TAD EXTRACTION WITH GLOBAL FITS \& ANN

Ishara Fernando, Devin Seay, Nicholas Newton \& Dustin Keller
University of Virginia (UVA) Spin Physics Group

@ APS-DNP 2021

October 13, 2021

USS. DEPARTMENT OF

OUTLINE

$>$ A brief Introduction to TMD PDFs
$>$ Sivers Function
$>$ Sivers asymmetry from SIDIS
$>$ Sivers asymmetry from DY
$>$ Global analyses of Sivers function
$>$ Fitting methodology
$>$ Neural Network approach with SIDIS
$>$ Fit results to SIDIS
$>$ Fit results to SIDIS \& DY
$>$ Discussion \& Future work

Quark Polarization

TMD PDFS

$$
\Phi\left(x, k_{T} ; S\right)=\left.\int \frac{d \xi^{-} d \xi_{T}}{(2 \pi)^{3}} e^{i k . \xi}\langle P, S| \bar{\psi}(0) \mathcal{U}_{[0, \xi]} \psi(\xi)|P, S\rangle\right|_{\xi^{+}=0}
$$

Quark correlator can be decomposed into 8 components (6 T -even and 2 T -odd terms) at leading-twist

		Quark Polarization		
		U	L	T
	U	$f_{1}=\bigcirc$	N / A	$\begin{aligned} & h_{1}^{\perp}=\varnothing-\odot \\ & \text { Boer-Mulders } \end{aligned}$
	L	N / A	$g_{1 L}=\bigodot-\odot-\odot-$	
	T	$\underset{\text { Sivers }}{f_{1 r}^{\perp}=\ominus}$	$g_{1 T}{ }^{\perp}=\bigodot-¢$	

$$
\begin{aligned}
\Phi\left(x, k_{T}, P, S\right) & =f_{1}\left(x, k_{T}^{2}\right) \frac{P}{2}+\frac{h_{1 T}\left(x, k_{T}^{2}\right)}{4} \gamma_{5}\left[\$_{T}, \not P\right]+\frac{S_{L}}{2} g_{1 L}\left(x, k_{T}^{2}\right) \gamma_{5} \not P+\frac{k_{T} \cdot S_{T}}{2 M} g_{1 T}\left(x, k_{T}^{2}\right) \gamma_{5} \not P \\
& +S_{L} h_{1 L}^{\perp}\left(x, k_{T}^{2}\right) \gamma_{5} \frac{[k /, \not p]}{4 M}+\frac{k_{T} \cdot S_{T}}{2 M} h_{1 T}^{\perp}\left(x, k_{T}^{2}\right) \gamma_{5} \frac{[k / T P]}{4 M}
\end{aligned}
$$

$$
+i h_{1}^{\perp}\left(x, k_{T}^{2}\right) \frac{\left[k_{T}, \not P\right]}{4 M}-\frac{\epsilon_{T}^{k_{T} S_{T}}}{4 M} f_{1 T}^{\perp}\left(x, k_{T}^{2}\right) \not P
$$

T-odd

TMD PDFS

$$
\begin{aligned}
& \left.h_{1}^{\perp q}\right|_{\text {SIDIS }}=-\left.h_{1}^{\perp q}\right|_{D Y} \\
& \left.f_{1 T}^{\perp q}\right|_{\text {SIDIS }}=-\left.f_{1 T}^{\perp q}\right|_{D Y}
\end{aligned} \quad\left[\begin{array}{l}
\left.h_{1}^{q}\right|_{\text {SIDIS }}=\left.h_{1}^{q}\right|_{D Y} \\
\left.h_{1 T}^{\perp q}\right|_{\text {SIDIS }}=\left.h_{1 T}^{\perp q}\right|_{D Y}
\end{array}\right.
$$

* For these two processes TMD factorization is provep

SIVERS FUNCTION

$$
f_{q / p^{\uparrow}}\left(x, \mathbf{k}_{\mathbf{T}}\right)=f_{q / p}\left(x, \mathbf{k}_{\mathbf{T}}\right)+f_{1 T}^{\perp}\left(x, \mathbf{k}_{\mathbf{T}}\right) \mathbf{S} \cdot\left(\hat{\mathbf{P}} \times \hat{\mathbf{k}_{\mathbf{T}}}\right)
$$

