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Why is it interesting to study the nucleon Structure?
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FIG. 1. Diagram describing the relevant momenta involved in a semi-inclusive DIS event: a virtual photon (defining the
reference axis) strikes a parton inside a proton. The parton has a transverse momentum k? (not measured). The struck
parton fragments into a hadron, which acquires a further transverse momentum P? (not measured). The total measured
transverse-momentum of the final hadron is PhT . When Q2 is very large, the longitudinal components are all much larger than
the transverse components. In this regime, PhT ⇡ zk? + P? (see also Ref. [42]).

parton of flavor a fragmenting into an unpolarized hadron h carrying longitudinal momentum fraction z and transverse
momentum P?; the term YUU,T is introduced to ensure a matching to the perturbative calculations at high transverse
momentum. The expression for FUU,T is known up to at least O(↵2

S), including the resummation of at least next-
to-next-to-leading logarithms of the type log (P 2

hT /Q
2). However, we are going to use here only the lowest-order

expression, which should still provide a good description at low P 2
hT and in a limited range of Q2. Eventually, Eq. (6)

simplifies to (see, e.g., Refs. [29, 40, 41])

FUU,T (x, z,P
2
hT , Q

2) =
X

a

e2a
⇥
fa
1 ⌦ Da~h

1

⇤
(x, z,P 2

hT , Q
2) , (7)

where the convolution upon transverse momenta is defined as

⇥
f ⌦ D

⇤
(x, z,P 2

hT , Q
2) = x

Z
dk? dP? �

�
zk? + P? � PhT

�
f(x,k2

?;Q
2)D(z,P 2

?;Q
2) . (8)

In Fig. 1, we describe our notation for the transverse momenta (in agreement with the notation suggested by the
white paper in Ref. [2]), which is also reproduced below for convenience:

Momentum Physical description

k 4-momentum of parton in distribution function

p 4-momentum of fragmenting parton

k? light-cone transverse momentum of parton in distribution function

P? light-cone transverse momentum of final hadron w.r.t. fragmenting parton

PhT light-cone transverse momentum of final hadron w.r.t. virtual photon

A. Flavor-dependent Gaussian ansatz

The Gaussian ansatz consists in assuming the following functional form for the transverse-momentum dependence
of both the TMD PDF fa

1 and the TMD FF Da~h
1 in Eq. (7):

fa
1 (x,k

2
?;Q

2) =
fa
1 (x,Q

2)

⇡hk2
?,ai

e�k2
?/hk2

?,ai Da~h
1 (z,P 2

?, Q
2) =

Da~h
1 (z;Q2)

⇡hP 2
?,a~hi e�P 2

?/hP 2
?,a~hi . (9)
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All our assumptions, the notation, and the general theoretical framework are briefly outlined in Sec. II. In Sec. III,
we describe our fitting procedure. In Sec. IV, we present our final results, and in Sec. V we draw some conclusions
and outlooks.

II. THEORETICAL FRAMEWORK

In one-particle semi-inclusive DIS, a lepton ` with momentum l scatters to a final state with momentum l0 o↵ a
hadron target N with mass M and momentum P , producing (at least) one hadron h in the final state with mass Mh

and momentum Ph:

`(l) +N(P ) ! `(l0) + h(Ph) +X . (1)

The space-like momentum transfer is q = l � l0, with Q2 = �q2. We introduce the usual invariants

x =
Q2

2P · q , y =
P · q
P · l , z =

P · Ph

P · q , � =
2Mx

Q
. (2)

The available data refer to hadron multiplicities in semi-inclusive DIS, namely to the di↵erential number of hadrons
produced per corresponding inclusive DIS event. In terms of cross sections, we define the multiplicities as

mh
N (x, z,P 2

hT , Q
2) =

d�h
N/dxdzdP 2

hT dQ
2

d�DIS/dxdQ2
, (3)

where d�h
N is the di↵erential cross section for the semi-inclusive DIS process and d�DIS is the corresponding inclusive

one, and where PhT is the component of Ph transverse to q. In the single-photon-exchange approximation, the
multiplicities can be written as ratios of structure functions (see [29] for details):

mh
N (x, z,P 2

hT , Q
2) =

⇡ FUU,T (x, z,P 2
hT , Q

2) + ⇡ "FUU,L(x, z,P 2
hT , Q

2)

FT (x,Q2) + "FL(x,Q2)
, (4)

where

" =
1 � y � 1

4�
2y2

1 � y + 1
2y

2 + 1
4�

2y2
. (5)

We recall that the notation FXY,Z indicates the response of the hadron target with polarization Y to a lepton beam
with polarization X and for the virtual photon exchanged in the polarization state Z. Therefore, the numerator of
Eq. (4) involves semi-inclusive DIS processes with only unpolarized beam and target. We remark that the above
expressions assume a complete integration over the azimuthal angle of the detected hadron. Acceptance e↵ects may
modify these formulae, due to the presence of azimuthal modulations in the cross section, though for the data used
here such e↵ects were included in the systematic uncertainties.

We consider the limitsM2/Q2 ⌧ 1 and P 2
hT /Q

2 ⌧ 1. Within them, the longitudinal structure function FUU,L in the
numerator of Eq. (4) can be neglected [30]. In the denominator, the standard inclusive longitudinal structure function
FL is non negligible and contains contributions of order ↵S . However, in our analysis we assume a parton-model
picture and we neglect such contributions; hence, consistently we neglect the contribution of FL in the denominator
of Eq. (4). It may also be noted that in the transverse-momentum analysis of the data, FL induces a change in
normalization that depends on x, but is independent of z and P 2

hT , the kinematic variables most relevant in the
fitting procedure. Hence, we do not expect large e↵ects on the resulting parameters.

