The SpinQuest Experiment (E1039) at Fermilab

Ishara Fernando
For the SpinQuest Collaboration

QCD Structure of the Nudeon
Alcalá de Henares, Madrid, SPAIN October 4-8, 2021

U.S. DEPARTMENT OF ENERGY

Outline

$>$ Physics motivation
$>$ Possible missing spin contributions
$>$ TMD PDFs, Sivers Function \& Sign
$>$ Global analyses, global context \& sea-quark Sivers functions
$>$ Polarized fixed target Drell-Yan / SpinQuest / E1039 experiment at Fermilab
$>$ Projected Uncertainties \& goodness of event-reconstruction
> SpinQuest / E1039 timeline
> SpinQuest / E1039 Goals

Physics Motivation

Ji's decomposition

U
by valence \& sea quarks

$$
A=\frac{\mathrm{d} \sigma^{\uparrow \downarrow}-\mathrm{d} \sigma^{\uparrow \uparrow}}{\mathrm{d} \sigma^{\uparrow \downarrow}+\mathrm{d} \sigma^{\uparrow \uparrow}} \rightarrow
$$

EMC Collaboration (1989)

$$
\begin{array}{cc}
\sim 12 \% & \begin{array}{l}
\text { QCD Corrected } \\
\text { Quark Parton Model } \\
\text { (Ellis-Jaffe Sum rule) }
\end{array} \\
\int_{0}^{1} g_{1}^{\mathrm{p}} \mathrm{~d} x=0.126 \pm 0.010 \pm 0.015 & 0.189 \pm 0.005
\end{array} g_{1}(x)=\frac{1}{2} \sum e_{i}^{2}\left(q_{i}^{+}(x)-q_{i}^{-}(x)\right)_{\text {Nuclear Physics B328 (1989) 1-35 }}
$$

Asymmetry measurements from Deep inelastic scattering of longitudinally polarized muons on longitudinally polarized proton

Physics Motivation

Intrinsic spin contribution (total) by valence $\&$ sea quarks

Possible missing spin contributions

K.-F. Liu et al

 K.-F. Liu et alarXiv:1203.6388

- Sea quark OAM could be a major contribution (J. Ellis and M. Karliner, Phys. I,ett. 8213 (1988) 73)
- Separation of gluon intrinsic spin and OAM is constrained by gauge invariance

E. C. Aschenauer, et al PRD 92, 094030 (2015) $\mathbf{X}_{\text {min }}$

Quark Polarization

$$
\Phi\left(x, k_{T} ; S\right)=\left.\int \frac{d \xi^{-} d \xi_{T}}{(2 \pi)^{3}} e^{i k . \xi}\langle P, S| \bar{\psi}(0) \mathcal{U}_{[0, \xi]} \psi(\xi)|P, S\rangle\right|_{\xi^{+}=0}
$$

Quark correlator can be decomposed into 8 components (6 T -even and 2 T -odd terms) at leading-twist

		Quark Polarization		
		U	L	T
$\begin{aligned} & \tilde{0} \\ & \stackrel{\widetilde{N}}{\mathbf{N}} \end{aligned}$	U	$f_{1}=\bigcirc$	N / A	$\begin{gathered} h_{1}^{\perp}=9 \text {-(b) } \\ \text { Boor-Mulders } \end{gathered}$
$\begin{aligned} & 30 \\ & 2 \\ & \vdots \end{aligned}$	L	N / A	$g_{1 L}=\underset{\text { Helicity }}{-}$	$h_{1 L}^{\perp}=\bigcirc-\bigcirc$
	T	$\underset{\text { Sivers }}{f_{1 r}^{\perp}=\ominus}$	$g_{1 T}{ }^{\perp}=\bigcirc-\odot$	