The Sivers function describes the correlation between the momentum direction of the struck quark and the spin of its parent nucleon.
$>$ The gauge-invariant definition of the Sivers function
 predicts the opposite sign for the Sivers function in SIDIS compared to processes with color charges in the initial state and a colorless final state in Drell-Yan, $J / \psi, W^{ \pm}, Z$
> This inclusion of the gauge link has profound consequences on factorization proofs and on the concept of universality, which are of fundamental
 relevance for high-energy hadronic physics

SIVERS ASYMMETRY FROM SIDIS

Asymmetry in $p p^{\uparrow} \rightarrow \pi X$ pion production from E704

Single Spin Asymmetry (Sivers Asymmetry)

$$
\begin{aligned}
& \text { HERMES PRL 103, } 152002 \text { (2009) } \\
& A_{U T}^{\sin \left(\phi_{h}-\phi_{S}\right)}\left(x, y, z, p_{h T}\right)=\frac{\left[z^{2}\left\langle k_{\perp}^{2}\right\rangle+\left\langle p_{\perp}^{2}\right\rangle\right]\left\langle k_{S}^{2}\right\rangle^{2}}{\left[z^{2}\left\langle k_{S}^{2}\right\rangle+\left\langle p_{\perp}^{2}\right\rangle\right]\left\langle k_{\perp}^{2}\right\rangle^{2}} \exp \left[-\frac{p_{h T}^{2} z^{2}\left(\left\langle k_{S}^{2}\right\rangle-\left\langle k_{\perp}^{2}\right\rangle\right)}{\left(z^{2}\left\langle k_{S}^{2}\right\rangle+\left\langle p_{\perp}^{2}\right\rangle\right)\left(z^{2}\left\langle k_{\perp}^{2}\right\rangle+\left\langle p_{\perp}^{2}\right\rangle\right)}\right] \\
& \times \frac{\sqrt{2 e} z p_{h T}}{M_{1}} \frac{\sum_{q} \mathcal{N}_{q} e_{q}^{2} f_{q}(x) D_{h / q}(z)}{\sum_{q} e_{q}^{2} f_{q}(x) D_{h / q}(z)} \\
& A_{U T}^{\sin \left(\phi_{h}-\phi_{S}\right)}\left(x, y, z, p_{h T}\right)=\mathcal{A}_{0}\left(z, p_{h T}, M_{1}\right)\left(\frac{\sum_{q} \mathcal{N}_{q} e_{q}^{2} f_{q}(x) D_{h / q}(z)}{\sum_{q} e_{q}^{2} f_{q}(x) D_{h / q}(z)}\right) \\
& \left\langle p_{\perp}^{2}\right\rangle=0.12 \pm 0.01 \mathrm{GeV}^{2} \\
& \left\langle k_{\perp}^{2}\right\rangle=0.57 \pm 0.08 \mathrm{GeV}^{2} \\
& \mathcal{N}_{q}(x)=N_{q} x^{\alpha_{q}}(1-x)^{\beta_{q}} \frac{\left(\alpha_{q}+\beta_{q}\right)^{\left(\alpha_{q}+\beta_{q}\right)}}{\alpha_{q}^{\alpha_{q}} \beta_{q}^{\beta_{q}}}
\end{aligned}
$$