To express the structure functions in terms of TMD PDFs and FFs, we rely on the factorized formula for semi-
inclusive DIS at low transverse momenta [31–39]:

FUU,T (x, z,P
2
hT , Q

2) =
X

a

Ha
UU,T (Q

2;µ2)

Z
dk? dP? fa

1

�
x,k2

?;µ
2
�
Da~h

1

�
z,P 2

?;µ
2
�
�
�
zk? � PhT + P?

�

+ YUU,T

�
Q2,P 2

hT

�
+ O

�
M/Q

�
. (6)

Here, HUU,T is the hard scattering part; fa
1 (x,k

2
?;µ

2) is the TMD PDF for an unpolarized parton of flavor a in an
unpolarized proton, carrying longitudinal momentum fraction x and transverse momentum k? at the factorization
scale µ2, which in the following we choose to be equal to Q2. Da~h

1 (z,P 2
?;µ

2) is the TMD FF for an unpolarized

x, z
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FACTORIZATION
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FUU,T (x, z, P2
hT, Q2) ≃ ∑

a

ℋa
UUT ∫ d2k⊥d2P⊥ f a

1(x, k2
⊥; Q2) Da→h

1 (z, P2
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Extraction from SIDIS & Drell-Yan
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Extraction from SIDIS & Drell-Yan
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where !Ng ¼ !! !Nr ¼ !!ð !ng þ !niÞ is used. The covariance
from the "no and " !!ni terms between bins k and l is
!!k !nkl þ !!l !nlk.
The ratio, Rg, of "

2N0
g to "

2Ngð¼ !NgÞ is the variance of
the model relative to the variance of only the produced
events. Figure 6 shows both the ratio and the scaling
correction factor as functions of PT. In the low PT bins,
!no and !ni are separately much larger than !ng. Their effects
are significant as Rg ¼ !!þ !no= !Ng.

For the uncertainty evaluations, the cross section is
rewritten as "# ¼ !!Nr=ðLA0Þ, where A0 % !!A & $. The
uncertainty on L is systematic and is considered sepa-
rately. Thus, the fractional uncertainty on "# is a combi-
nation of the fractional uncertainty of !!Nr and A0. The
fractional uncertainty of !!Nr is defined as the uncertainty
of !!Nr from the model ("NgÞ) divided by !! !Nrð¼ !NgÞ. The
correlation of these fractional uncertainties between PT

bins l and k is given by the fractional covariance matrix:
!Vlk=ð !Ngl

!NgkÞ, where !Vlk is the covariance matrix of the
model, and !Ngl and !Ngk are the !Ng of bin l and k, respec-
tively. The small acceptance fractional uncertainties are
added in quadrature to the diagonal part of the fractional
covariance matrix. The measured cross sections are used to
convert the unitless fractional matrix into units of cross
section squared, and this matrix is used to propagate
uncertainties for the total cross-section measurement
and for the comparison of a prediction with the measured
cross section.

C. Systematic uncertainties

The largest source of uncertainty is the effective inte-
grated luminosity, L. It has an overall uncertainty of 5.8%
that consists of a 4% uncertainty of the acceptance of the
gas Cherenkov luminosity detector [24] to p !p inelastic
collisions and a 4.2% measurement uncertainty. It is com-
mon to all PT bins and not explicitly included. The accep-
tance uncertainty is primarily from the uncertainty in the

beam line and detector geometry (material), and from
the uncertainty in the model of the inelastic cross section.
The inelastic cross-section model contributes 2% to the
acceptance uncertainty. The measurement uncertainty con-
tains the uncertainty of the absolute p !p inelastic cross
section.
The uncertainty on A & $ has a component from the

input electron efficiency measurements which depends
on %det and instantaneous luminosity. The simulation is
used to propagate these electron measurement uncertain-
ties into an uncertainty for the ee-pair PT and to include
correlations of the same measurements. The calculated
uncertainty is uniform and amounts to about 1% over
0<PT < 20 GeV=c. It slowly decreases at higher PT. A
large fraction of the uncertainty is due to plug-electron
measurement uncertainties. The fractional uncertainty de-
creases with PT because the fraction of plug events de-
creases. Because the same measurements are used on all
PT bins, the uncertainty is treated as fully correlated across
bins.
The calorimeter response modeling uncertainty analysis

is limited by the statistical precision of the simulated data.
At the peak of the PT distribution, the statistical uncer-
tainty is 0.3%. The variations on the central and plug
calorimeter global energy scale and resolutions tunings
allowed by the data propagate into changes of A & $ that
are no larger than its statistical uncertainty. These changes
are not independent.

D. Results

The Drell-Yan "#="PT for eþe' pairs in the Z-boson
mass region of 66– 116 GeV=c2 is shown in Fig. 7 and
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TMD Evolution

HERMES, Q ≈ 1.5 GeV

CDF, Q ≈ 91 GeV

Width of TMDs changes of one order of magnitude  
→ 12
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nonperturbative part 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Parametrization: perturbative and NP
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collinear PDF 
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(pQCD)

Intrinsic 
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Fourier transform: bT space

CSS formalism 

Alternative notation: ξT

Wilson  
Coefficient 

(pQCD)

Ff/P (x, bT; μ, ζ) = ∑
j

Cf/j (x, b*; μb, ζF) ⊗ fj/P (x, μb)

× exp K (b*; μb) ln
ζF

μb
+ ∫

μ

μb

dμ′�
μ′� [γF − γK ln

ζF

μ′ � ]
× exp {gK (bT) ln ( ζF/ ζF,0)} ̂fNP(x, bT)



nonperturbative part 
 of evolution

Parametrization: Accuracy
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unpol. 
PV19
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PV17

