q^2)\sum_i e_i^2 f_1^i(x)$$

Point-like constituents (partons) with momentum and charge: k = xP, e = 2/3, -1/3.
f₁(x) - Parton Distribution Function (PDF),

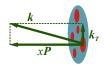
• Drell–Yan reaction (1970)


$$\frac{\mathrm{d}\sigma}{\mathrm{d}x_a\mathrm{d}x_b} = \frac{4\pi\alpha^2}{9q^2}\sum_i e_i^2 f_1^i(x_a) f_1^{\bar{i}}(x_b)$$

• QCD

• $f = f(x, Q^2)$, but the dependence on Q^2 is calculable (DGLAP equations). Jan Matoušek (Charles University) TSAs in J/ψ production at COMPASS 16. 11. 2021, UVA 3/20

- If parton intrinsic $k_{\rm T}$ is not integrated over,
- "three-dimensional" objects $f(x, k_{\rm T}^2, Q^2)$.
- Accessible in
 - semi-inclusive deep-inelastic scattering (SIDIS),
 - Drell–Yan dilepton production,
 - proton-proton collisions...


Helicity.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c} \mathbf{I} \\ $
$ \begin{array}{c c} & & & & & & & & & & & & & & & & & & &$

Jan Matoušek (Charles University) TSAs in J/ψ production at COMPASS

- If parton intrinsic $k_{\rm T}$ is not integrated over,
- "three-dimensional" objects $f(x, k_T^2, Q^2)$.
- Accessible in
 - semi-inclusive deep-inelastic scattering (SIDIS),
 - Drell-Yan dilepton production,
 - proton-proton collisions...

Helicity.

Transversity.

Sivers PDF.

Boer-Mulders PDF.

Pretzelosity PDF.

- 2

		Parent hadron polarization		
		Unpolarised	Longitudinal	Transverse
	U	$\begin{array}{c} f_1(x, k_{\rm T}^2) \\ (\text{number density}) \end{array}$		$f_{1T}^{\perp}(x, k_{\mathrm{T}}^2) \ \mathrm{(Sivers)}$
Parton polarisation	L		$g_1(x, k_{\mathrm{T}}^2)$ (helicity)	$g_{1T}(x, k_{\mathrm{T}}^2)$ (Kotzinian–Mulders)
Pa	Т	$h_1^\perp(x,k_{ m T}^2) \ ({ m Boer-Mulders})$	$h_{1L}^{\perp}(x, k_{\mathrm{T}}^2)$ (worm-gear)	$egin{aligned} h_1(x,k_{\mathrm{T}}^2)\ (ext{transversity})\ h_{1T}^\perp(x,k_{\mathrm{T}}^2)\ (ext{pretzelosity}) \end{aligned}$
				< □

Jan Matoušek (Charles University)

TSAs in J/ψ production at COMPASS

문어 귀 문어 16. 11. 2021, UVA

Nucleon structure: Measuring the TMD PDFs

• Semi-Inclusive Deep-Inelastic Scattering (SIDIS) off polarised nucleons

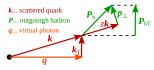
 $\ell + \overrightarrow{N} \to \ell' + h + X, \qquad \qquad \ell + N^{\uparrow} \to \ell' + h + X$

• Q^2 , x, z (fraction of available energy transferred to h), $P_{\mathbf{T}}$ (transverse momentum of h).

 γN frame.

- $k_{\rm T}$ is not directly observable, only convolutions of TMD PDFs and fragmentation functions (FFs) over $k_{\rm T}$ and p_{\perp} .
- Measured since $\approx 2000:$ HERMES, COMPASS, JLab.

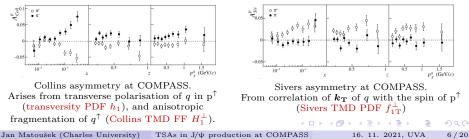

(日) (四) (日) (日) (日)


Nucleon structure: Measuring the TMD PDFs

• Semi-Inclusive Deep-Inelastic Scattering (SIDIS) off polarised nucleons

 $\ell + \overrightarrow{N} \to \ell' + h + X, \qquad \qquad \ell + N^{\uparrow} \to \ell' + h + X$

• Q^2 , x, z (fraction of available energy transferred to h), P_T (transverse momentum of h).

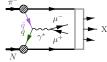


Transverse momenta in target rest frame.

 γN frame.