SIVERS ASYMMETRY FROM DRELL-YAN

$$
f_{q / p}\left(x, k_{\perp}\right)=f_{q}(x) \frac{1}{\pi\left\langle k_{\perp}^{2}\right\rangle} e^{-k_{\perp}^{2} /\left\langle k_{\perp}^{2}\right\rangle} \quad\left\langle k_{\perp}^{2}\right\rangle=0.25 \mathrm{GeV}^{2}
$$

$$
\mathcal{N}_{q}(x)=N_{q} x^{\alpha_{q}}(1-x)^{\beta_{q}} \frac{\left(\alpha_{q}+\beta_{q}\right)^{\left(\alpha_{q}+\beta_{q}\right)}}{\alpha_{q}^{\alpha_{q}} \beta_{q}^{\beta_{q}}}
$$

$$
h\left(k_{\perp}\right)=\sqrt{2 e} \frac{k_{\perp}}{M_{1}} e^{-k_{\perp}^{2} / M_{1}^{2}}
$$

$$
\frac{1}{\left\langle k_{S}^{2}\right\rangle}=\frac{1}{M_{1}^{2}}+\frac{1}{\left\langle k_{\perp 1}^{2}\right\rangle}
$$

$$
A_{N}^{\sin \left(\phi_{\gamma}-\phi_{S}\right)}\left(x_{F}, M, q_{T}\right)=\frac{\int d \phi_{\gamma}\left[N\left(x_{F}, M, q_{T}, \phi_{\gamma}\right)\right] \sin \left(\phi_{\gamma}-\phi_{S}\right)}{\int d \phi_{\gamma}\left[D\left(x_{F}, M, q_{T}\right)\right]}
$$

$$
N\left(x_{F}, M, q_{T}, \phi_{\gamma}\right) \equiv \frac{d^{4} \sigma^{\uparrow}}{d x_{F} d M^{2} d^{2} \boldsymbol{q}_{T}}-\frac{d^{4} \sigma^{\downarrow}}{d x_{F} d M^{2} d^{2} \boldsymbol{q}_{T}}
$$

$$
=\frac{4 \pi \alpha^{2}}{9 M^{2} s} \sum_{q} \frac{e_{q}^{2}}{x_{1}+x_{2}} \Delta^{N} f_{q / A^{\uparrow}}\left(x_{1}\right) f_{\bar{q} / B}\left(x_{2}\right) \sqrt{2 e} \frac{q_{T}}{M_{1}} \frac{\left\langle k_{S}^{2}\right\rangle^{2} \exp \left[-q_{T}^{2} /\left(\left\langle k_{S}^{2}\right\rangle+\left\langle k_{\perp 2}^{2}\right\rangle\right)\right]}{\pi\left[\left\langle k_{S}^{2}\right\rangle+\left\langle k_{\perp 2}^{2}\right\rangle\right]^{2}\left\langle k_{\perp 2}^{2}\right\rangle} \sin \left(\phi_{S}-\phi_{\gamma}\right)
$$

$$
\begin{aligned}
D\left(x_{F}, M, q_{T}\right) & \equiv \frac{1}{2}\left[\frac{d^{4} \sigma^{\uparrow}}{d x_{F} d M^{2} d^{2} \boldsymbol{q}_{T}}+\frac{d^{4} \sigma^{\downarrow}}{d x_{F} d M^{2} d^{2} \boldsymbol{q}_{T}}\right]=\frac{d^{4} \sigma^{u n p}}{d x_{F} d M^{2} d^{2} \boldsymbol{q}_{T}} \\
& =\frac{4 \pi \alpha^{2}}{9 M^{2} s} \sum_{q} \frac{e_{q}^{2}}{x_{1}+x_{2}} f_{q / A}\left(x_{1}\right) f_{\bar{q} / B}\left(x_{2}\right) \frac{\exp \left[-q_{T}^{2} /\left(\left\langle k_{\perp 1}^{2}\right\rangle+\left\langle k_{\perp 2}^{2}\right\rangle\right)\right]}{\pi\left[\left\langle k_{\perp 1}^{2}\right\rangle+\left\langle k_{\perp 2}^{2}\right\rangle\right]}
\end{aligned}
$$

GLOBAL ANALYSES OF SIVERS FUNCTION

A. Bacchetta, F.

Delcarro,
C. Pasiano, M. Radici arXiv 2004.14278 (2020)

HERMES (2020) COMPASS (2009) COMPASS (2015) JLab (2011)
M. Anselmino, M. Boglion, U. D'Alesio, S. Melis, F. Murgia, A. Prokudin_PRD_79_54010_(2009)