$\Phi\left(x, k_{T}, P, S\right)=f_{1}\left(x, k_{T}^{2}\right) \frac{P}{2}+\frac{h_{1 T}\left(x, k_{T}^{2}\right)}{4} \gamma_{5}\left[\$_{T}, \not P\right]+\frac{S_{L}}{2} g_{1 L}\left(x, k_{T}^{2}\right) \gamma_{5} \not P+\frac{k_{T} \cdot S_{T}}{2 M} g_{1 T}\left(x, k_{T}^{2}\right) \gamma_{5} \not P$

$$
+S_{L} h_{1 L}^{\perp}\left(x, k_{T}^{2}\right) \gamma_{5} \frac{\left[k_{T}, \not P\right]}{4 M}+\frac{k_{T} \cdot S_{T}}{2 M} h_{1 T}^{\perp}\left(x, k_{T}^{2}\right) \gamma_{5} \frac{\left[k_{T}, \not P\right]}{4 M}
$$

$$
+i h_{1}^{\perp}\left(x, k_{T}^{2}\right) \frac{\left[k_{T}, \not P\right]}{4 M}-\frac{\epsilon_{T}^{k_{T} S_{T}}}{4 M} f_{1 T}^{\perp}\left(x, k_{T}^{2}\right) \not P
$$

T-odd

TMD PDFs

Sivers Function

$$
f_{q / p^{\uparrow}}\left(x, \mathbf{k}_{\mathbf{T}}\right)=f_{q / p}\left(x, \mathbf{k}_{\mathbf{T}}\right)+f_{1 T}^{\perp}\left(x, \mathbf{k}_{\mathbf{T}}\right) \mathbf{S} .\left(\hat{\mathbf{P}} \times \hat{\mathbf{k}_{\mathbf{T}}}\right)
$$

The Sivers function describes the correlation between the momentum direction of the struck quark and the spin of its parent nucleon.

$>$ The gauge-invariant definition of the Sivers function predicts the opposite sign for the Sivers function in SIDIS compared to processes with color charges in the initial state and a colorless final state in Drell-Yan, $J / \psi, W^{ \pm}, Z$
$>$ This inclusion of the gauge link has profound consequences on factorization proofs and on the concept of universality, which are of fundamental relevance for high-energy hadronic physics

Sign of Sivers Functions

STAR Collaboration (PRL 116132301 (2016))

TSSA amplitude for $\mathrm{W}+$ / W - from STAR data is favors the "sign-change" In DY relative to SIDIS (model based without TMD evolution)

COMPASS Collaboration (PRL 119112002 (2017))

Dark Shaded (Light-shaded): with(without) "sign-change"

Global analyses: Sivers functions

SpinQuest in the Global Context

Drell-Yan measurements above the J / ψ peak fall in a unique region with Q^{2} in the range of $16<\mathrm{M}^{2}<81 \mathrm{GeV}^{2}$ and $\mathrm{Q}_{\mathrm{T}}<$ few GeV

> The E1039 experiment will provide unique information for the sea quark Sivers function in DY
$>$ <Plot: Uncertainties in the predicted Sivers asymmetry in polarized Drell-Yan reactions. (Negative xF is dominated by valence quars, while positive xF is dominated by sea quarks)

Sea-quarks Sivers functions

STAR Collaboration (PRL 116132301 (2016))

The solid gray bands represent the uncertainty due to the unknown sea quark Sivers functions estimated by saturating the sea quark Sivers function to their positivity limit in the KQ (Z.-B. Kang and J. -W. Qiu PRL 103,172001 (2009))calculation
> Initial attempts to measure the Sivers asymmetry for sea quark Sivers have been reported by the STAR collaboration at RHIC using W/Z boson production. Their data is statistically limited and favor a sign-change only if TMD evolutions effects are significantly smaller than expected.
> SpinQuest will perform the first measurement of the Sivers asymmetry in Drell-Yan proton-proton scattering from the sea quarks.