Ff/P (x, bT; μ, ζ) = ∑
j

Cf/j (x, b*; μb, ζF) ⊗ fj/P (x, μb)

× exp K (b*; μb) ln
ζF

μb
+ ∫

μ

μb

dμ′�
μ′� [γF − γK ln

ζF

μ′� ]
× exp {gK (bT) ln ( ζF/ ζF,0)} ̂fNP(x, bT)



Model: non perturbative elements
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dependent on transverse momenta
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b* prescription
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when  becomes largebT
invalidates perturbative 


calculationsαs(μb) = α ( 2e−γE

b ) ≫ 1
⇒ bmax
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Fixed order
⇒ bmin



Experimental data
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PV17 RESULTS

LO - NLL

χ2 = 1.55
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Z production
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• PROs: 

• almost a global fit of quark 
unpolarised TMDs,


• includes TMD evolution


• Monte Carlo (replica) method,


• kinematic dependence of the 
intrinsic qT,


• beyond Gaussian assumption 
for intrinsic qT.

• CONs: 

• theoretical accuracy not 
the state of the art,


• no LHC data,


• no flavour dependence, 

• only “low” qT (no matching 
to fixed order), 

• no “pure” info on TMD FFs 
(would need e+e- data).

Actively working to improve on the downsides.



Pavia+JLab 2019 unpolarized TMD fit
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State-of-the-art calculations are thus necessary to hope to describe this data: 
higher-order corrections and possibly matching between TMD and collinear.

Pavia 2019 
Higher-order corrections
Measurements of  qT distributions have reached the sub-percent level uncs.:

[Phys.Rev. D97 (2018) no.3, 032006]
[Eur. Phys. J. C 76(5), 1-61 (2016)]

Higher order corrections
Measurements of qT distributions have reached the sub-percent level uncertainties

State-of-the-art calculations are thus necessary to hope to describe this data 
higher-order corrections and possibly matching between TMD and collinear. 
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Drell-Yan
N3LL  LHC data

NO  
normalisation

perturbative accuracy  
up to

coefficients
χ2

= 1.07

200 replicas
Monte Carlo approach
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NLL’ NNLL NNLL’ N3LLOrder

χ2
0 / n.d.p.

perturbative convergence

Global χ2 as a function of the perturbative accuracy 

1.07053.2628 1.6686 1.1465

Bertone, Scimemi, Vladimirov 
arXiv:1902.08474

also observed by

http://arxiv.org/abs/arXiv:1703.10157
http://arxiv.org/abs/arXiv:1703.10157
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from Valerio Bertone’s talk at  
https://indico.cern.ch/event/849342/

https://indico.cern.ch/event/849342/
https://indico.cern.ch/event/849342/


NangaParbat
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based on APFEL++ to extract TMD PDFs and FFs 

will be publicly available
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🏔 Current precision of data requires the most accurate 

calculations

N3LLperturbative convergence

🏔 A sound treatment of uncertainties is also required

Simultaneous description of low- and high-energy data 

with

🏔

NO normalisation coefficients

correlated systematics,

PDFs uncertainties



POLARIZED TMD 
QUARK SIVERS
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44 3. Semi-inclusive DIS

h�1T =

f�1T =

h�1 =

h�1L =

g1T =f1 =

g1 =

h1 =

parton with transverse or longitudinal spin

parton transverse momentum

nucleon with transverse or longitudinal spin

Figure 3.5: Probabilistic interpretation of twist-2 transverse-momentum-dependent distribution functions.
To avoid ambiguities, it is necessary to indicate the directions of quark’s transverse momemtum, target spin
and quark spin, and specify that the proton is moving out of the page, or alternatively the photon is moving
into the page.

versely polarized quarks in an unpolarized proton is (see Eq. (11) and (12) of [37])
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where S q is the covariant spin vector of the quark. Therefore, h
?q

1 > 0 corresponds to a preference
of the quark to move to the left if the proton is moving towards the observer and the quark spin is
pointing upwards.

The probabilistic interpretation of TMDs is summarized in Fig. 3.5.
For any transverse-momentum dependent distribution function, it will turn out to be convenient

to define the notation

f
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T
) ⌘ |pT |

2M
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T
), (3.93a)

f
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!n

f (x, p2
T
), (3.93b)

for n integer.
As done previously, we can express the transverse momentum dependent correlation function

as a matrix in the parton chirality space ⌦ target helicity space. The steps for the chirality space
are analogous to the previous case, but the treatment of the target spin is obviously new.
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Single-spin asymmetry (SSAs)
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Consider scattering of transversely polarized proton off an 
unpolarized  proton or electron

Left

Right

~S

The asymmetry is defined as

AN(xF, p⊥) ≡
L − R
L + R

=
σ↑ − σ↓

σ↑ + σ↓



Spin and quark motion correlation
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spin budget of hadrons 

 missing contributions from elementary constituents not yet   
quantified

SSAs in hadron reactions 

 not vanishing as expected with increasing energy

 correlation with parton dynamics 

polarized TMDs and anomalous magnetic moment


Effect of polarization on nucleon internal structure density



SSA: early theory prediction
QCD theory predicts that if partons have only longitudinal momentum, 

SSA should vanish
observation of significant polarization in those reactions would 


contradict either QCD or its applicability2 E.C. Aschenauer et al.: TMDs and SSAs in hadronic interactions
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Fig. 1. Transverse single spin asymmetry measurements for charged and neutral pions at different center-of-mass energies as a
function of Feynman-x, xF .

describe many data sets for the inclusive cases and their
main features, representing at the same time a window
into possible factorisation breaking effects. We will also
comment, wherever appropriate, on the corresponding re-
sults in the twist-3 approach. A general overview on TMDs
and their phenomenology in SIDIS and e+e− annihilation
processes can be found in Ref. [23] (this Special Issue).