HERMES (2020), COMPASS (2009),COMPASS (2015)
JLab (2011), STAR (2016),COMPASS DY (2017)

FITTING METHODOLOGY

Inputs:
> Unpolarized PDFs : LHAPDF6 (CTEQ61)
$>$ Fragmentation Functions:

- Pi+: NNFF10_Pip_nlo
- Pi-: NNFF10_Pim_nlo
- PiO: NNFF10_Pisum_nlo
- K+: NNFF10_Kap_nlo
- K-: NNFF10_Kam_nlo
V. Bertone et. al arXiv:1706.07049

Data Sets (on consideration):

SIDIS

> HERMES_p_2009 (from Luciano Pappalardo)
> COMPASS_d_2009 (from Bakur Parsamyan)
> COMPASS_p_2015 (from Bakur Parsamyan)
HERMES_p_2020 (from Luciano Pappalardo)

Fit parameters (13):

$$
\begin{aligned}
& M_{1} \\
& N_{u}, \alpha_{u}, \beta_{u}, N_{\bar{u}} \\
& N_{d}, \alpha_{d}, \beta_{d}, N_{\bar{d}} \\
& N_{s}, \alpha_{s}, \beta_{s}, N_{\bar{s}}
\end{aligned}
$$

Fitting routines:
> "iminuit" (python supported version of MINUIT)
> Using a Neural Network approach

DY
> COMPASS_2017 (from Bakur Parsamyan)

NEURAL NETWORK APPROACH WITH SIDIS DATA

$$
A_{U T}^{\sin \left(\phi_{h}-\phi_{S}\right)}\left(x, y, z, p_{h T}\right)=\mathcal{A}_{0}\left(z, p_{h T}, M_{1}\right)\left(\frac{\sum_{q} \sqrt[\mathcal{N}_{q} e_{q}^{2} f_{q}(x) D_{h / q}(z)]{\sum_{q} e_{q}^{2} f_{q}(x) D_{h / q}(z)}}{\text { Moti }}\right.
$$

FITS TO SIDIS DITA : INITTHL ATTEMPTS

GLOBAL FIT TO SIIIS DATP

GLOBAL FIT TO SIDIS \& DY DATA

With sign change

Parameter	sign-flip	no-sign-flip
M_{1}	5.7 ± 0.8	6.1 ± 0.5
N_{u}	0.69 ± 0.08	0.72 ± 0.05
α_{u}	2.74 ± 0.09	2.71 ± 0.05
β_{u}	15.1 ± 0.6	15.05 ± 0.30
$N_{\bar{u}}$	-0.107 ± 0.017	-0.096 ± 0.018
N_{d}	-1.34 ± 0.15	-1.30 ± 0.11
α_{d}	1.6 ± 0.4	1.36 ± 0.31
β_{d}	5.4 ± 2.5	4.7 ± 1.8
$N_{\bar{d}}$	-0.08 ± 0.13	-0.04 ± 0.12
N_{s}	11.2 ± 1.4	12.0 ± 0.9
α_{s}	0.85 ± 0.09	0.91 ± 0.05
β_{s}	0.46 ± 0.12	0.52 ± 0.07
$N_{\bar{s}}$	0.2 ± 0.4	0.25 ± 0.32
χ^{2} / N	1.871	1.870

Ongoing work:
> Analyzing the fit results \& optimizing the fitting framework
$>$ DY extension to the SIDIS NN model

PRELIMINARY

Without sign change

DISCUSSION \& FUTURE WORK

$>$ Performing simultaneous fits to SIDIS and DY data with higher statistics of replicas (on-going).
$>$ Improving the Neural Network to train simultaneously on both SIDIS \& DY data with optimizing hyperparameters with higher statistics of replicas.
$>$ Investigating towards Sivers Asymmetry extraction from Drell -Yan with/without considering the "sign-flip" of the Sivers Function.
$>$ Simultaneous fits to Sivers function and Boer-Mulders function (on-going).

Thank you

Office of Science

This work is supported by DOE contract DE-FG02-96ER40950