Polarized fixed target Drell-Yan :

Sensitivity to sea-quarks

beam: valence quarks at high x
target: sea quarks at low/intermediate x

Sea-quarks dominance

$(2 / 3)^{2}$ vs. $(1 / 3)^{2}$
acceptance limited
(Fixed Target, Hadron Beam)

Valence-quarks dominance

Polarized fixed target DY \& J/ ψ

@ SpinQuest / E1039 experiment

$$
A=\frac{\sigma\left(p_{b}^{u n} p_{t}^{\uparrow}\right)-\sigma\left(p_{b}^{u n} p_{t}^{\downarrow}\right)}{\sigma\left(p_{b}^{u n} p_{t}^{\uparrow}\right)+\sigma\left(p_{b}^{u n} p_{t}^{\downarrow}\right)}
$$

$$
\begin{aligned}
& \text { Drell-Yan } \quad \sigma\left(p+p^{\uparrow(\downarrow)} \rightarrow \gamma+X\right) \\
& f_{q / p^{\uparrow}}\left(x, \mathbf{k}_{\mathbf{T}}, \mathbf{S}_{\mathbf{T}} ; Q\right)=f_{q / p}\left(x, \mathbf{k}_{\mathbf{T}} ; Q\right)+\frac{1}{2} \Delta^{N} f_{q / p^{\uparrow}}\left(x, \mathbf{k}_{\mathbf{T}}, \mathbf{S}_{\mathbf{T}} ; Q\right)
\end{aligned}
$$

$$
\begin{array}{|ll}
J / \psi & \sigma\left(p+p^{\uparrow(\downarrow)} \rightarrow J / \psi+X\right) \\
f_{g / p^{\uparrow}}\left(x, \mathbf{k}_{\mathbf{T}}, \mathbf{S}_{\mathbf{T}} ; Q\right)=f_{g / p}\left(x, \mathbf{k}_{\mathbf{T}} ; Q\right)+\frac{1}{2} \Delta^{N} f_{g / p^{\uparrow}}\left(x, \mathbf{k}_{\mathbf{T}}, \mathbf{S}_{\mathbf{T}} ; Q\right)
\end{array}
$$

SpinQuest will be able to explore a new region of kinematics for J / ψ compare to the PHENIX measurements
$>J / \psi$ production:
$>$ PHENIX $\rightarrow g g$ fusion at $\sqrt{s}=200$
$>$ SpinQuest $\rightarrow q \bar{q}$ annihilation at $\sqrt{s}=15.5$

About SpinQuest/E1039 Collaboration https://sinquest.fnal.gov INSTITUTION 20

1) Abilene Christian University
2) Argonne National Laboratory
3) Aligarh Muslim University
4) Boston University
5) Fermi National Accelerator Laboratory 6) KEK
6) Los Alamos National Laboratory
7) Mississippi State University
8) New Mexico State University
9) RIKEN
10) Shandong University
11) Tokyo Institute of Technology
12) University of Colombo
13) University of Illinois,

Urbana-Champaign
15) University of Michigan
16) University of New Hampshire 17) Tsinghua University
18) University of Virginia
19) Yamagata University
20) Yerevan Physics Institute

Donald Isenhower (PI), Michael Daugherity, Shon Watson

Paul Reimer (PI), Donald Geesaman
Huma Haider (PI)
David Sperka (PI), Zijie Wan
Richard Tesarek (PI), Carol Johnstone, Charles Brown Shin'ya Sawada (PI)
Kun Liu (SP), Ming Liu, Astrid Morreale, Mikhail Yurov, Kei Nagai, Zongwei Zhang
Lamiaa El Fassi (PI), Catherine Ayuso, Nuwan Chaminda Stephen Pate (PI), Vassili Papavassiliou, Abinash Pun, Forhad Hossain, Dinupa Nowarathne
Yuji Goto (PI)
Qinghua Xu (PI), Zhaohuizi Ji
Toshi-Aki Shibata (PI)
Darshana Perera (PI), Harsha Sirilal, Vibodha Bandara
Jen-Chieh Peng (PI), Ching Him Leung
Wolfgang Lorenzon (PI), Levgen Lavrukhin, Noah Wuerfel Karl Slifer (PI), David Ruth
Zhihong Ye (PI)
Dustin Keller (SP), Kenichi Nakano, Ishara Fernando,
Zulkaida Akbar, Waqar Ahmed, Liliet Diaz, Anchit Arora,
Arthur Conover, Jay Roberts
Yoshiyuki Miyachi (PI), Norihito Doshita
Hrachya Marukyan (PI)