For their relevance we will present and discuss in some
detail a selection of results from RHIC, that has pro-
vided and is still providing with the most interesting and
challenging experimental data. For a recent discussion of
the potential role of SSA studies for the fixed-target ex-
periment AFTER, proposed at the Large Hadron Col-
lider (LHC), see Ref. [24]. It is also worth to mention
the proposed polarised target and beam program with
SeaQuest [25,26] at FermiLab that will provide the possi-
bility to study TMDs for sea and valence quarks through
DY production. Although there is no dedicated TMD ex-
perimental program, LHC would also offer a nice opportu-
nity to investigate, at the largest available center-of-mass
energy and transverse momentum, several TMD observ-
ables and effects involved in azimuthal asymmetries for
unpolarised pp and pA collisions.

2 Experimental Results

Results from the PHENIX [27] and STAR [28] Collabora-
tions have shown that large transverse single spin asym-
metries for inclusive hadron production, AN , that were
first seen in pp collisions at fixed-target energies and mod-
est pT (the transverse momentum of the final hadron),
extend to the highest RHIC center-of-mass (c.m.) ener-
gies,

√
s = 500 GeV and surprisingly large pT . These

asymmetries are defined as AN = dσ↑−dσ↓

dσ↑+dσ↓ , where ↑, ↓
represent the two opposite spin orientations perpendic-
ular to the scattering plane (see Sec. 3.1 for further de-
tails). Figure 1 summarizes the measured asymmetries

from different experiments as a function of Feynman-x,
xF = 2pL/

√
s ∼ x1−x2, where pL is the c.m. longitudinal

momentum of the final hadron and x1,2 the initial parton
light-cone momentum fractions. Surprisingly the asymme-
tries are nearly independent of

√
s over a very wide range

(
√
s: 4.9 GeV to 500 GeV).
To understand the underlying physics being responsi-

ble for the observed SSAs one has to go beyond the con-
ventional collinear parton picture in the hard scattering.
As already stated in the introduction, two theoretical for-
malisms have been proposed to generate sizeable SSAs in
the QCD framework: one based on transverse momentum
dependent (TMD) parton distribution functions (PDFs)
and fragmentation functions (FFs), and the other based
on collinear twist-3 quark-gluon-quark correlations in the
initial state proton or in the fragmentation process. As
the SSAs for inclusive hadrons cannot discriminate be-
tween these different approaches, nor among the different
mechanisms within the same formalism (initial vs. final
state effects), the focus has in the recent years shifted to
observables that could help in disentangling them clarify-
ing their effective role, and, at the same time, will be able
to give new insight into the transverse spin structure of
hadrons.

2.1 Access to Transversity: the Collins and
Interference Fragmentation Functions

To have a complete picture of the proton structure at lead-
ing twist one has to consider not only the unpolarised
and helicity parton distributions, but also those involv-
ing transverse polarisation, as the transversity distribu-
tion. Transversity is difficult to access due to its chiral-
odd nature, requiring the coupling of this distribution to
another chiral-odd distribution. Following the decomposi-
tion described in Refs. [29,30,31,32] the quark transver-
sity distribution coupled to the Collins TMD or to the in-
terference fragmentation function (IFF) may be accessed

Eur.Phys.J. A52 (2016) no.6, 156

[ Aschenauer et al.  - Eur.Phys.J. A52 (2016) no.6, 156 ]

[ Kane, Pumplin and Repko (1978) ]
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describe many data sets for the inclusive cases and their
main features, representing at the same time a window
into possible factorisation breaking effects. We will also
comment, wherever appropriate, on the corresponding re-
sults in the twist-3 approach. A general overview on TMDs
and their phenomenology in SIDIS and e+e− annihilation
processes can be found in Ref. [23] (this Special Issue).

For their relevance we will present and discuss in some
detail a selection of results from RHIC, that has pro-
vided and is still providing with the most interesting and
challenging experimental data. For a recent discussion of
the potential role of SSA studies for the fixed-target ex-
periment AFTER, proposed at the Large Hadron Col-
lider (LHC), see Ref. [24]. It is also worth to mention
the proposed polarised target and beam program with
SeaQuest [25,26] at FermiLab that will provide the possi-
bility to study TMDs for sea and valence quarks through
DY production. Although there is no dedicated TMD ex-
perimental program, LHC would also offer a nice opportu-
nity to investigate, at the largest available center-of-mass
energy and transverse momentum, several TMD observ-
ables and effects involved in azimuthal asymmetries for
unpolarised pp and pA collisions.

2 Experimental Results

Results from the PHENIX [27] and STAR [28] Collabora-
tions have shown that large transverse single spin asym-
metries for inclusive hadron production, AN , that were
first seen in pp collisions at fixed-target energies and mod-
est pT (the transverse momentum of the final hadron),
extend to the highest RHIC center-of-mass (c.m.) ener-
gies,

√
s = 500 GeV and surprisingly large pT . These

asymmetries are defined as AN = dσ↑−dσ↓

dσ↑+dσ↓ , where ↑, ↓
represent the two opposite spin orientations perpendic-
ular to the scattering plane (see Sec. 3.1 for further de-
tails). Figure 1 summarizes the measured asymmetries

from different experiments as a function of Feynman-x,
xF = 2pL/

√
s ∼ x1−x2, where pL is the c.m. longitudinal

momentum of the final hadron and x1,2 the initial parton
light-cone momentum fractions. Surprisingly the asymme-
tries are nearly independent of

√
s over a very wide range

(
√
s: 4.9 GeV to 500 GeV).
To understand the underlying physics being responsi-

ble for the observed SSAs one has to go beyond the con-
ventional collinear parton picture in the hard scattering.
As already stated in the introduction, two theoretical for-
malisms have been proposed to generate sizeable SSAs in
the QCD framework: one based on transverse momentum
dependent (TMD) parton distribution functions (PDFs)
and fragmentation functions (FFs), and the other based
on collinear twist-3 quark-gluon-quark correlations in the
initial state proton or in the fragmentation process. As
the SSAs for inclusive hadrons cannot discriminate be-
tween these different approaches, nor among the different
mechanisms within the same formalism (initial vs. final
state effects), the focus has in the recent years shifted to
observables that could help in disentangling them clarify-
ing their effective role, and, at the same time, will be able
to give new insight into the transverse spin structure of
hadrons.

