Updates

- 1. Slow control data monitor
 - $\,\triangleright\,$ The Sea/SpinQuest NFS disk was mounted on target computer:
 - ▷▷ Status & procedure: https://confluence.its.virginia.edu/display/twist/Target+Computer+setup+at+NM4
 - **Will discuss better configuration of user/group/permisson with network group**
 - ▷ Astrid & Paul are reconfiguring EPICS/Archiver servers
 - ▷ Will bring up GUIs in control room in early December?
- 2. NMR computer
 - ▷ Sort out configurations and files, in preparation for rack move
- 3. PDP
 - Succeeded at adding new BNC channel to PDP front panel
- 4. MCC USB-202 with thermocouple (TC)
 - $^{\triangleright}\;$ Made the same noise measurement as done for MCC E-TC last week
 - $\,\triangleright\,$ Propose to use two MCC E-TCs for all (16) TCs in cave

2. NMR Computer

Network

- > Was connected to "eduroam" Wi-Fi
- Now connected to NM4 LAN, using 192.168.24.191
- VNC server
 - Installed last week
 - Accessible from target computer (and home via e1039gat1)
- Login user & disk space
 - Now using Microsoft account & OneDrive of Anchit
 - Propose to use local user (ptgroup) & local disk
 - Any configurations/files that we need migrate??

3. PDP

Multiple versions

- C:\Users\anchi\OneDrive\Documents\PDP
 - $\triangleright \triangleright$ We have been using this
 - ▷▷ Slow and user dependent (as on OneDrive)
- C:\PDP\e1039-target-controls-master
 - ▷▷ Created on 2021/Feb/25

GitHub

https://github.com/uva-spin/e1039-target-controls/tree/master/PDP

- ▷▷ Last updated 3 years ago
- Propose to unify these versions for future development
 - Clone GitHub into C:\uva-spin\e1039-target-controls\PDP?
 - ▷▷ Import any key changes from other versions?

- Addition of new BNC channel to PDP front panel
 - One of the remaining tasks:

https://confluence.its.virginia.edu/display/twist/To-do+list+at+NM4

- ▷ For readings of MKS 670, MKS 946, etc.
- Succeeded
 - Added new line to B28_Slow_Controls.txt

- Added a new sequence frame to PDP-Polarization_Display_Panel/PDP.v
- ▷ To be documented in GitHub repository

Other changes

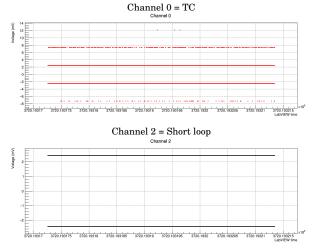
Changed the default value of TPS Base Path in TPS Global.vi so that SCM.vi can run standalone

			Mon. time 60 2.5T
	Controls		ScanSteps 500 Sweeps
File Edi	t View Project Operate Too		Scan Freq 15287 Cal. Const.
	🖻 🕸 🥘 II	?	RF Freq 213.000 DC
Update Channels from File			REMod 400
			RF Power 275 Baseline 141
÷1	QMeter 2 Temp	0.0732 2	RF Output On Off
Ð	QMeter 3 Temp	0.0589 2	Magnet Power Supply 5T.Su
	QMeter 4 Temp	0.0397 2	Status: Hold> Current (A): 0.000
	Separator Flow	0.2921 2	Voltage (V): 0.000
	Main Flow	-1.6587 2	Setpoint (A): 0.000 Rate (A/min): 0.000
	Magnet Helium Level	-18.6908 2	Persistent Mode
	RF Voltmeter	-0.1259 ?	Temp (K) Press (Torr) Range
	Microwave Power	-0.1157 ?	4He NaN 0.001 2.001 3He 0.00 0.000 Test01
	Nitrogen Level	132.6164 ?	Top Bottom 0.052
	Isolation Vacuum Pressure	-11.1625 ?	Chip (Ω) 0 0 CarbGlass
	Helium Vapor Pressure	0.0009 2	R + Frequency
	Collector Flow	-6.3509 ?	Voltage
	Test Input 01	0.0515 2	0.0020-
			0.0000-
· ·	New c	-0.0020-	
<			-0.0040 -

