TMD EXTRACTION WITH GLOBAL FITS & ANN

Ishara Fernando, Devin Seay, Nicholas Newton & Dustin Keller

University of Virginia (UVA) Spin Physics Group

@ APS-DNP 2021October 13, 2021

OUTLINE

- >A brief Introduction to TMD PDFs
- ➢Sivers Function
- Sivers asymmetry from SIDIS
- Sivers asymmetry from DY
- Global analyses of Sivers function
- Fitting methodology
- >Neural Network approach with SIDIS
- ≻Fit results to SIDIS
- ≻Fit results to SIDIS & DY
- Discussion & Future work

TMD PDFS

$$\Phi(x, k_T; S) = \int \frac{d\xi^- d\xi_T}{(2\pi)^3} e^{ik.\xi} \langle P, S | \bar{\psi}(0) \mathcal{U}_{[0,\xi]} \psi(\xi) | P, S \rangle|_{\xi^+ = 0}$$

Quark correlator can be decomposed into 8 components (6 T -even and 2 T -odd terms) at leading-twist

TMD PDFS

SIVERS FUNCTION $f_{q/p^{\uparrow}}(x, \mathbf{k_T}) = f_{q/p}(x, \mathbf{k_T}) + f_{1T}^{\perp}(x, \mathbf{k_T})\mathbf{S}.(\hat{\mathbf{P}} \times \hat{\mathbf{k_T}})$

The Sivers function describes the correlation between the momentum direction of the struck quark and the spin of its parent nucleon.

- ➤ The gauge-invariant definition of the Sivers function predicts the opposite sign for the Sivers function in SIDIS compared to processes with color charges in the initial state and a colorless final state in Drell-Yath, $J/\psi, W^{\pm}, Z$
- This inclusion of the gauge link has proposed in the second property of universality, which are of fundamental relevance for high-energy hadronic physics

SIVERS ASYMMETRY FROM SIDIS

2 $\langle sin(\phi-\phi_S) \rangle_{UT}$ 1.

0

10

 $\langle Q^2 \rangle [GeV^2]$

Asymmetry in $pp^{\uparrow} \rightarrow \pi X$ pion production from E704

SIVERS ASYMMETRY FROM DRELL-YAN

 $\mathcal{N}_q(x)$

$$f_{q/p}(x,k_{\perp}) = f_q(x) \frac{1}{\pi \langle k_{\perp}^2 \rangle} e^{-k_{\perp}^2/\langle k_{\perp}^2 \rangle} \qquad \langle k_{\perp}^2 \rangle = 0.25 \text{ GeV}^2$$

$$\Delta^{N} f_{q/p^{\uparrow}}(x,k_{\perp}) = 2 \mathcal{N}_{q}(x) h(k_{\perp}) f_{q/p}(x,k_{\perp})$$
$$\equiv \Delta^{N} f_{q/p^{\uparrow}}(x) h(k_{\perp}) \frac{1}{\pi \langle k_{\perp}^{2} \rangle} e^{-k_{\perp}^{2}/\langle k_{\perp}^{2} \rangle}$$

$$A_N^{\sin(\phi_\gamma - \phi_S)}(x_F, M, q_T) = \frac{\int d\phi_\gamma \left[N(x_F, M, q_T, \phi_\gamma) \right] \, \sin(\phi_\gamma - \phi_S)}{\int d\phi_\gamma \left[D(x_F, M, q_T) \right]}$$

$$N(x_F, M, q_T, \phi_{\gamma}) \equiv \frac{d^4 \sigma^{\uparrow}}{dx_F \, dM^2 \, d^2 q_T} - \frac{d^4 \sigma^{\downarrow}}{dx_F \, dM^2 \, d^2 q_T}$$

$$= \frac{4 \pi \, \alpha^2}{9 \, M^2 \, s} \sum_q \frac{e_q^2}{x_1 + x_2} \, \Delta^N f_{q/A^{\uparrow}}(x_1) \, f_{\bar{q}/B}(x_2) \, \sqrt{2e} \, \frac{q_T}{M_1} \, \frac{\langle k_S^2 \rangle^2 \, \exp\left[-q_T^2 / \left(\langle k_S^2 \rangle + \langle k_{\perp 2}^2 \rangle\right)\right]}{\pi \left[\langle k_S^2 \rangle + \langle k_{\perp 2}^2 \rangle\right]^2 \, \langle k_{\perp 2}^2 \rangle} \, \sin(\phi_S - \phi_S)$$

$$D(x_F, M, q_T) \equiv \frac{1}{2} \left[\frac{d^4 \sigma^{\uparrow}}{dx_F \, dM^2 \, d^2 \boldsymbol{q}_T} + \frac{d^4 \sigma^{\downarrow}}{dx_F \, dM^2 \, d^2 \boldsymbol{q}_T} \right] = \frac{d^4 \sigma^{unp}}{dx_F \, dM^2 \, d^2 \boldsymbol{q}_T}$$