2.1 Access to Transversity: the Collins and
Interference Fragmentation Functions

To have a complete picture of the proton structure at lead-
ing twist one has to consider not only the unpolarised
and helicity parton distributions, but also those involv-
ing transverse polarisation, as the transversity distribu-
tion. Transversity is difficult to access due to its chiral-
odd nature, requiring the coupling of this distribution to
another chiral-odd distribution. Following the decomposi-
tion described in Refs. [29,30,31,32] the quark transver-
sity distribution coupled to the Collins TMD or to the in-
terference fragmentation function (IFF) may be accessed

SSA: early theory prediction
QCD theory predicts that if partons have only longitudinal momentum, 

SSA should vanish
observation of significant polarization in those reactions would 


contradict either QCD or its applicability

Considering transverse motion 

of partons is the key



SSAs and parton transverse momentum

Correlation between transverse motion of partons and 
corresponding azimuthal effects 

first pointed out in ’77 by Feynman, Fox and Field

→origin of transverse momentum in DY processes:

-non-zero intrinsic momentum of partons in the nucleon (NP) 

-recoil of gluons radiated off active quarks (pert. effect).

→ precursors of the Generalized Parton Model (GPM)

The related QCD evolution of TMDs was studied in the 
‘80s by Collins-Soper-Sterman (CSS). 

→perturbative + NP



SSAs and TMDs: Sivers function
In the ‘90s Sivers and Collins proposed two important 
correlations between transverse motion and spin

TMD “Sivers function” f?
1T

to describe the large SSAs in π-production off 
hadron-hadron scattering


 

→ could originate from intrinsic motion of quarks 

→inner asymmetry of unpolarized quarks        
inside a transversely polarized nucleon



SSAs and TMDs: Sivers function
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In the ‘90s Sivers and Collins proposed two important 
correlations between transverse motion and spin

TMD “Sivers function” f?
1T

→number density of unpolarized partons 
inside a transversely polarized nucleon
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Figure 3.5: Probabilistic interpretation of twist-2 transverse-momentum-dependent distribution functions.
To avoid ambiguities, it is necessary to indicate the directions of quark’s transverse momemtum, target spin
and quark spin, and specify that the proton is moving out of the page, or alternatively the photon is moving
into the page.

versely polarized quarks in an unpolarized proton is (see Eq. (11) and (12) of [37])
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where S q is the covariant spin vector of the quark. Therefore, h
?q

1 > 0 corresponds to a preference
of the quark to move to the left if the proton is moving towards the observer and the quark spin is
pointing upwards.

The probabilistic interpretation of TMDs is summarized in Fig. 3.5.
For any transverse-momentum dependent distribution function, it will turn out to be convenient

to define the notation

f
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T
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2M
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T
), (3.93a)

f
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f (x, p2
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for n integer.
As done previously, we can express the transverse momentum dependent correlation function

as a matrix in the parton chirality space ⌦ target helicity space. The steps for the chirality space
are analogous to the previous case, but the treatment of the target spin is obviously new.
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where S q is the covariant spin vector of the quark. Therefore, h
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1 > 0 corresponds to a preference
of the quark to move to the left if the proton is moving towards the observer and the quark spin is
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for n integer.
As done previously, we can express the transverse momentum dependent correlation function
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are analogous to the previous case, but the treatment of the target spin is obviously new.
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Single-spin production asymmetries from the hard scattering of pointlike constituents 

Dennis Sivers 
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When one takes into account the transverse momenta of the constituents in a polarized proton, 
there exists a kinematic, "trigger-bias," effect in the formulation of the QCD-based hard-scattering 
model which can lead to single-spin production asymmetries. It seems convenient to represent the 
coherent spin-orbit forces in a polarized proton by defining an asymmetry in the transverse- 
momentum distribution of the fundamental constituents. It may then be possible to organize the 
hard-scattering model so that the kinematic constraints of hard 2-2 scattering provide the leading 
contribution at large transverse momentum to asymmetries of the type ANdo(hpt+jet+x), 
ANd0(hpr + "~''xx), where pt denotes a transversely polarized proton and "a" represents any spin- 
less meson composed of light quarks. This approach provides testable relationships between 
different asymmetries. 

I. INTRODUCTION 

The demonstration of perturbative factorization for 
quantum chromodynamics'~2 (QCD) has validated the ap- 
plication of the QCD-based hard-scattering model for 
calculations involving the production of jets and hadrons 
at large transverse momentum in high-energy hadron- 
hadron collisions. The elements of the hard-scattering 
model include calculable cross sections for the scattering 
of fundamental constituents and the momentum-space 
probability densities for these constituents to be found in 
the hadrons. The latter are not calculable but can be 
measured in one type of process and applied to  other^.^ 

The complete content of the hard-scattering model has 
not yet been thoroughly explored. One reason for this is 
that, within the framework of the model, there exists the 
possibility of several types of "higher-twist"  effect^.^ For 
the usual high-p, jet observables, these higher-twist 
effects lead to power-suppressed contributions to the 
measured cross sections which can be neglected. There 
do exist examples of specific cross sections and special ki- 
nematic regions where higher-twist dynamics can 
pred~minate .~ However, even in these cases where the 
effects can be observed, there are questions concerning 
the universality of the mechanisms invoked because the 
proofs of perturbative factorization are known to break 
down at the level of power-suppressed  contribution^.^ 

