PHENOMENOLOGY OF 3D NUCLEON STRUCTURE

 Filippo DelcarroIntroduction

Tomography in momentum space

TMDs: definition and process dependence

TMDs: factorization and evolution

TMDs: extractions from data

Outlook and references
'Extraction of Sivers function and unpolarized TMDs
'Overview of TMDs formalism
'Relation between experimental observables and TMDs
-Relation between unpolarized TMDs and Sivers distribution
-Our choices for parametrization
'Overview of experiments and data considered
-Results and comparisons
-Sign change in DY

Why is it interesting to study the nucleon Structure?
$\mathcal{L}_{\mathrm{QCD}}=\sum_{q} \bar{\psi}_{q}(i \not \partial-g \not A+m) \psi_{q}-\frac{1}{4} G_{\mu \nu}^{a} G_{a}^{\mu \nu}$

Transverse Momentum Distributions: TMD PDF

	quark pol.			
		U	L	T
8	U	f_{1}		h_{1}^{\perp}
\%	L		$g_{1 L}$	$h_{1 L}^{\perp}$
	T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

TMD Parton Distribution Functions (TMD PDFs)

(Additional FFs if we consider hadron polarization

TMD Fragmentation Functions
(TMD FFs)
dependence on
longitudinal momentum fraction x, z
transverse momentum $\boldsymbol{k}_{\perp}, \boldsymbol{P}_{\perp}$
energy scale

UNPOLARIZED TMD
 PDF and FF

Structure functions and TMDs: SIDIS

multiplicities

$m_{N}^{h}\left(x, z, \boldsymbol{P}_{h T}^{2}, Q^{2}\right)=\frac{d \sigma_{N}^{h} /\left(d x d z d \boldsymbol{P}_{h T}^{2} d Q^{2}\right)}{d \sigma_{D I S} /\left(d x d Q^{2}\right)} \approx \frac{\pi F_{U U, T}\left(x, z, \boldsymbol{P}_{h T}^{2}, Q^{2}\right)}{F_{T}\left(x, Q^{2}\right)}$

FACTORIZATION

Structure functions and TMDs

Extraction from SIDIS \& Drell-Yan

UNIVERSALITY

Extraction from SIDIS \& Drell-Yan

UNIVERSALITY

Another process involving TMD (not included in this analysis)

$e^{-e} e^{+}$to pions

HERMES, $\mathrm{Q} \approx 1.5 \mathrm{GeV}$

reproduce shift of
TMD peak with energy scale

Width of TMDs changes of one order of magnitude \rightarrow EVOLUTION

Parametrization: perturbative and NP

Fourier transform: bт space
Alternative notation: ξ_{T}
collinear PDF
nonperturbative part of evolution
(NP but well known)

$$
F_{f l P}\left(x, \mathbf{b}_{T} ; \mu, \zeta\right)=\sum_{j} C_{f f j}\left(x, b_{*} ; \mu_{b}, \zeta_{F}\right) \otimes f_{j / P}\left(x, \mu_{b}\right)
$$

$$
\times \exp \left\{K\left(b_{*} ; \mu_{b}\right) \ln \frac{\sqrt{\zeta_{F}}}{\mu_{b}}+\int_{\mu_{b}}^{\mu} \frac{d \mu^{\prime}}{\mu^{\prime}}\left[\gamma_{F}-\gamma_{K} \ln \frac{\sqrt{\zeta_{F}}}{\mu^{\prime}}\right]\right\}
$$

$$
\underset{\substack{\text { (pQCD) } \\ \text { form factor }}}{\text { Sudako }} \times \exp \left\{g_{K}\left(b_{T}\right) \ln \left(\sqrt{\zeta_{F}} / \sqrt{\zeta_{F, 0}}\right)\right\} \hat{f}_{N P}\left(x, b_{T}\right)
$$

Wilson

Coefficient

(pQCD)

Parametrization: Accuracy

$$
\begin{aligned}
F_{f \mid P}\left(x, \mathbf{b}_{T} ; \mu, \zeta\right) & =\sum_{j} C_{f l j}\left(x, b_{*} ; \mu_{b}, \zeta_{F}\right) \otimes f_{j / P}\left(x, \mu_{b}\right) \\
& \times \exp \left\{K\left(b_{*} ; \mu_{b}\right) \ln \frac{\sqrt{\zeta_{F}}}{\mu_{b}}+\int_{\mu_{b}}^{\mu} \frac{d \mu^{\prime}}{\mu^{\prime}}\left[\gamma_{F}-\gamma_{K} \ln \frac{\sqrt{\zeta_{F}}}{\mu^{\prime}}\right]\right\} \\
& \times \exp \left\{g_{K}\left(b_{T}\right) \ln \left(\sqrt{\zeta_{F}} / \sqrt{\zeta_{F, 0}}\right)\right\} \hat{f}_{N P}\left(x, b_{T}\right)
\end{aligned}
$$