= $\frac{4 \pi \, \alpha^2}{9 \, M^2 \, s} \sum_q \frac{e_q^2}{x_1 + x_2} f_{q/A}(x_1) \, f_{\bar{q}/B}(x_2) \, \frac{\exp\left[-q_T^2 / \left(\langle k_{\perp 1}^2 \rangle + \langle k_{\perp 2}^2 \rangle\right)\right]}{\pi \left[\langle k_{\perp 1}^2 \rangle + \langle k_{\perp 2}^2 \rangle\right]}$

$$N_{q}(x) = N_{q} x^{\alpha_{q}} (1-x)^{\beta_{q}} \frac{(\alpha_{q} + \beta_{q})^{(\alpha_{q} + \beta_{q})}}{\alpha_{q}^{\alpha_{q}} \beta_{q}^{\beta_{q}}}$$

$$h(k_{\perp}) = \sqrt{2e} \frac{k_{\perp}}{M_{1}} e^{-k_{\perp}^{2}/M_{1}^{2}} \cdot \frac{1}{\langle k_{S}^{2} \rangle} = \frac{1}{M_{1}^{2}} + \frac{1}{\langle k_{\perp 1}^{2} \rangle}$$

$$\frac{N(\text{target})}{\langle k_{\perp 2}^{2} \rangle} \sup(\phi_{S} - \phi_{\gamma}) x_{2} \bar{q} x_{1} q$$

$$p \text{ (beam)}$$

$$\mu^{\dagger}$$

$$M. \text{ Anselmino et. al. arXiv: 0901.3078 (2009)}$$

FITTING METHODOLOGY

Inputs:

- Unpolarized PDFs : LHAPDF6 (CTEQ61)
- Fragmentation Functions:
 - Pi+: NNFF10_Pip_nlo
 - Pi-: NNFF10_Pim_nlo
 - Pi0: NNFF10_Pisum_nlo
 - K+: NNFF10_Kap_nlo
 - K-: NNFF10_Kam_nlo

V. Bertone et. al arXív:1706.07049

Data Sets (on consideration):

<u>SIDIS</u>

- HERMES_p_2009 (from Luciano Pappalardo)
- COMPASS_d_2009 (from Bakur Parsamyan)
- COMPASS_p_2015 (from Bakur Parsamyan)
- HERMES_p_2020 (from Luciano Pappalardo)

<u>DY</u> COMPASS_2017 (from Bakur Parsamyan) Fit parameters (13):

 $egin{aligned} M_1 \ N_u, lpha_u, eta_u, N_{ar{u}} \ N_d, lpha_d, eta_d, N_{ar{d}} \ N_s, lpha_s, eta_s, N_s, N_{ar{s}} \end{aligned}$

Fitting routines:

- "iminuit" (python supported version of MINUIT)
- Using a Neural Network approach

$FITS_{A_0(z, p_{hT}, M_1)} = FID_{e_q^2} F_q(x) D_{h/q(z)} = FID_{h/q(z)} F_q D_{h/q(z)} = FID_{h/q(z)} = FID$