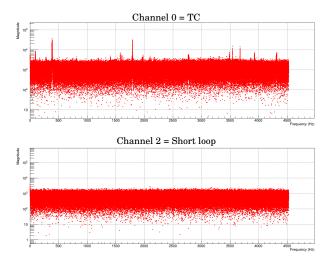
MCC USB-202 with Thermocouple

- Aim: Evaluate the measurement accuracy
 - ▷ With long TC cable
 - ▷ Better or worse than MCC E-TC?
 - Setup
 - ▷ MCC USB-202
 - \triangleright Channel 0 = TC
 - $\triangleright \triangleright$ A short (7 ft) TC sensor +
 - ▷▷ One of three existing extension cables (50 ft?)
 - \triangleright Channel 2 = Short loop
 - **bb** For reference

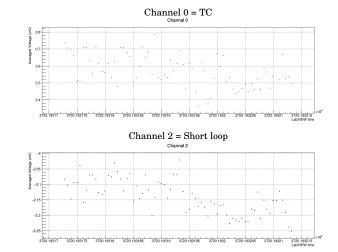
MCC USB-202 @ slow-control rack



TC junction @ target cave

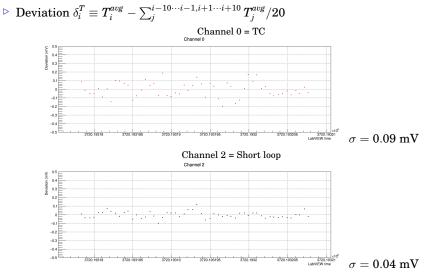

Measurement

- ▷ 40 seconds, 10 kHz
- Voltage, not temperature 2.4 mV = 1 ADC bit
- Raw values



(cf. +1 mV at +25 $^{\circ}$ C)

▷ FFT



 $\triangleright \triangleright$ High-frequency noise only on channel 0

▷ Averaged values — per 0.5 seconds (= 5000 points), same rate as MCC E-TC

- ▷▷ Large offset ($\mathcal{O}(mV)$) on channel 2
- ▷▷ The offsets of channels 0 & 2 were shifting in another 2-day measurement

▷▷ MCC E-TC: $\sigma = 0.3 \ \mu V$

Voltage Attenuation

- ▶ Aim: Estimate of voltage drop (V_{drop}) along the TC extension cable
- ▶ TC with extension cable from slow-control rack to target cave
 - $\triangleright R_{TC} = 190 \ \Omega$ measured by multimeter
 - $^{
 m arphi}$ Typically $V_{TC}=+1~{
 m mV}$ @ $+25~^{\circ}{
 m C}$
- ► With MCC E-TC
 - ▷ Input impedance: $Z_{in} = 40 \text{ M}\Omega$ spec sheet
 - $ho_{
 ho}~~{
 m Impedance~ratio:}~R_Z\equiv R_{TC}/Z_{in}=190/40{
 m M}=5{
 m e}{
 m -}6$
 - $PP V_{drop} \equiv V_{TC} \cdot R_Z = 1 \text{ mV} \cdot 5 \text{e-}6 = 5 \text{ nV}$
 - \triangleright Input current: $I_{in} = 1$ nA, with open TC detection disabled spec sheet

$$\forall V_{drop} \equiv R_{TC} \cdot I_{in} = 190 \ \Omega \cdot 1 \ \text{nA} = 190 \ \text{nV}$$

▷ In both cases V_{drop} is smaller than the device accuracy (300 nV)

▶ With MCC USB-202

▷ Input impedance: $Z_{in} = 1 \text{ M}\Omega$ — spec sheet

$$\triangleright \hspace{0.1 cm} \triangleright \hspace{0.1 cm} V_{drop} \equiv V_{TC} \cdot R_Z = 1 \; \mathrm{mV} \cdot 190 \: / \: 1\mathrm{M} = 190 \; \mathrm{nV}$$

 $\,\triangleright\,$ Input bias current: $I_{in}=2~\mu {\rm A} @$ 0 V, 12 $\mu {\rm A} @$ 10 V

$$\lor$$
 $V_{drop} \equiv R_{TC} \cdot I_{in} = 190 \ \Omega \cdot 2 \ \mu A = 380 \ \mu V$

 $\triangleright V_{drop}$ is possibly too large