## General Settings for Slow Control Monitoring

- ► Aim: Set up and start the continuous slow-control monitoring
  - $\,\triangleright\,\,$  Configure VIs and target computer to meet the general scheme
  - $\,\triangleright\,$  Check how readings and alarms appear on the monitor

### Slow control data monitor

- https://confluence.its.virginia.edu/display/General/Subsystems+Page
- $\,\triangleright\,\,$  For not only the target system but also the beam, the detectors, etc.
- Updates
  - b The server processes were moved from e1039gat1 to e1039scrun on Tuesday
  - One of the processes (fill\_epics\_vars.cc?) was found not running
  - ▷ The target computer was reconfigured to communicate with e1039scrun
- Plans
  - Make all processes run fine (by Paul?)
  - $\,\triangleright\,$  Set up a dedicated computer+display in the control room
  - ▷ Try to launch the data-monitor GUI

# **Test of Temperature Measurements**

- Aim: Evaluate the measurement accuracy when TC is long, between cave & slow-control rack
  - Good enough for the measurement of magnet temperature?
- Setup
  - ▷ MCC E-TC

(accurate & expensive than USB-202)

- $\triangleright$  Channel 0 = TC
  - $\triangleright \triangleright$  A short (7 ft) TC sensor +
  - ▷▷ One of three existing extension cables (50 ft?)
- $\triangleright$  Channel 1 = Short loop
  - **bb** For reference



#### Measurement

- ▷ 2 Hz (cf. 4 Hz at max)
- $\,\triangleright\,$  60 hours from 12th (Fr) to 15th (Mo)
- Results ... next pages

#### Observations

- $^{\triangleright}~$  Point-to-point deviation is 0.013  $^{\circ}\mathrm{F}$
- Same size on both channels and correlated

### Interpretations

- ▷ External noise along the long TC cable should be of high frequency and thus be averaged out by MCC E-TC
- ▷ Major noise arises on MCC E-TC, which is common to channels
- $arepsilon ~\delta_T = 0.013~{
  m ^\circ F}$  at room temperature  $\iff \delta_V = 0.3~\mu V$  (using  $dV/dT = 40~\mu V/K$ )
- $\stackrel{\triangleright}{\phantom{}} \delta_V = 0.3 \ \mu \mathrm{V} \Longrightarrow \delta_T = 0.2 \ \mathrm{K} \ \mathrm{at} \ T = 4 \ \mathrm{K} \ ... \ \mathrm{too} \ \mathrm{good} \ref{eq:solution}$ (using  $dV/dT = 1.5 \ \mu \mathrm{V/K}$ )

### Plans

- $\triangleright$  Consider the effects of absolute scale and long-term deviation
- $\,\triangleright\,$  Evalute the voltage attenuation along the long TC cable
- ▷ Test MCC USB-202 also?
- ▷ Test with LHe in small dewar?

### Temperature vs Time

- ► Channel 0 = TC
- Channel 1 = Short loop = Surrounding temperature (with CJC sensor)
- ▶ For 60 hours at 2 Hz



### Short-Term Deviation & Correlation

• Deviation  $\delta_i^T \equiv T_i - \sum_j^{i-10\cdots i-1, i+1\cdots i+10} T_j/20$ 



▶ Standard deviation = 0.013 °F on both channels

Correlated