Haley Stien, John Marsden, Mitchell Schneller, Nathan Rowlands,
Roy Salinas, Rusty Towell, Shannon McNease, Yves Ngenzi, Thomas Fitch

Kevin Bailey, Thomas O'Connor

Shigeru Ishimoto

Jan Boissevain, Melynda Brooks, Matt Durham, David Kleinjan, Sho Uemura, Cesar Da Silva, Patrick McGaughey, Andi Klein
Dipangkar Dutta

Naomi Makins, Daniel Jumper, Jason Dove, Mingyan Tian, Bryan Dannowitz, Randall McClellan, Shivangi Prasad Daniel Morton, Richard Raymond, Marshall Scott Maurik Holtrop

Donal Day, Donald Crabb, Jixie Zhang, Oscar Rondon, Arthur Conover, Brandon Kriesten, Simonetta Liuti, Ellen Brown, Blaine Norum, Matthew Roberts

Takahiro Iwata, Norihiro Doshita

Fermilab proton beam main injector

$>120 \mathrm{GeV} / \mathrm{c}$ proton beam
$>\sqrt{s}=15.5 \mathrm{GeV}$
$>$ Projected beam

* 5×10^{12} protons/spill Where spill $\approx 4.4 \mathrm{~s} / \mathrm{min}$
* Bunches of 1 ns with 19 ns intervals $\sim 53 \mathrm{MHz}$
* 7×10^{17} protons $/$ year on target!

Fermilab proton beam main injector

$$
\frac{d^{2} \sigma}{d x_{1} d x_{2}}=\frac{4 \pi \alpha^{2}}{9 x_{1} x_{2}} \frac{1}{s} \times \sum_{i} e_{i}^{2}\left[q_{t i}\left(x_{t}\right) \bar{q}_{b i}\left(x_{b}\right)+\bar{q}_{t i}\left(x_{t}\right) q_{b i}\left(x_{b}\right)\right]
$$

Fermilab E866/NuSea
Fermilab E906/E1039
Data in 1996-1997
${ }^{1} \mathrm{H},{ }^{2} \mathrm{H}$ and nuclear targets
800 GeV proton beam
Therefore, the SpinQuest/E1039 experiment will get,
> Cross-Section scales as ~ 7 times compare to that with 800 GeV beam
$>$ Luminosity is ~ 7 times compare to that with 800 GeV beam
$>\sim 49 \times$ Statistics with 800 GeV beam

$$
\begin{aligned}
& \text { Data in }>2010 \\
& { }^{1} \mathrm{H},{ }^{2} \mathrm{H} \text { and nuclear targets } \\
& 120 \mathrm{GeV} \text { proton beam }
\end{aligned}
$$

SpinQuest./ E1039 Experiment Setup

Predicted Uncertainties

Beam (~2.5\%)

- Relative luminosity ($\sim 1 \%$)
- Drifts (<2\%)
- Scraping ($\sim 1 \%$)

Analysis sources ($\sim 3.5 \%$)

- Tracking efficiency (~1.5\%)
- Trigger \& geometrical acceptance (<2\%)
- Mixed background (~3\%)
- Shape of DY ($\sim 1 \%$)
> Target (\sim 6-7 \%)