- k_{T} is not directly observable, only convolutions of TMD PDFs and fragmentation functions (FFs) over k_{T} and p_{\perp} .
- Measured since \approx 2000: HERMES, COMPASS, JLab.

Nucleon structure: SIDIS and Drell-Yan



SIDIS on transversely polarised nucleons

• Structure functions F:

 $F = \mathrm{PDF}_{q,\mathrm{p}} \otimes \mathrm{FF}_{q \to h}.$

- For example:
 - $F_{\mathrm{UU}}^{\cos \phi_h}$ and $F_{\mathrm{UU}}^{\cos 2\phi_h}$ linked to $h_{1,\mathrm{p}}^{\perp}$,
 - $F_{\mathrm{UT,T}}^{\sin(\phi_h \phi_S)} = f_{1\mathrm{T,p}}^{\perp} \otimes D_1.$
 - $F_{\mathrm{UT}}^{\sin(\phi_h + \phi_S)} = h_{1,\mathrm{p}} \otimes H_1^{\perp},$

Drell–Yan on transversely polarised nucleons

• Structure functions F:

 $F = \mathrm{PDF}_{q,\mathrm{p}} \otimes \mathrm{PDF}_{\bar{q},\pi^{-}}.$

• For example:

•
$$F_{\mathrm{U}}^{\cos 2\phi} = h_{1,\pi}^{\perp} \otimes h_{1,\mathrm{p}}^{\perp},$$

•
$$F_{\mathrm{T}}^{\sin \phi_S} = f_{1,\pi} \otimes f_{1\mathrm{T,p}}^{\perp}$$

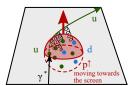
•
$$F_{\mathrm{T}}^{\sin(2\phi-\phi_S)} = h_{1,\pi}^{\perp} \otimes h_{1,\mathrm{p}}.$$

A sign change predicted for Sivers and Boer–Mulders functions: $f_{1T}^{\perp q}|_{\text{SIDIS}} = -f_{1T}^{\perp q}|_{\text{DY}}$ $h_{1}^{\perp q}|_{\text{SIDIS}} = -h_{1}^{\perp q}|_{\text{DY}}$ [J. Collins, Phys.Lett. B536 (2002) 43]

Jan Matoušek (Charles University) ~~ TSAs in J/ ψ production at COMPASS

< □ > < □ > < □ > < □ > < □ > < □ > < □ >
 S 16, 11, 2021, UVA

Nucleon structure: SIDIS and Drell-Yan



SIDIS on transversely polarised nucleons

• Structure functions *F*:

 $F = \mathrm{PDF}_{q,\mathrm{p}} \otimes \mathrm{FF}_{q \to h}.$

- For example:
 - $F_{\mathrm{UU}}^{\cos \phi_h}$ and $F_{\mathrm{UU}}^{\cos 2\phi_h}$ linked to $h_{1,\mathrm{p}}^{\perp}$,
 - $F_{\mathrm{UT,T}}^{\sin(\phi_h \phi_S)} = f_{1\mathrm{T,p}}^{\perp} \otimes D_1.$
 - $F_{\mathrm{UT}}^{\sin(\phi_h + \phi_S)} = h_{1,\mathrm{p}} \otimes H_1^{\perp},$

Sivers effect in SIDIS (as described by [M. Burkardt, Nucl.Phys. A735 (2004) 185].

Jan Matoušek (Charles University)

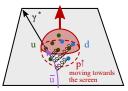
A sign change predicted for Sivers and Boer–Mulders functions:

$$\left. f_{1\mathrm{T}}^{\perp q} \right|_{\mathrm{SIDIS}} = -f_{1\mathrm{T}}^{\perp q} \right|_{\mathrm{DY}}$$

$$h_1^{\perp q}\big|_{\text{SIDIS}} = -h_1^{\perp q}\big|_{\text{DY}}$$

[J. Collins, Phys.Lett. B536 (2002) 43] $\begin{array}{c} \pi^- \\ \overline{q} \\ q \\ \gamma^* \\ \mu^+ \end{array}$

Drell–Yan on transversely polarised nucleons


- Structure functions *F*:
 - $F = \mathrm{PDF}_{q,\mathrm{p}} \otimes \mathrm{PDF}_{\bar{q},\pi^{-}}.$
- For example:

•
$$F_{\mathrm{U}}^{\cos 2\phi} = h_{1,\pi}^{\perp} \otimes h_{1,\mathrm{p}}^{\perp}$$

•
$$F_{\mathrm{T}}^{\sin\phi_S} = f_{1,\pi} \otimes f_{1\mathrm{T,p}}^{\perp},$$

•
$$F_{\mathrm{T}}^{\sin(2\phi-\phi_S)} = h_{1,\pi}^{\perp} \otimes h_{1,\mathrm{p}}.$$

・ロト ・回ト ・ヨト ・ヨト

Sivers effect in Drell–Yan drawn in the same manner.