	$A_{II'}^{\sin}$	$T = \left(\phi_h - \phi_S \right)$							π^+		π^0		K^-	
		1			=	2,		0.125 -	Fit Data	0.125 - 0.100 -	Fit Data	0.125 - 0.100 -	Fit Data	HERMES
				1	1	χ ² /ndata HERMES2020	χ²/ndata	(NN) 0.075 -		0.075 -		0.075 -	↓ ↓	
π^+	x	7	2.53	2.29	8	2.12	2.23	0.050 -		0.050 -		0.050 -		Ĩ
π^+	х 2	7	1.02	1.01	11	1.49	1.63							
π^+	\tilde{p}_{hT}	7	5.23	3.40	8	1.14	2.07	0.025 -		0.025 -		0.025 -		N N N
π^-	$\frac{P}{X}$	7	1.94	3.13	1 8	1.81	2.82	0.000 -		0.000 -		0.000 -		
π^-	Z	7	2.45	0.52	11	1.16	0.57	-0.025 -		-0.025 -		-0.025 -		2009
π^-	p_{hT}	7	1.61	1.96	8	1.20	1.44	-0.050 -		-0.050 -	-1	-0.050 -		O O
π^0	x	7	0.85	0.90	8	0.40	0.50	0.050						0
π^0	z	7	1.11	1.13	11	0.95	0.97		0.05 0.10 0.15 0.20 0.25	0.05 0.10	0 15 0 20 0 25	0.05 0.10	0.15 0.20 0.25	\prec
π^0	p_{hT}	7	2.00	1.61	8	0.50	0.73	0.125 -	Fit	0.125	— Fit	0.125	— Fit	
K^+	x	7	1.22	1.78	8	0.48	1.45	0.100 -	Fit Data	0.100 -	Fit Data	0.100 -	• Data	
K^+	z	7	2.97	3.69	11	6.31	7.99					0.100		
K^+	p_{hT}	7	2.65	1.29	8	1.26	2.45	0.075 -		0.075 -	↑	0.075 -		Ĥ
<i>K</i> ⁻	x	7	0.49	0.52	8	0.26	0.54	0.050 -		0.050 -		0.050 -		2
K^{-}	Z	7	0.52	0.57	10	0.93	1.11	0.025 -		0.025 -		0.025 -		HERMES
<u>K</u> -	p_{hT}	7	0.96	0.73	8	0.79	2.93		S I					លី
Total		105	1.84	1.64	134	1.477	2.02	0.000 -		0.000 -		0.000 -		N
								-0.025 -		-0.025 -		-0.025 -		0
Parameter		ERMES 2009		HERMES2020				-0.050 -		-0.050 -		-0.050 -		2020
M_1		$.303 \pm 0.010$		7.590 ± 0.008					0.05 0.10 0.15 0.20 0.25	0.05 0.10	0.15 0.20 0.25	0.05 0.10	0.15 0.20 0.25	
N_u		169 ± 0.002		0.960 ± 0.084					0.05 0.10 0.15 0.20 0.25	0.05 0.10	0.15 0.20 0.25		0.15 0.20 0.25	
α_u		$.645 \pm 0.125$		2.291 ± 0.200				0.125 -	— Fit	0.125 -	— Fit	0.125 -	— Fit	
β_u		122 ± 2.661 007 ± 0.003	12.	9.826 ± 1.556 0.205 ± 0.02				0.100 -	🔶 Data	0.100 -	Data	0.100 -	• Data	
$N_{ar{u}}$		0.007 ± 0.003 0.434 ± 0.005		0.203 ± 0.02 4.713 ± 0.004				0.075 -		0.075 -	RY	0.075 -		
N_d . $lpha_d$		$.777 \pm 0.909$		0.482 ± 0.866				0.050 -	• • •	0.050 -	(X X	0.050 -		
β_d		$.788 \pm 2.144$		$575 \pm 6.45) \times 10^{-6}$	F	Projected								
P_{d} $N_{ar{d}}$	-0.142 ± 0.048			$\begin{array}{c} (3.075 \pm 0.45) \times 10 \\ 1.490 \pm 0.05 \\ 4.528 \pm 0.073 \end{array}$		Asymmetries For HERMES 2020		0.025 -	TT	0.025 -		0.025 -		
N_d N_s	0.563 ± 0.073							0.000 -		0.000 -		0.000 -		
α_s	$(6.84 \pm 10.00) \times 10^{-5}$			$(1.745 \pm 9.20) \times 10^{-5}$				-0.025 -		-0.025 -		-0.025 -		
β_s		$7 \pm 8.77) \times 10^{-10}$	1 2	$82 \pm 9.55) \times 10^{-10}$	1	Frained base	ed on	-0.050 -		-0.050 -		-0.050 -		11
$N_{ar{s}}$		0.122 ± 0.504		8.692 ± 0.46	H	HERMES 200)9	0.050		0.050		-0.050		
3	1		1						0.05 0.10 0.15 0.20 0.25	0.05 0.10	0 0.15 0.20 0.25	0.05 0.10	0.15 0.20 0.25	/ -

GLOBAL FIT TO SIDIS DATA

GLOBAL FIT TO SIDIS & DY DATA

PRELIMINARY

With sign change

Parameter	sign-flip	no-sign-flip			
M_1	5.7 ± 0.8	6.1 ± 0.5			
N_u	0.69 ± 0.08	0.72 ± 0.05			
$lpha_u$	2.74 ± 0.09	2.71 ± 0.05			
eta_u	15.1 ± 0.6	15.05 ± 0.30			
$N_{ar{u}}$	-0.107 ± 0.017	-0.096 ± 0.018			
N_d	-1.34 ± 0.15	-1.30 ± 0.11			
. α_d	1.6 ± 0.4	1.36 ± 0.31			
eta_d	5.4 ± 2.5	4.7 ± 1.8			
$N_{ar{d}}$	-0.08 ± 0.13	-0.04 ± 0.12			
N_s	11.2 ± 1.4	12.0 ± 0.9			
$lpha_s$	0.85 ± 0.09	0.91 ± 0.05			
eta_s	0.46 ± 0.12	0.52 ± 0.07			
$N_{ar{s}}$	0.2 ± 0.4	0.25 ± 0.32			
χ^2/N	1.871	1.870			

Ongoing work:

- Analyzing the fit results & optimizing the fitting framework
- > DY extension to the SIDIS NN model

DISCUSSION & FUTURE WORK

- Performing simultaneous fits to SIDIS and DY data with higher statistics of replicas (on-going).
- Improving the Neural Network to train simultaneously on both SIDIS & DY data with optimizing hyperparameters with higher statistics of replicas.
- Investigating towards Sivers Asymmetry extraction from Drell –Yan with/without considering the "sign-flip" of the Sivers Function.
- > Simultaneous fits to Sivers function and Boer-Mulders function (on-going).

Thank you

This work is supported by DOE contract DE-FG02-96ER40950

