General Settings for Slow Control Monitoring

- ► Aim: Set up and start the continuous slow-control monitoring
 - $\,\triangleright\,\,$ Configure VIs and target computer to meet the general scheme
 - $\,\triangleright\,$ Check how readings and alarms appear on the monitor

Slow control data monitor

- https://confluence.its.virginia.edu/display/General/Subsystems+Page
- $\,\triangleright\,\,$ For not only the target system but also the beam, the detectors, etc.
- Astrid, Hugo, Paul and I had a meeting last Friday, to discuss how to stabilize server processes

Plans

- Server software (this week)
 - ▶▶ Move all server processes from e1039gat1 to e1039scrun
 - $\triangleright\triangleright$ Confirm that all server processes keep running after expected/unexpected shut downs
- Data-monitor interface (next week)
 - $\triangleright \triangleright$ Set up a dedicated computer+display in the control room
 - $\triangleright \triangleright$ Try to launch the interface programs

Temperature Measurements

To read the 8 sensors in the cave:

https://confluence.its.virginia.edu/display/twist/To-do+list+at+NM4

- Mainly to correlate the temperatures to the quench threshold Thanks to Dustin for explanations. Measure relative changes at the magnet corners due to beam

▷ What is the temperature accuracy that we need?

- $\triangleright \flat$ For example: $\delta_T \sim 1$ K at $T \lesssim 4$ K with 1 Hz?
- Device candidate: USB DAQ (MCC USB-202) with Thermocouple (Omega Type T)
 - Achievable accuracy? Estimate in next pages
 - How to read it out? Where to put USB-Ethernet converter or USB repeater?

Alternative method: Use MCC E-TC with long compensation wire from slow-control rack??

- Less radiation, fewer replacements
- Better measurement accuracy
- \triangleright Simpler readout
- Cost: https://www.omega.com/en-us/temperature-measurement/temperature-wire-and-cable/thermocouple-wires/p/EXTT-TX-WIRE
 - ▶▶ \$150 for 500 ft
 - ▷▷ 8 of 50 ft are enough?

MCC USB-202 for TC

► Voltage-Temperature relation of TC Type T

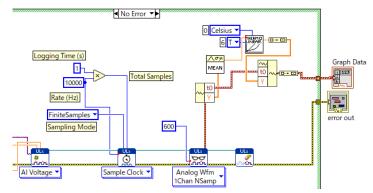
https://jp.flukecal.com/Thermocouple-Temperature-Calculator

mV	-6.26 -269	-6.2	-6.0	-5.0	-4.0	-3.0	0.0	+1.0	+2.0
°C	-269	-253	-229	-167	-123	-87	0	25	49

► Spec of MCC USB-202

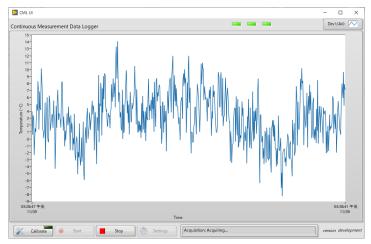
https://www.mccdaq.com/usb-data-acquisition/USB-200-Series.aspx

- \triangleright Range: ± 10 V, 12 bits
- Sampling rate: 100k/s at max
- ${}^{\triangleright} \text{ Accuracy: } \delta_V \text{ (mV)} = 9.8\text{e-}4 * V \text{ (mV)} + 11 \Longrightarrow 11 \text{ mV } @ |V| < 100 \text{ mV}$
- No CJC sensor is built in
- Considerations needed
 - ▷ Calibrate the voltage offset (11 mV)? Time stability? Device difference?
 - ▷ Set up CJC?
- ► For reference: Spec of MCC E-TC with Type T
 - ▷ Range: -270...400 °C
 - $^{\triangleright}\,$ Accuracy: 0.817 $^{\circ}\mathrm{C}$ @ -200 $^{\circ}\mathrm{C},$ 0.339 $^{\circ}\mathrm{C}$ @ 0 $^{\circ}\mathrm{C}$
 - $\,\triangleright\,$ Sensors for the cold junction compensation are built in


VIs for MCC USB-202

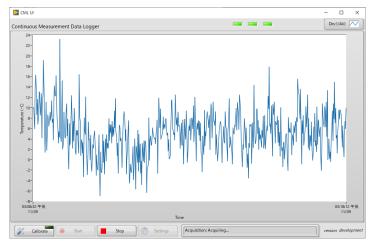
Based on the module made by Josh:

https://github.com/uva-spin/Temperature-Pressure-VIs/tree/main/Delacor_Complete/js5mv_10272020/ThermistorCML


Changes in Acquire.vi

- \triangleright Readout rate = 10k samples are read out and averaged per second
- ▷ V-T conversion, using Convert Thermocouple Reading.vi

► Test measurement @ room temperature


▷ With 10k samples averaged. For 10 minutes

- $^{\triangleright}~$ Deviation $\sim \pm 5\ ^{\circ}C \Longleftrightarrow \pm 0.2\ mV$
- $^{\triangleright}~Offset \sim 3~^{\circ}C \Longleftrightarrow 0.1~mV$

► Another test measurement @ room temperature

▷ With 1k samples averaged. For 10 minutes