Accuracy	γ_{K}	γ_{F}	\boldsymbol{K}	$C_{f f j}$	\boldsymbol{H}
LL	α_{s}	-	-	1	1
NLL	$\alpha_{s}{ }^{2}$	α_{s}	α_{s}	1	1
NLL	$\alpha_{s}{ }^{2}$	α_{s}	α_{s}	α_{s}	α_{s}
$\mathrm{~N}^{2} \mathrm{LL}$	$\alpha_{s}{ }^{3}$	$\alpha_{s}{ }^{2}$	$\alpha_{s}{ }^{2}$	α_{s}	α_{s}
$\mathrm{~N}^{2} \mathrm{LL}$		$\alpha_{s}{ }^{3}$	$\alpha_{s}{ }^{2}$	$\alpha_{s}{ }^{2}$	$\alpha_{s}{ }^{2}$
$\mathrm{~N}^{3} \mathrm{LL}$	$\alpha_{s}{ }^{4}$	$\alpha_{s}{ }^{3}$	$\alpha_{s}{ }^{3}$	$\alpha_{s}{ }^{2}$	$\alpha_{s}{ }^{2}$
$\mathrm{~N}^{3} \mathrm{LL}$		$\alpha_{s}{ }^{2}$	unpol.		
	$\alpha_{s}{ }^{4}$	$\alpha_{s}{ }^{3}$	$\alpha_{s}{ }^{3}$	$\alpha_{s}{ }^{3}$	$\alpha_{s}{ }^{3}$

Model: non perturbative elements

```
input TMD PDF @ Q2=1GeV2
```

$$
\tilde{f}_{N P}^{a}=\mathcal{F} . \mathcal{T} . \text { of }
$$

$$
\begin{aligned}
& \mathcal{F} . \mathcal{T} . \text { of } \\
& \left(\exp \left(\frac{-k_{\perp}^{2}}{g_{1}}\right)+\lambda k_{\perp} \exp \left(\frac{-k_{\perp}^{2}}{g_{1}}\right)\right)
\end{aligned}
$$

sum of two different gaussians
k_{\perp}^{2}
for the FF we use two different variances dependent on transverse momenta

11 free parameters to fit to data.
Perturbative accuracy: LO+NLL
Monte Carlo bootstrap (replicas) for experimental error

b* prescription

$$
\left(\frac{d \sigma}{d q_{T}}\right) \propto \int \frac{d^{2} \mathbf{b}}{4 \pi} e^{i \mathbf{b} \cdot \mathbf{q}_{T}} F_{q}\left(x_{1}, \mathbf{b}\right) F_{\bar{q}}\left(x_{2}, \mathbf{b}\right)
$$

when b_{T} becomes large

$$
\longrightarrow \alpha_{s}\left(\mu_{b}\right)=\alpha\left(\frac{2 e^{-\gamma_{E}}}{b}\right) \gg 1
$$

invalidates perturbative

$\Rightarrow b_{\text {max }}$
when b_{T} becomes small

Fixed order

$$
\begin{gathered}
\Rightarrow b_{\min } \\
b_{*}(b)=b_{\max }\left(\frac{1-\exp \left(-\frac{b^{4}}{b_{\max }}\right)}{1-\exp \left(-\frac{b^{4}}{b_{\min }^{4}}\right)}\right)^{\frac{1}{4}}
\end{gathered}
$$

Experimental data

SIDIS $\mu \mathrm{N}$
6252
data points

Total: 8059 data

든E688
Drell-Yan 203 data points

Z Production

90
data points

PV17 RESULTS

Bacchetta, Delcarro, Pisano, Radici, Signori arXiv:1703.10157

范 Fermilab

$\chi^{2}=1.55$

LO - NLL

Z production

- PROs:
- almost a global fit of quark unpolarised TMDs,
- includes TMD evolution
- Monte Carlo (replica) method,
- kinematic dependence of the intrinsic $q_{\text {T }}$,
- beyond Gaussian assumption for intrinsic q^{T}.
- CONs:
- theoretical accuracy not the state of the art,
- no LHC data,
- no flavour dependence,
- only "low" $q_{\text {T (no matching }}$ to fixed order),
- no "pure" info on TMD FFs (would need $e^{+} e^{-}$data).