In spite of the need for caution there are powerful ar- 
guments for pursuing the consequences of the QCD- 
based parton model beyond the level of leading twist.' 
Even if the mechanisms involved at this level do not 
prove to be universal, the elucidation of the underlying 
dynamics can provide important physical insight and the 
"breakdown" of the approach can be informative. Spin 
observables, in particular, have historically provided 
powerful constraints on hadronic dynamics and may also 
turn out to be instructive in pinning down the QCD par- 
ton model. For example, the polarization of hyperons 
produced in high-energy collisions (pp-+AtX) has been 

discussed in specialized models which combine hard 
scattering at the constituent level with particular 
coherent mechanisms.' These explicit models are compa- 
tible with the validity of the QCD hard-scattering ap- 
proach and also provide a reasonable phenomenological 
framework for the analysis of the experimental data. The 
interpretation of the models involves interesting ques- 
tions in the space-time structure of hard scattering. 

This paper will discuss another type of single-spin ob- 
servable which plays an important role in the design of 
experiments with polarized proton beams or polarized 
targets. The relevant observable is the asymmetry 

(where .rr denotes a spin-0 meson), for the production of a 
jet or spinless hadron at large transverse momentum nor- 
mal to the plane formed by the polarized proton's 
momentum and its spin. The observation of such asym- 
metries is frequently quoted as a puzzle or challenge for 
theory.9 One frequently encounters the allegation that 
the QCD-hard-scattering model "predicts" that this type 
of single-spin observable should vanish. In fact, it is very 
hard to convince oneself that the usual formulation of the 
hard-scattering model makes any prediction at all for 
these asymmetries. The argument which associates the 
vanishing of the asymmetry with QCD can be motivated 
by a specific calculation which associated the result with 
an underlying transverse single-spin asymmetry at the 
quark level, lo 

and then convolutes this asymmetry with a transverse 
spin-transfer density from proton to quark. Most 
theoretical work which has studied the problem has em- 
phasized that the effect represented by (1.2) is not the 
only type of "higher-twist" dynamics which can lead to 
the asymmetries (1.1) (Ref. 11). However, other possible 
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“Fragmentation of Transversely Polarized Quark Probes in 
Transverse Momentum Distributions”

J. Collins / Fragmentation ofpolarized quarks 165

We have ignored here the subtleties needed to make this a gauge-invariant
definition: an appropriate path-ordered exponential of the gluon field is needed
[18]. The coordinate frame in which this definition is applied is one in which the
hadron I p) has zero transverse momentum: p ~ = 0.
Sivers [21] suggested that the k distribution of the quark could have an

azimuthal asymmetry when the initial hadron has transverse polarization. How-
ever, such an asymmetry is prohibited because QCD is time-reversal invariant.
This is shown in the appendix.
As explained in refs. [10,23], we must consider the quark (or gluon) a to be

equipped with a helicity density matrix. Since QCD is invariant under parity and
time reversal, the density matrix for a quark differs from unity only if the initial
hadron A is itself polarized. Then the transverse spin asymmetry of a quark is
defined by:

‘ k~=~ ‘ k
~± Ta/AJa/A~’ Jj_S±fTa/A\X, J

dyd2y1

(2~)~ exp(—ixp~y+ik~y1)

XKPI~a(0, Y, Yi)~~~~a(0)’P)’ (2)

where s~is the transverse part of the spin vector of the initial hadron, normalized
so that its maximum size is unity: I ~ I ~ 1. In eq. (2), I have used the notation of
ref. [23], where definitions are given for the case that the transverse momentum is
integrated over; the definitions given for that case given by Jaffe and Ji [7] differ
only in notation. I have defined ~T to mean the ratio of quark polarization to
hadron polarization; it is a kind of asymmetry or spin transfer function, and in
general will depend on x and k ~. Then fT (with a subscript T) means the parton
distribution weighted by the transverse spin asymmetry.
Similar definitions can be given for the distribution of gluons. It would be

interesting to work out the details. For the deep-inelastic process treated in this
paper, we will see that we will not need the definitions for gluons.
One can also write helicity asymmetries. But we will not need them in this

paper, because we will work with fragmentation observables that are not sensitive
to quark helicity.

2.2. FRAGMENTATION FUNCTIONS

Fragmentation functions with transverse momentum are defined in a similar
fashion to the parton distribution functions. An important difference is that the

apply space and time-reversal symmetry to the quark fields 

in the operator definition of the parton densities.

Sivers function has to be zero
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Abstract

Recent measurements from the HERMES and SMC Collaborations show a remarkably large azimuthal single-spin
asymmetries AUL and AUT of the proton in semi-inclusive pion leptoproduction γ ∗(q)p → πX. We show that final-state
interactions from gluon exchange between the outgoing quark and the target spectator system lead to single-spin asymmetries
in deep inelastic lepton–proton scattering at leading twist in perturbative QCD; i.e., the rescattering corrections are not power-
law suppressed at large photon virtuality Q2 at fixed xbj . The existence of such single-spin asymmetries requires a phase
difference between two amplitudes coupling the proton target with J z