TSAs in J/ψ production at COMPASS

16. 11. 2021, UVA 7/20

COMPASS

16. 11. 2021, UVA

8/20

In lepton–nucleon scattering

Color singlet model.

Color evaporation model (CEM) or color octet model (COM).

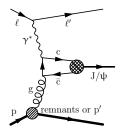
- Color singlet model: $c\bar{c}$ has to be in color singlet state to form the J/ψ .
- $\bullet~{\rm CEM}:$ the color 'evaporates' from $c\bar{c}$ via soft gluon interactions.
- COM: NRQCD factorisation, different transition probabilities from different initial states (more free parameters than CEM).
- These processes give access to gluon TMD PDFs via the 'photon–gluon fusion' (PGF).
- Diffractive production: via exchange of a color-less particle.
- Also the diffractive production could be approached by perturbative QCD, but contains different information.
- Feed-down: decay of heavier charmonia any information on nucleon_structure is_lost

Jan Matoušek (Charles University) TSAs in J/ψ production at COMPASS

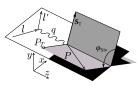
COMPASS

In lepton–nucleon scattering

Color singlet model.


Color evaporation model (CEM) or color octet model (COM).

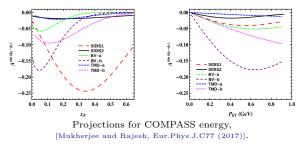
Diffractive production.


- Color singlet model: $c\bar{c}$ has to be in color singlet state to form the J/ψ .
- $\bullet~{\rm CEM}:$ the color 'evaporates' from $c\bar{c}$ via soft gluon interactions.
- COM: NRQCD factorisation, different transition probabilities from different initial states (more free parameters than CEM).
- These processes give access to gluon TMD PDFs via the 'photon-gluon fusion' (PGF).
- Diffractive production: via exchange of a color-less particle.
- Also the diffractive production could be approached by perturbative QCD, but contains different information.
- Feed-down: decay of heavier charmonia any information on nucleon structure is lost

Jan Matoušek (Charles University) TSAs in J/ ψ production at COMPASS 16. 11. 2021, UVA 8/20

In lepton–nucleon scattering

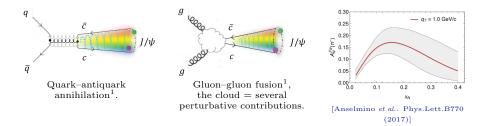
 $J\!/\psi$ formed in PGF.



The Sivers angle (here $P = P_{J/\psi}$).

- Assuming PGF process (plus CEM or COM),
- azimuthal distribution of g preserved, $\phi_{g} = \phi_{J/\psi}$,
- \rightarrow Sivers-like modulation in φ_{Siv}

$$\sigma(\phi_{\rm Siv}) = \sigma_0 \left(1 + f P_{\rm tar.} A_{\rm Siv}^{\rm p} \sin(\varphi_{\rm Siv}) \right)$$


[Mukherjee and Rajesh, Eur.Phys.J.C77 (2017)],
 [Bacchetta et al., Eur.Phys.J.C80 (2020)].

・ロト ・日ト ・ヨト ・ヨト

In pion–nucleon scattering

- The rainbow area represents CEM or COM J/ψ production from $c\bar{c}$.
- qq annihilation: access to quark TMD PDFs.
 - A large Sivers asymmetry in $\pi^- p^{\uparrow} \rightarrow \mu^- \mu^+ X$ at COMPASS was predicted, assuming only qq [Anselmino et al., Phys.Lett.B770 (2017)].
- gg fusion: access to gluon TMD PDFs.
 - For example, to d-type Sivers function if produced in $\pi^- p^{\uparrow}$ scattering.
- Feed-down: decay of heavier charmonia any information on nucleon structure is lost.
- The result is a mix of the processes. The ratio depends on J/ψ production mechanism.
 - Studies suggest that gg fusion dominates at COMPASS [Chang et al., Phys.Rev.D102 (2020)]