Actively working to improve on the downsides.

Pavia+JLab 2019 unpolarized TMD fit

Higher order corrections
Measurements of $q T$ distributions have reached the sub-percent level uncertainties

State-of-the-art calculations are thus necessary to hope to describe this data higher-order corrections and possibly matching between TMD and collinear.
perturbative accuracy
up to

Drell-Yan

N3LL

LHC data

NO normalisation

coefficients

Monte Carlo approach
200 replicas

Non perturbative function

$f_{\mathrm{NP}}(x, b, \zeta)=\frac{\text { QGaussian }}{\left[\frac{1-\lambda}{\left[\frac{1-g_{1}(x) \frac{b^{2}}{4}}{}\right]}+\frac{\text { Gaussian }}{\left[\lambda \exp \left(-g_{1, B}(x) \frac{b^{2}}{4}\right)\right]}\right.} \underset{\mathrm{x} \text {-dependence } \quad \times \exp \left[-\left(g_{2}+g_{2 B} b^{2}\right) \log \left(\frac{\zeta}{Q_{0}^{2}}\right) \frac{b^{2}}{4}\right]}{ }$
$g_{1}(x)=\frac{N_{1}}{x \sigma} \exp \left[-\frac{1}{2 \sigma^{2}} \ln ^{2}\left(\frac{x}{\alpha}\right)\right]$
$g_{1, B}(x)=\frac{N_{1 B}}{x \sigma_{B}} \exp \left[-\frac{1}{2 \sigma_{B}^{2}} \ln ^{2}\left(\frac{x}{\alpha_{B}}\right)\right]$
9 parameters

perturbative convergence

also observed by Bertone, Scimemi, Vladimirov
arXiv:1902.08474

Order	NLL'	NNLL	NNLL'	N3LL
$\chi_{0}^{2} /$ n.d.p.	3.2628	1.6686	1.1465	$\mathbf{1 . 0 7 0 5}$

map
Global χ^{2} as a function of the perturbative accuracy

Perturbative convergence

NangaParbat

Nanga Parbat: a TMD fitting framework

Nanga Parbat is a fitting framework aimed at the determination of the non-perturbative component of TMD distributions.

Download

will be publicly available

You can obtain NangaParbat directly from the github repository:

based on APFEL++ to extract TMD PDFs and FFs

Current precision of data requires the most accurate calculations

L perturbative convergence
A sound treatment of uncertainties is also required

$$
\begin{aligned}
& \text { L_orrelated systematics, } \\
& \text { PDFs uncertainties }
\end{aligned}
$$

Simultaneous description of low- and high-energy data with

NO normalisation coefficients

POLARIZED TMD
 QUARK SIVERS

Transverse Momentum Distributions

\rightarrow number density of unpolarized partons inside a transversely polarized nucleon

Single-spin asymmetry (SSAs)

Consider scattering of transversely polarized proton off an unpolarized proton or electron

The asymmetry is defined as

$$
A_{N}\left(x_{F}, p_{\perp}\right) \equiv \frac{L-R}{L+R}=\frac{\sigma^{\uparrow}-\sigma^{\downarrow}}{\sigma^{\uparrow}+\sigma^{\downarrow}}
$$

spin budget of hadrons

missing contributions from elementary constituents not yet quantified

SSAs in hadron reactions not vanishing as expected with increasing energy correlation with parton dynamics

Effect of polarization on nucleon internal structure density
polarized TMDs and anomalous magnetic moment

SSA: early theory prediction

QCD theory predicts that if partons have only longitudinal momentum, SSA should vanish observation of significant polarization in those reactions would contradict either QCD or its applicability

Fig. 1. Transverse single spin asymmetry measurements for charged and neutral pions at different center-of-mass energies as a function of Feynman- x, x_{F}.