DGLAP: M. Anselmino et al arXiv:1612.06413 TMD-1: M. G. Echevarria et al arXiv:1401.5078 TMD-2: P. Sun and F. Yuan arXiv:1308.5003
A. Prokudin et al (in progress)
I. Fernando, D. Keller (in progress)
$A=\frac{2}{f\left|S_{T}\right|} \frac{\int d \phi_{S} d \phi \frac{d N\left(x_{b}, x_{t}, \phi_{S}, \phi\right)}{d \phi_{S} d \phi} \sin \left(\phi_{S}\right)}{N\left(x_{b}, x_{t}\right)}$

x_{2} bin	$\left\langle x_{2}\right\rangle$	$\mathrm{NH}_{3}\left(p^{\uparrow}\right)$		$\mathrm{ND}_{3}\left(d^{\uparrow}\right)$	
		N	$\Delta A(\%)$	N	$\Delta A(\%)$
$0.10-0.16$	0.139	5.0×10^{4}	3.2	5.8×10^{4}	4.3
$0.16-0.19$	0.175	4.5×10^{4}	3.3	5.2×10^{4}	4.6
$0.19-0.24$	0.213	5.7×10^{4}	2.9	6.6×10^{4}	4.1
$0.24-0.60$	0.295	5.5×10^{4}	3.0	6.4×10^{4}	4.1

- TE calibration (proton $\sim 2.5 \%$; deuteron $\sim 4.5 \%$)
- Polarization inhomogeneity ($\sim 2 \%$)
- Density of target $\left(\mathrm{NH}_{3(\mathrm{~s})}\right)$ ($\left.\sim 1 \%\right)$
- Uneven radiation damage ($\sim 3 \%$)
- Beam-Target misalignment ($\sim 0.5 \%$)

Material	Density	Dilution factor	Packing fraction	Polarization	Interaction length
NH_{3}	$0.867 \mathrm{~g} / \mathrm{cm}^{3}$	0.176	0.60	80%	5.3%
ND_{3}	$1.007 \mathrm{~g} / \mathrm{cm}^{3}$	0.300	0.60	32%	5.7%

- Packing fraction ($\sim 2 \%$)
- Dilution factor ($\sim 3 \%$)

Goodness of event-reconstruction from E906

Monte-Carlo describe data well
Better resolution than expected

- $\delta \sigma_{M}(J / \psi) \sim 220 \mathrm{MeV}$
- $\delta \sigma_{M}(D Y) \sim$ truth-reconstructed from event-by-event MC
- J / ψ and ψ^{\prime} separation

The projected event selection/reconstruction is expected to be the same for E1039

SpinQuest / E1039 Timeline

> 2018, March: DOE approval
> 2018, May: Fermilab stage-2 approval
> 2018, June: E906 decommissioned
> 2019, May: Transferred the polarized target from UVA to Fermilab
$>$ Now: commission all components using cosmic rays
> Polarized target to be installed by Spring of 2022
$>$ E1039 commissioning starts in the beginning of 2022 [Run for 2+ years, 2022-2024+]

SpinQuest / E1039 Goals

$>$ SpinQuest will perform the first measurement of the Sivers asymmetry in Drell-Yan proton-proton scattering from the sea quarks ($\bar{u} \& \bar{d}$) with sign.

$$
\left.f_{1 T}^{\perp}\right|_{\text {SIDIS }}=-\left.f_{1 T}^{\perp}\right|_{\mathrm{DY}}
$$

A direct QCD prediction is a Sivers effect in the Drell-Yan process that has the opposite sign compared to the one in semi-inclusive DIS.
$>$ Measurement of Sivers function for gluons (J/psi TSSA)
$>$ Explore a unique range of virtualities and transverse momenta not accessible through $Z^{0} / W^{ \pm}$measurements
$>$ Extensions: transversity, tensor charge, tensor polarized observables, dark sector, polarized proton beam,...

Welcome!