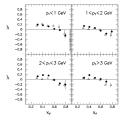
¹Diagrams: courtesy of Pietro Faccioli. 16, 11, 2021, UVA 10/20

[S. Arnold et al., Phys.Rev.D79 (2009) 034005]

$$\begin{split} & \left. \left. \left. \begin{array}{l} \frac{d\sigma}{d\Omega} \propto \left(F_{U}^{1} + F_{U}^{2}\right) \left(1 + A_{U}^{1}\cos^{2}\theta_{CS}\right) \\ & \times \left. \begin{cases} 1 + D_{\left[\sin^{2}\theta_{CS}\right]} A_{U}^{\cos^{2}\theta_{CS}}\cos 2\varphi_{CS} + D_{\left[\sin^{2}\theta_{CS}\right]} A_{U}^{\cos^{2}\theta_{CS}}\cos\varphi_{CS} \\ & + B_{T} \left[\begin{array}{l} A_{T}^{\sin^{2}\phi_{CS}}\sin\varphi_{S} \\ + D_{\left[\sin^{2}\theta_{CS}\right]} \left(A_{T}^{\sin^{2}\phi_{CS}-\phi_{S}}\sin(\varphi_{CS}-\varphi_{S}) \\ & + A_{T}^{\sin^{2}\phi_{CS}+\phi_{S}}\sin(\varphi_{CS}-\varphi_{S}) \\ & + D_{\left[\sin^{2}\theta_{CS}\right]} \left(A_{T}^{\sin^{2}\theta_{CS}-\phi_{S}}\sin(2\varphi_{CS}-\varphi_{S}) \\ & + A_{T}^{\sin^{2}\theta_{CS}+\phi_{S}}\sin(2\varphi_{CS}-\varphi_{S}) \\ & + A_{T}^{\sin^{2}\theta_{CS}+\phi_{S}}\sin(2\varphi_{CS}-\varphi_{S}) \\ \end{array} \right) \\ \end{matrix} \right] \end{split} \right\} \end{split}$$

$$\mathbf{D}_{\left[f(\theta_{CS})\right]} = f\left(\theta_{CS}\right) / \left(1 + A_U^1 \cos^2 \theta_{CS}\right)$$

Cross-section with unpolarised target:


 $\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{3}{4\pi} \frac{1}{\lambda+1} \left(1 + \lambda \cos^2 \theta_{\mathrm{CS}} + \mu \sin 2\theta \cos \varphi_{\mathrm{CS}} + \frac{\nu}{2} \sin^2 \theta \cos 2\varphi_{\mathrm{CS}} \right)$

$$\lambda = A_{\rm U}^1, \, \mu = A_{\rm U}^{\cos \varphi_{\rm CS}} \text{ and } \nu = 2A_{\rm U}^{\cos 2\varphi_{\rm CS}}$$

Jan Matoušek (Charles University)

TSAs in J/ψ production at COMPASS

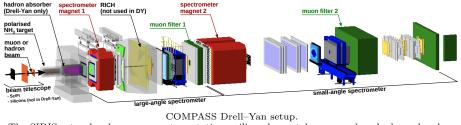
- The same parametrisation describes Drell–Yan and J/ψ cross-section.
- The interpretation of the structure functions *F* differs.
- 'Naive' Drell–Yan model: $\lambda = 1, \ \mu = \nu = 0.$
- Lam–Tung relation for Drell–Yan: $\lambda + 2\nu = 1.$
- λ plays role in the kinematic factors D.
- Drell–Yan: $\lambda \approx 1$ from experiments.
- J/ ψ : kinematically dependent.

λ measured by NuSea experiment [NuSea□Phys.Rev.Lett. 91 (2003)]. Ξ つへで OMPASS 16. 11. 2021, UVA 11/20

- COMPASS Collaboration: 24 institutions from 13 countries (≈ 220 physicists).
- Experimental area: CERN Super Proton Synchrotron (SPS) North Area.
- Multi-purpose apparatus with rich physics program since 2002 aimed at hadron structure and spectroscopy.

COMPASS experiment: SIDIS and Drell–Yan setups

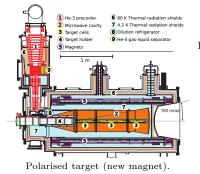
COMPASS


- Large polarised solid-state target with 2 or 3 oppositely-polarised cells.
- $\bullet\,$ Two-stage spectrometer, about 350 detector planes, μ identification.