SSA: early theory prediction

QCD theory predicts that if partons have only longitudinal momentum, SSA should vanish
observation of significant polarization in those reactions would contradict either QCD or its applicability

SSAs and parton transverse momentum

Correlation between transverse motion of partons and corresponding azimuthal effects first pointed out in '77 by Feynman, Fox and Field
\rightarrow origin of transverse momentum in DY processes:
-non-zero intrinsic momentum of partons in the nucleon (NP)
-recoil of gluons radiated off active quarks (pert. effect).
\rightarrow precursors of the Generalized Parton Model (GPM)

The related QCD evolution of TMDs was studied in the '80s by Collins-Soper-Sterman (CSS).
\rightarrow perturbative + NP

SSAs and TMDs: Sivers function

In the '90s Sivers and Collins proposed two important correlations between transverse motion and spin

$$
\text { TMD "Sivers function" } f_{1 T}^{\perp}
$$

to describe the large SSAs in п-production off hadron-hadron scattering
\rightarrow could originate from intrinsic motion of quarks \rightarrow inner asymmetry of unpolarized quarks inside a transversely polarized nucleon

In the '90s Sivers and Collins proposed two important correlations between transverse motion and spin

TMD "Sivers function" $f_{1 T}^{\perp}$

\rightarrow number density of unpolarized partons inside a transversely polarized nucleon

Single-spin production asymmetries from the hard scattering of pointlike constituents

Dennis Sivers

High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois 60439
(Received 28 April 1989)
When one takes into account the transverse momenta of the constituents in a polarized proton, there exists a kinematic, "trigger-bias," effect in the formulation of the QCD-based hard-scattering model which can lead to single-spin production asymmetries. It seems convenient to represent the coherent spin-orbit forces in a polarized proton by defining an asymmetry in the transversemomentum distribution of the fundamental constituents. It may then be possible to organize the hard-scattering model so that the kinematic constraints of hard $2 \rightarrow 2$ scattering provide the leading contribution at large transverse momentum to asymmetries of the type $A_{N} d \sigma\left(h p_{\uparrow} \rightarrow \mathrm{jet}+x\right)$, $A_{N} d \sigma\left(h p_{\uparrow} \rightarrow\right.$ " π " x), where p_{\uparrow} denotes a transversely polarized proton and " π " represents any spinless meson composed of light quarks. This approach provides testable relationships between different asymmetries.

Vanishing Sivers function

[J.Collins - Nucl. Phys. B396 (1993)]
"Fragmentation of Transversely Polarized Quark Probes in Transverse Momentum Distributions"

Sivers [21] suggested that the k_{\perp} distribution of the quark could have an azimuthal asymmetry when the initial hadron has transverse polarization. However, such an asymmetry is prohibited because QCD is time-reversal invariant. This is shown in the appendix.
apply space and time-reversal symmetry to the quark fields in the operator definition of the parton densities.

Sivers function has to be zero

Final-state interactions and single-spin asymmetries in semi-inclusive deep inelastic scattering ${ }^{\text {tu }}$

Stanley J. Brodsky ${ }^{\text {a }}$, Dae Sung Hwang ${ }^{\text {a,b }}$, Ivan Schmidt ${ }^{\text {c }}$
${ }^{\text {a }}$ Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309, USA
${ }^{\text {b }}$ Department of Physics, Sejong University, Seoul 143-747, South Korea
${ }^{\text {c }}$ Departamento de Física, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile

Received 2 February 2002; accepted 2 February 2002
Editor: H. Georgi

Abstract

Recent measurements from the HERMES and SMC Collaborations show a remarkably large azimuthal single-spin asymmetries $A_{U L}$ and $A_{U T}$ of the proton in semi-inclusive pion leptoproduction $\gamma^{*}(q) p \rightarrow \pi X$. We show that final-state interactions from gluon exchange between the outgoing quark and the target spectator system lead to single-spin asymmetries in deep inelastic lepton-proton scattering at leading twist in perturbative QCD; i.e., the rescattering corrections are not powerlaw suppressed at large photon virtuality Q^{2} at fixed $x_{b j}$. The existence of such single-spin asymmetries requires a phase difference between two amplitudes coupling the proton target with $J_{p}^{z}= \pm 1 / 2$ to the same final-state, the same amplitudes which are necessary to produce a nonzero proton anomalous magnetic moment. We show that the exchange of gauge particles between the outgoing quark and the proton spectators produces a Coulomb-like complex phase which depends on the angular momentum L^{z} of the proton's constituents and is thus distinct for different proton spin amplitudes. The single-spin asymmetry which arises from such final-state interactions does not factorize into a product of distribution function and fragmentation function, and it is not related to the transversity distribution $\delta q(x, Q)$ which correlates transversely polarized quarks with the spin of the transversely polarized target nucleon. © 2002 Elsevier Science B.V. All rights reserved.