Please Join The Effort Dustin Keller (dustin@virginia.edu)[Spokesperson] Kun Liu ([Spokesperson])

https://spinquest.fnal.gov/
带Fermilab
http://twist.phys.virginia.edu/E1039/

Thank you

Office of Science

Back-up Slides

(Un)Polarized DY

Experiment	Particles	$\begin{aligned} & \text { Energy } \\ & \text { (GeV) } \end{aligned}$	x_{b} or x_{t}	$\underset{\left(\mathrm{cm}^{-2} \mathrm{~s}^{-1}\right)}{\text { Luminosity }}$	P_{b} or $\mathrm{P}_{\mathrm{t}}(\mathrm{f})$	rFOM ${ }^{*}$	Timeline
COMPASS (CERN)	$\pi^{-}+\mathbf{p}^{\uparrow}$	$\begin{aligned} & 160 \mathrm{GeV} \\ & \sqrt{\mathrm{~s}=17} \end{aligned}$	$\mathrm{x}_{\mathrm{t}}=0.1-0.3$	2×10^{33}	$\begin{aligned} P_{t} & =90 \% \\ f & =0.22 \end{aligned}$	1.1×10^{-3}	$\begin{gathered} \text { 2015-2016, } \\ 2018 \end{gathered}$
J-PARC (high-p beam line)	$\pi^{-}+p$	$\begin{aligned} & 10-20 \mathrm{GeV} \\ & \sqrt{s}=4.4-6.2 \end{aligned}$	$\begin{aligned} & x_{b}=0.2-0.97 \\ & x_{t}=0.06-0.6 \end{aligned}$	2×10^{31}	---	---	>2020? under discussion
fsPHENIX (RHIC)	$\mathbf{p}^{\uparrow}+\mathbf{p}^{\uparrow}$	$\begin{aligned} & V_{s}=200 \\ & V_{s}=510 \end{aligned}$	$\begin{gathered} x_{b}=0.1-0.5 \\ x_{b}=0.05-0.6 \end{gathered}$	$\begin{aligned} & 8 \times 10^{31} \\ & 6 \times 10^{32} \end{aligned}$	$\begin{aligned} & P_{b}=60 \% \\ & P_{b}=50 \% \end{aligned}$	$\begin{aligned} & 4.0 \times 10^{-4} \\ & 2.1 \times 10^{-3} \end{aligned}$	>2021?
SeaQuest (FNAL: E-906)	$p+p$	$\begin{aligned} & 120 \mathrm{GeV} \\ & V_{\mathrm{s}}=15 \end{aligned}$	$\begin{aligned} x_{b} & =0.35-0.9 \\ x_{t} & =0.1-0.45 \end{aligned}$	3.4×10^{35}	---	---	2012-2017
Pol tgt DY ${ }^{\ddagger}$ (fNAL: E-1039)	$\begin{aligned} & p+p^{\uparrow} \\ & p+d^{\uparrow} \end{aligned}$	$\begin{aligned} & 120 \mathrm{GeV} \\ & V_{\mathrm{s}}=15 \end{aligned}$	$\mathrm{x}_{\mathrm{t}}=0.1-0.45$	$\begin{aligned} & 3.0 \times 10^{35} \\ & 3.5 \times 10^{35} \end{aligned}$	$\begin{gathered} P_{t}=85 \% \\ f=0.176 \end{gathered}$	0.15	2021-2023+
Pol beam DY§ (fNAL: E-1027)	$p^{\uparrow}+\mathbf{p}$	$\begin{aligned} & 120 \mathrm{GeV} \\ & V_{\mathrm{s}}=15 \end{aligned}$	$\mathrm{x}_{\mathrm{b}}=0.35-0.9$	2×10^{35}	$\mathrm{P}_{\mathrm{b}}=60 \%$	1	>2021?

${ }^{\ddagger} 8 \mathrm{~cm} \mathrm{NH} H_{3}$ target / § $L=1 \times 10^{36} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\left(\mathrm{LH}_{2}\right.$ tgt limited) / L= $2 \times 10^{35} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ (10\% of MI beam limited)
*not constrained by SIDIS data / \#rFOM = relative lumi * \mathbf{p}^{2} * f^{2} wrt $\mathrm{E}-1027$ ($\mathrm{f}=1$ for pol p beams, $\mathrm{f}=0.22$ for π^{-}beam on NH_{3})