SIDIS with transversely-polarised target

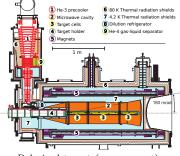
- 2002–2004 with d^{\uparrow} (⁶LiD, old magnet).
- 2007 and 2010 with p^{\uparrow} (NH₃, new mag.)
- 2021–2022 with d^{\uparrow} (⁶LiD, new mag.)
- 160 GeV/c μ^+ beam (about $3.5 \times 10^8 \ \mu/\text{spill of 10 s}$).
- Triggering on the scattered μ .

Drell–Yan with transversely-polarised target


- 2015 and 2018 with p^{\uparrow} (NH₃, new mag.)
- 190 GeV/c π^- beam (about 10⁹ π /spill of 10 s).
- With a hadron absorber.
- Triggering on 2µ.

The SIDIS setup has beam momentum stations, silicon beam telescope and no hadron absorber.

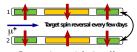
14/20


Large solid-state polarised target

- Super-conducting magnets:
 - 2.5 T solenoid, 0.6 T dipole.
 - Old (SMC) target magnet: 70 mrad acceptance.
 - New (COMPASS) target magnet: 180 mrad.
- MW system for dynamic nuclear polarisation.
- Polarisation is measured by NMR.
- Dilution refrigerator \rightarrow frozen spin mode at 70 mK.
- The target contains also unpolarised nuclei
 - Dilution of the signal by fP_N .
 - f: fraction of cross-section on polarisable nuclei.

イロト イポト イヨト イヨ

- P_N : polarisation of the polarisable nuclei.
- Polarised d: ⁶LiD, f = 0.4, $P_{\rm d} = 0.5$
- Polarised p: NH₃, f = 0.16, $P_{\rm p} = 0.9$
- Acceptance in polarisation-dependent azimuthal angles is cancelled in combinations of target cells and data taking periods.

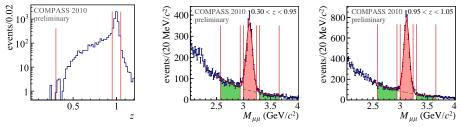


Polarised target (new magnet).

Operation with 2 cells.

Operation with 3 cells. Jan Matoušek (Charles University)

Large solid-state polarised target

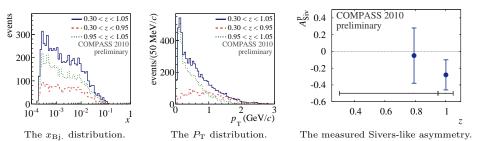

- Super-conducting magnets:
 - 2.5 T solenoid, 0.6 T dipole.
 - Old (SMC) target magnet: 70 mrad acceptance.
 - New (COMPASS) target magnet: 180 mrad.
- MW system for dynamic nuclear polarisation.
- Polarisation is measured by NMR.
- Dilution refrigerator \rightarrow frozen spin mode at 70 mK.
- The target contains also unpolarised nuclei
 - Dilution of the signal by fP_N .
 - f: fraction of cross-section on polarisable nuclei.
 - P_N : polarisation of the polarisable nuclei.
 - Polarised d: ⁶LiD, f = 0.4, $P_{\rm d} = 0.5$
 - Polarised p: NH₃, f = 0.16, $P_{\rm p} = 0.9$
- Acceptance in polarisation-dependent azimuthal angles is cancelled in combinations of target cells and data taking periods.

TSAs in J/ψ production at COMPASS

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
 SS 16, 11, 2021, UVA

TSAs in J/ $\!\psi$ leptoproduction: Data analysis

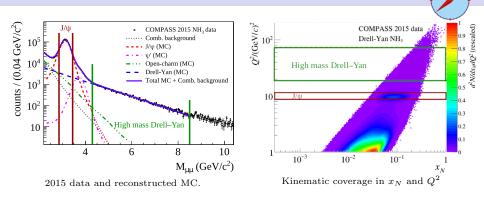
- $\bullet \ \mu^+ \mathrm{p}^{\uparrow} \to \mu^+ \mathrm{J}\!/\!\psi \, \mathrm{X} \to \mu^+ \mu^+ \mu^- \mathrm{X}.$
- Both possible combinations of $\mu^+\mu^-$ used.
- 2010 proton data.
- No Q^2 cut imposed (hard scale = $c\bar{c}$ mass).
- Two bins z: inclusive, exclusive.
- Clear J/ ψ signal (3.1 GeV/ c^2 , $\sigma \approx 55$ MeV/ c^2).
- Small background, limited statistics (≈ 2300 incl., 4500 excl.).