Final-state interactions and single-spin asymmetries in semi-inclusive deep inelastic scattering ${ }^{\text {dit }}$

Stanley J. Brodsky ${ }^{\text {a }}$, Dae Sung Hwang ${ }^{\text {a,b }}$, Ivan Schmidt ${ }^{\text {c }}$
${ }^{\text {a }}$ Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309, USA
${ }^{\text {b }}$ Department of Physics, Sejong University, Seoul 143-747, South Korea
${ }^{\text {c }}$ Departamento de Física, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile
Received 2 February 2002; accepted 2 February 2002
Editor: H. Georgi

We show that final state interactions from gluon exchange between the outgoing and the target spectator lead to single spin asymmetries in deep inelastic leptonproton at leading twist in perturbative QCD

between the outgoing quark and the proton spectators produces a Coulomb-like complex phase which depends on the angular momentum L^{z} of the proton's constituents and is thus distinct for different proton spin amplitudes. The single-spin asymmetry which arises from such final-state interactions does not factorize into a product of distribution function and fragmentation function, and it is not related to the transversity distribution $\delta q(x, Q)$ which correlates transversely polarized quarks with the spin of the transversely polarized target nucleon. © 2002 Elsevier Science B.V. All rights reserved.

Sivers function sign change

vanishing Sivers function?
Final state interactions and Wilson lines to consider

Sign change in Sivers function

$$
f_{1 T, D I S}^{\perp}=-f_{1 T, D Y}^{\perp}
$$

Phenomenology of polarized TMDs

\Rightarrow presence of a non-zero Sivers function $f_{1 T}^{\perp}$ will induce a dipole deformation of f_{1}

$$
x f_{1}\left(x, k_{T}, S_{T}\right)
$$

Extraction of Sivers Function

Determined through its contributions to the cross section of polarized SIDIS

Extraction of Sivers Function

Isolating the terms relevant to the $\sin \left(\phi_{h}-\phi_{S}\right)$ modulation

$$
\begin{gathered}
A_{U T}^{\sin \left(\phi_{h}-\phi_{S}\right)}=\frac{\int d \phi_{S} d \phi_{h}\left[d \sigma^{\uparrow}-d \sigma^{\downarrow}\right] \sin \left(\phi_{h}-\phi_{S}\right)}{\int d \phi_{S} d \phi_{h}\left[d \sigma^{\uparrow}+d \sigma^{\downarrow}\right]} \\
\downarrow \text { in terms of structure functions } \\
A_{U T}^{\sin \left(\phi_{h}-\phi_{S}\right)}=\frac{F_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}+\varepsilon F_{U T, L}}{F_{U U, T}+\varepsilon F_{U U, L}}
\end{gathered}
$$

Extraction of Sivers Function

LO - NLL

$$
A_{U T}^{\sin \left(\phi_{h}-\phi_{S}\right)} \equiv\left\langle\sin \left(\phi_{h}-\phi_{S}\right)\right\rangle \sim \frac{f_{1 T}^{\perp} \otimes D_{1}^{a \rightarrow h}}{f_{1}^{a} \otimes D_{1}^{a \rightarrow h}}
$$

universality
first Sivers extraction with unpolarised TMDs extracted from data

Parametrization of Sivers function

Sivers function can be parametrized in terms of its first moment

$$
f_{1 T}^{\perp}\left(x, k_{\perp}^{2}\right)=f_{1 T}^{\perp(1)}(x) f_{1 T N P}^{\perp}\left(x, k_{\perp}^{2}\right)
$$

nonperturbative part arbitrary, but constrained by the positivity bound.

$$
f_{1 T N P}^{\perp}\left(x, k_{\perp}^{2}\right)=\frac{1}{\pi K_{f}} \frac{1}{F_{\max }} \frac{\left(1+\lambda_{S} k_{\perp}^{2}\right)}{\left(M_{1}^{2}+\lambda_{S} M_{1}^{4}\right)} e^{-k_{\perp}^{2} / M_{1}^{2}} f_{1 N P}\left(x, k_{\perp}^{2}\right)
$$

following the NP part of the unpolarized TMD

$$
\underline{f_{1 N P}\left(x, k_{\perp}^{2}\right)}=\frac{1}{\pi} \frac{\left(1+\lambda k_{\perp}^{2}\right)}{\left(g_{1 a}+\lambda g_{1 a}^{2}\right)} e^{-k_{\perp}^{2} g_{1 a}}
$$