p = ±1/2 to the same final-state, the same amplitudes
which are necessary to produce a nonzero proton anomalous magnetic moment. We show that the exchange of gauge particles
between the outgoing quark and the proton spectators produces a Coulomb-like complex phase which depends on the angular
momentum Lz of the proton’s constituents and is thus distinct for different proton spin amplitudes. The single-spin asymmetry
which arises from such final-state interactions does not factorize into a product of distribution function and fragmentation
function, and it is not related to the transversity distribution δq(x,Q) which correlates transversely polarized quarks with the
spin of the transversely polarized target nucleon. © 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Single-spin asymmetries in hadronic reactions have been among the most difficult phenomena to understand
from basic principles in QCD. The problem has become more acute because of the observations by the HERMES
[1] and SMC [2] Collaborations of a strong correlation between the target proton spin S⃗p and the plane of
the produced pion and virtual photon in semi-inclusive deep inelastic lepton scattering ℓp↑ → ℓ′πX at photon
virtuality as large as Q2 = 6 GeV2. Large azimuthal single-spin asymmetries have also been seen in hadronic
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Single-spin asymmetries in hadronic reactions have been among the most difficult phenomena to understand
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We show that final state interactions from gluon 
exchange between the outgoing and the target spectator  
lead to single spin asymmetries in deep inelastic lepton-
proton at leading twist in perturbative QCD
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respond to the collinear PDFs: the longitudi-
nal polarized structure function discussed in
the previous section and the quark transver-
sity distribution. The latter is related to the
tensor charge of the nucleon. These three
distributions can be regarded as a simple
transverse momentum extension of the asso-
ciated integrated quark distributions. More
importantly, the power and rich possibilities
of the TMD approach arise from the sim-
ple fact that kT is a vector, which allows
for various correlations with the other vec-
tors involved: the nucleon momentum P , the
nucleon spin S, and the parton spin (say a
quark, sq). Accordingly, there are eight inde-
pendent TMD quark distributions as shown
in Fig. 2.12. Apart from the straightfor-
ward extension of the normal PDFs to the
TMDs, there are five TMD quark distribu-
tions, which are sensitive to the direction of
kT , and will vanish with a simple kT integral.

Because of the correlations between the
quark transverse momentum and the nucleon
spin, the TMDs naturally provide impor-
tant information on the dynamics of par-
tons in the transverse plane in momentum
space, as compared to the GPDs which de-
scribe the dynamics of partons in the trans-
verse plane in position space. Measurements
of the TMD quark distributions provide in-
formation about the correlation between the
quark orbital angular momentum and the nu-
cleon/quark spin because they require wave
function components with nonzero orbital
angular momentum. Combining the wealth
of information from all of these functions
could thus be invaluable for disentangling
spin-orbit correlations in the nucleon wave
function, and providing important informa-
tion about the quark orbital angular momen-
tum.
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Figure 2.13: The density in the transverse-momentum plane for unpolarized quarks with x = 0.1
in a nucleon polarized along the ŷ direction. The anisotropy due to the proton polarization is
described by the Sivers function, for which the model of [77] is used. The deep red (blue)
indicates large negative (positive) values for the Sivers function.

One particular example is the quark
Sivers function f

?q
1T which describes the

transverse momentum distribution corre-
lated with the transverse polarization vector
of the nucleon. As a result, the quark distri-

bution will be azimuthally asymmetric in the
transverse momentum space in a transversely
polarized nucleon. Figure 2.13 demonstrates
the deformations of the up and down quark
distributions. There is strong evidence of the

34

[ from EIC White Paper ]

f⊥
1T⇒ presence of a non-zero Sivers function        will induce a dipole 

deformation of  f1
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Determined through its contributions to the cross section of 
polarized SIDIS
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with q̂ = q/|q|, where all vectors refer to the target rest frame (or to any frame reached from the target rest frame
by a boost along q̂). Writing the right-hand sides of (16) in a Lorentz invariant form, one has

cosφh = −
gµν
⊥ lµPhν

|l⊥| |Ph⊥|
,

sin φh = −
ϵµν
⊥ lµPhν

|l⊥| |Ph⊥|

(17)

with |l⊥| =
√

−gµν
⊥ lµlν and |Ph⊥| =

√

−gµν
⊥ PhµPhν . Here we introduced perpendicular projection tensors

gµν
⊥ = gµν −

qµP ν + Pµqν

P · q (1 + γ2)
+

γ2

1 + γ2

(

qµqν

Q2
−

PµP ν

M2

)

,

ϵρσ
⊥ = ϵµνρσ Pµqν

P · q
√

1 + γ2

(18)

with γ = 2xM/Q, where x is the Bjorken variable and M again the target mass. Evaluating the right-hand sides of (17)
in the target rest frame, one recovers (16). The azimuthal angle φS relevant for specifying the target polarization is
defined in analogy to (16) and (17), with Ph replaced by the covariant spin vector S of the target. The definitions
of φh and φS are illustrated in Fig. 1. We emphasize that (16), (17), (18) do not depend on the choice of coordinate
axes. For definiteness we show in Fig. 1 one frequently used coordinate system. In this system the tensors defined
in Eq. (18) have nonzero components g11

⊥ = g22
⊥ = −1 and ϵ12⊥ = −ϵ21⊥ = −1. Note that two different conventions for

drawing angles and interpreting their sign in figures are in general use in the literature:

A. The z axis is specified and angles are drawn as arcs with one arrowhead. If an angle is oriented according to
the right-hand rule it is positive, otherwise it is negative. Fig. 1 illustrates the application of this convention.

B. Illustrated angles are always assumed to be positive. Only the location of the arc affects the definition of the
angle. No orientation should be assigned to the arc, and any z axis that may be present does not affect the
angle definition.

It is strongly recommended that authors avoid placing single arrowheads on arcs when using convention B. When
using convention A, an explicit remark in the caption may be useful when the figure illustrates a situation in which
an angle has a negative value.
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FIG. 1: Definition of azimuthal angles for the process (15) in the target rest frame. Ph⊥ and S⊥ are the components of Ph and
S transverse to the photon momentum.