Energy fraction transferred to J/ψ .

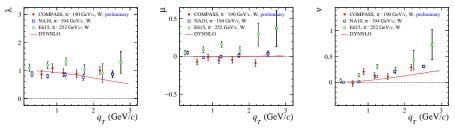
Invariant mass, inclusive bin.

Invariant mass, exclusive bin.

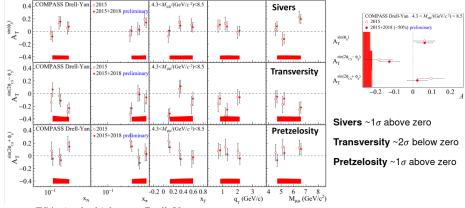

(D) (A) (A) (A)

- $A_{\text{Siv}}^{\text{p}} = -0.28 \pm 0.18$ (preliminary, exclusive J/ ψ).
- Prospects for improving statistics:
 - e⁺e⁻ channel: spectrometer not optimal for electrons, probably high background...

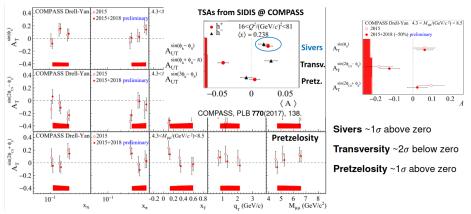
- 2002–2004 ⁶LiD data: rather small statistics,
- 2007 NH₃ data could bring something,
- Planned 2022 $^6{\rm LiD}$ data: \approx 2010 statistics.
- We are considering analysing other J/ψ asymmetries and writing a paper.


TSAs in $\pi^- p^\uparrow$ scattering: Data analysis

- $\bullet \ \pi^- \mathrm{p}^\uparrow \to \mu^+ \mu^-.$
- Invariant mass distribution is smeared by the hadron absorber.
- $\bullet\,$ Combinatorial background evaluated from like-sign $\mu\mu$ in the data.
- Open-charm background evaluated from Monte Carlo.
- $M_{\mu\mu} \in [4.3, 8.5] \text{ GeV}/c^2$: High mass Drell–Yan region (96% pure Drell–Yan)
 - TSAs from 2015 data published [COMPASS, Phys.Rev.Lett.119(11), 112002 (2017)].
- $M_{\mu\mu}$ in J/ ψ region: more than 90% pure J/ ψ , depending on the precise cut.
 - Ongoing analysis of the TSAs.
 - About 30× more data with respect to high-mass Drell-Yan.


TSAs in $\pi^- p^{\uparrow}$ scattering: Results in the Drell–Yan range

- Unpolarised asymmetries in line with previous experiments.
- In line with Lam–Tung relation, within uncertainties.
- Obtained using 2018 data (better Monte Carlo description than 2015).
- $\bullet~J/\psi$ analysis is ongoing.


TSAs in $\pi^- p^{\uparrow}$ scattering: Results in the Drell–Yan range

COMPA

TSAs in the high-mass Drell-Yan range [COMPASS, Phys.Rev.Lett.119(11), 112002 (2017)].

- The results support the sign-change prediction, although with a limited precision.
- Obtained using 2015 and part of 2018 data.
- J/ψ analysis is ongoing.

COMPA

TSAs in the high-mass Drell-Yan range [COMPASS, Phys.Rev.Lett.119(11), 112002 (2017)].

- The results support the sign-change prediction, although with a limited precision.
- Obtained using 2015 and part of 2018 data.
- J/ψ analysis is ongoing.

- COMPASS is studying the TMD PDFs in muon–nucleon and pion–nucleon scattering.
- It can thus address the universality of the TMDs.
- $\bullet~J/\psi$ production in these processes can bring important information.
- However, the interpretation is challenging
 - Different production mechanisms,
 - Feed-down contributions.
- Results on the TSAs can be expected soon.

・ロト ・回ト ・ヨト ・ヨト

э

- COMPASS is studying the TMD PDFs in muon–nucleon and pion–nucleon scattering.
- It can thus address the universality of the TMDs.
- $\bullet~J/\psi$ production in these processes can bring important information.
- However, the interpretation is challenging
 - Different production mechanisms,
 - Feed-down contributions.
- Results on the TSAs can be expected soon.

Thank you for your attention!

・ロト ・回ト ・ヨト ・ヨト