Free parameters $\quad \lambda_{S}, M_{1}$

Parametrization of Sivers function

Radici [Phys. Rev. Lett., 120(19):192001, 2018]

Free parameters $\quad N_{S i v}^{a}, \alpha_{a}, \beta_{a}, A_{a}, B_{a}$

Flavor dependent: distinct for up, down, sea

Evolution of Sivers

We simply assume that $f_{1 T}^{\perp(1)}$ evolves in the same way as unpolarized f_{1}
Difference in the Wilson coefficients: $\quad C^{i} \rightarrow C^{S i v}$
At our accuracy level (LO): $C^{S i v(0)}=\delta(1-x) \delta^{a i}$
The evolved Sivers function first moment becomes

Experimental data

Jefferson Lab

neutron [3$\left.{ }^{3} \mathrm{He}\right]$

Same kinematic cuts applied to unpolarized

Proton $\left[\mathrm{NH}_{3}\right]$
111
data points
$\mathrm{x}, \mathrm{z}, \mathrm{P}_{\mathrm{ht}}$ data projections

Experimental data

Jefferson Lab

neutron [${ }^{3} \mathrm{He}$]
${ }_{\text {data points }}^{6}$

Using only one projection to avoid fully correlated data

Proton $\left[\mathrm{NH}_{3}\right]$
111
data points
$\mathrm{x}, \mathrm{z}, \mathrm{P}_{\mathrm{ht}}$ data projections

Summary of results

Total number of data points: 117

Total number of free parameters: 17
 \rightarrow for 3 different flavors

$$
\chi^{2} / d . o . f=1.12 \pm 0.06
$$

COMPASS (2017)

proton
positive hadron

HERMES (2009)

cses

proton

Sivers function first moment comparison

Visualization of TMDs: structure deformation

$$
f_{1}\left(x, k_{\perp} ; Q^{2}\right)
$$

The proton in 3d (in momentum space)

This is an image of the quark structure averaged over spin. What happens if we include spin?

The proton in 3d (in momentum space)

Visualization of TMDs: structure deformation

"REAL" 3D images in momentum space

Images entirely based on data (polarized and unpolarized)
Bacchetta, Delcarro, Pisano, Radici, arXiv:2004.14278

"REAL" 3D images in momentum space

Images entirely based on data (polarized and unpolarized)
Bacchetta, Delcarro, Pisano, Radici, arXiv:2004.14278

Sivers function in DY

Drell-Yan process:

a polarized proton scatters off an unpolarized one $\rightarrow W^{ \pm}, Z_{0}$ in final state
transverse SSA for W

$$
A_{N}^{W}=\frac{d \sigma^{\uparrow}-d \sigma^{\downarrow}}{d \sigma^{\uparrow}+d \sigma^{\downarrow}}
$$

in terms of TMDs:

$$
\begin{gathered}
d \sigma^{\uparrow}-d \sigma^{\downarrow}=-M \sigma_{0} \sum_{q 1, q^{2}}\left|V_{q 1, q 2}\right|^{2} \int d k_{\perp 1} d k_{\perp 2} \delta^{(2)}\left(k_{\perp 1}+k_{\perp 2}-q_{T}\right) f_{1 T}^{\perp(1)}\left(x_{1}, k_{\perp 1}\right) f_{1}\left(x_{2}, k_{\perp 2}\right) \\
d \sigma^{\uparrow}+d \sigma^{\downarrow}=\sigma_{0} \sum_{q 1, q 2}\left|V_{q 1, q 2}\right|^{2} \int d k_{\perp 1} d k_{\perp 2} \delta^{(2)}\left(k_{\perp 1}+k_{\perp 2}-q_{T}\right) f_{1}\left(x_{1}, k_{\perp 1}\right) f_{1}\left(x_{2}, k_{\perp 2}\right)
\end{gathered}
$$

Sivers function sign change

Evidence of sign change for Drell-Yan $\quad f_{1 T, D I S}^{\perp}=-f_{1 T, D Y}^{\perp}$

Sivers function sign change

Prediction using SIDIS extraction

TMDs at EIC

We reached an accuracy level of N3LL on unpolarized TMDs, covering a large set of data.

We extracted a functional form for Sivers distribution function, able to describe SIDIS data, with hints of sign change in DY

For the first time the determination of $A_{u t}$ included unpolarized TMDs extracted directly from data with full formalism for QCD evolution

We are able to observe a deformation of the internal nucleon structure using our parametrization.