Theorists often prefer a coordinate system with the same x axis but with y and z axes opposite to those shown
in Fig. 1, so that in the γ∗p center of mass the target moves in the positive z direction (cf. Sect. I). When working
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in terms of structure  functions 
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first Sivers extraction with unpolarised TMDs extracted from data

universality

LO - NLL



Parametrization of Sivers function
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Sivers function can be parametrized in terms of its first moment

f⊥
1T(x, k2

⊥) = f⊥(1)
1T (x) f⊥

1TNP(x, k2
⊥)

nonperturbative part arbitrary, but constrained by the positivity bound.

f⊥
1TNP(x, k2

⊥) =
1

πKf

1
Fmax

(1 + λSk2
⊥)

(M2
1 + λSM4

1)
e−k2

⊥/M2
1 f1NP(x, k2

⊥)

following the NP part of the unpolarized TMD

f1NP(x, k2
⊥) =

1
π

(1 + λk2
⊥)

(g1a + λg2
1a)

e−k2
⊥/g1a

Free parameters λS , M1



Parametrization of Sivers function
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f⊥(1)
1T (x) =

Na
Siv

Ga
max

xαa(1 − x)βa(1 + AaT1(x) + BaT2(x)) f1(x, Q2)

normalization 
(abs.value <1)

maximum value
of the function

Tn(x) Chebyshev polynomials

Radici [Phys. Rev. Lett., 
120(19):192001, 2018 ]

Free parameters Na
Siv , αa , βa , Aa , Ba

Flavor dependent: distinct for up, down, sea

https://inspirehep.net/record/1654916
https://inspirehep.net/record/1654916
https://inspirehep.net/record/1654916
https://inspirehep.net/record/1654916


Evolution of Sivers
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We simply assume that f⊥(1)
1T evolves in the same way as unpolarized f1

Difference in the Wilson coefficients: Ci → CSiv

At our accuracy level (LO): CSiv(0) = δ(1 − x)δai

f̃⊥(1)a
1T (x, ξ2

T; Q2) =
The evolved Sivers function first moment becomes

collinear PDF

pQCD

(Sudakov  
form factor)

(Wilson  
Coefficient)

nonperturbative part 
of TMD

nonperturbative part 
 of evolution

= ∑
i

(C̃a/i ⊗ f i
1) (x, ξ*; μb) eS̃(ξ*; μb, μ)egK(ξT) ln(μ/μ0) ̂f⊥(1)a

1TNP (x, ξT)

Fourier transform: 
ξT space



Experimental data

deuteron [6LiD] Proton [NH3]

hermes

proton [H] 

95
data points

88
data points 111

data points

49

2009

Same kinematic cuts applied to unpolarized 

2017

neutron [3He]

6
data points

x, z, PhT  data projections



Experimental data

deuteron [6LiD] Proton [NH3]

hermes

proton [H] 

95
data points

88
data points 111

data points

50

2009

Same kinematic cuts applied to unpolarized 

2017

neutron [3He]

6
data points

x, z, PhT  data projections

Using only one projection
to avoid fully correlated data



Results
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Summary of results 

Total number of data points: 117 

Total number of free parameters: 17 
➛ for 3 different flavors 

χ2/d . o . f = 1.12 ± 0.06

LO - NLL
Replica method

[arXiv 2004.14278]
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proton

2017
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hermes
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Sivers function first moment comparison
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Visualization of TMDs: structure deformation

55

f1(x, k⊥; Q2)



The proton in 3d (in momentum space)
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This is an image of the quark structure averaged over spin.
What happens if we include spin?



The proton in 3d (in momentum space)

57

with 
 orbital angular  

momentum
“Sivers effect”



Visualization of TMDs: structure deformation
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ρ = f1(x, k⊥; Q2) − (k⊥/M)f⊥
1T(x, k⊥; Q2)



“REAL”3D images in momentum space
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Images entirely based on data (polarized and unpolarized)
Bacchetta, Delcarro, Pisano, Radici, arXiv:2004.14278 



“REAL”3D images in momentum space
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Images entirely based on data (polarized and unpolarized)
Bacchetta, Delcarro, Pisano, Radici, arXiv:2004.14278 



Sivers function in DY
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transverse SSA for W

Drell-Yan process:
 a polarized proton scatters off an unpolarized one W±, Z0 in final state

AW
N =

dσ↑ − dσ↓

dσ↑ + dσ↓

in terms of TMDs:

dσ↑ + dσ↓ = σ0 ∑
q1,q2

Vq1,q2
2

∫ dk⊥1dk⊥2δ(2)(k⊥1 + k⊥2 − qT)f1(x1, k⊥1)f1(x2, k⊥2)

dσ↑ − dσ↓ = − Mσ0 ∑
q1,q2

Vq1,q2
2

∫ dk⊥1dk⊥2δ(2)(k⊥1 + k⊥2 − qT)f⊥(1)
1T (x1, k⊥1)f1(x2, k⊥2)



Sivers function sign change
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Sivers function sign change
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f⊥
1T,DIS = − f⊥

1T,DY
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Evidence of sign change for Drell-Yan



Sivers function sign change
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�+→�+ν
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Prediction using SIDIS extraction



TMDs at EIC

65[EIC Yellow Report 2103.05419]



Conclusions

We extracted a functional form for Sivers 
distribution function, able to describe SIDIS data, 

with hints of sign change in DY

For the first time the determination of AUT included 
unpolarized TMDs extracted directly from data with 

full formalism for QCD evolution

We are able to observe a deformation of the 
internal nucleon structure using our 

parametrization.
66

We reached an accuracy level of N3LL on 
unpolarized TMDs, covering a large set of data.


