Polarized NH₃ and ND₃ Targets at FNAL-SpinQuest

Workshop on "Polarized Ion Sources and Targets", HAWAII 2023 2023/Nov/27, 4WBB.1

Kenichi Nakano

University of Virginia

Outline

- 1. Physics motivation
 - Sivers function of anti-quarks in proton
 - Drell-Yan process
- 2. Proton beam & spectrometer
- 3. Polarized-target system
 - System components
 - Required performance
- 4. Preparation status
 - Tests of Helium liquefaction, magnet cool-down & fridge cool-down
 - Improvement on systematic errors
- 5. Perspective & summary

1. Physics Motivation

Sivers Function: $f_{1T}^{\perp}(x, k_T)$

• One of the eight Transverse-Momentum-Dependent (TMD) PDFs

		Parton spin		
		U	\mathbf{L}	Т
Nucleon	U	Density f_1		Boer-Mulders h_1^\perp
spin	\mathbf{L}		Helicity g_1	Worm gear #2 h_{1L}^\perp
	Т	Sivers f_{1T}^{\perp}	Worm gear $#1 g_{1T}$	Transversity h_1 &
				$\text{Pretzelosity} \ h_{1T}^\perp$

- Correlation between nucleon spin (S) & parton transverse momentum (k_T)
- Transversely-polarized target (or beam) is essential

Sivers Function of Anti-Quarks

- Extraction by global analyses ○ PRD88 (2013) 114012 ○ PRD89 (2014) 074013 ○ JHEP 04 (2017) 046 ⇒ ○ HERMES, COMPASS & JLab data ○ JHEP 01 (2021) 126; JHEP 05 (2021) 151 ○ SIDIS, D-Y & W/Z data
- *f*[⊥]_{1T}(*x*) of anti-quarks is not well known
 Since *q* & *q* are mixed up in SIDIS

Polarized NH₃ and ND₃ Targets at FNAL-SpinQuest

Measurement at FNAL-SpinQuest

- Proton beam + Transversely-polarized NH₃ & ND₃ targets
- Drell-Yan process in $p + \vec{p}$ & $p + \vec{d}$ @ forward rapidity
 - Anti-quark in polarized proton is involved

- Observable: Transverse Single Spin Asymmetry (TSSA): A_N $A_N(\phi_S) \equiv \frac{\sigma^{\uparrow}(\phi_S) - \sigma^{\downarrow}(\phi_S)}{\sigma^{\uparrow}(\phi_S) + \sigma^{\downarrow}(\phi_S)} \sim \frac{f(x_B) \cdot f_{1T}^{\perp, \bar{f}}(x_T)}{f(x_B) \cdot \bar{f}(x_T)}$
 - $\circ~\phi_S \sim$ Azimuth of proton spin to muon pair (=virtual photon)
 - $\sin \phi_S$ modulation \Longrightarrow Non-zero $f_{1T}^{\perp}(x_T)$
- Sivers function of anti-quarks
 - $\circ~~{
 m Combined}~{
 m analysis}~{
 m of}~{
 m TSSAs}~{
 m in}~p+ec{p}~\&~p+ec{d}\Longrightarrow{
 m Seperation}~{
 m of}~ar{u}~\&~ar{d}$

Anticipated Sensitivity

- Measurement condition
 - Two years of data taking
 - $NH_3:ND_3 = 50\%:50\%$ in time
 - Details in the E1039 proposal
- Transverse Single-Spin Asymmetry (TSSA): A_N
 - $\circ~0.1 \lesssim x_{Target} \lesssim 0.3$
 - Precision $\delta_{A_N} \sim 0.04$
- Aim to observe non-zero anti-quark Sivers asymmetry!!
- Key requirement: High & stable polarization under high beam intensity
 - Since the cross section of Drell-Yan process is small

2. Proton Beam & Spectrometer

Proton Beam @ FNAL

- Energy E = 120 GeV($\sqrt{s} = 15 \text{ GeV}$)
- Duty cycle
 - 5 sec for SpinQuest
 - $\circ~55~{\rm sec}$ for ν exp.
- Bunch
 - Interval: 19 nsec (53 MHz)
 - $\circ~10^{13}~{\rm protons}$ in 5 sec
- Unpolarized

Polarized NH₃ and ND₃ Targets at FNAL-SpinQuest

FNAL-SpinQuest/E1039 Collaboration

- Institutes
- Abilene Christian Univ.
- Argonne National Lab
- Aligarh Muslim Univ. _{IN}
- Boston Univ.
- Fermi National Accelerator Lab
- KEK _{JP}
- Los Alamos National Lab
- Mississippi State Univ.
- New Mexico State Univ.
- RIKEN _{JP}
- Shandong Univ. _{CN}

- Tokyo Tech _{JP}
- $^\circ~$ Univ. of Colombo $_{\rm LK}$
- Univ. of Illinois
- Univ. of Michigan
- Univ. of New Hampshire
- Tsinghua Univ. _{CN}
- Univ. of Virginia
- Yamagata Univ. JP
 Yerevan Physics Institute AM
 - Massachusetts Institute of Technology
 - National Centre for Physics PK

SpinQuest Spectrometer

- Target: Transversely-polarized NH₃, ND₃
- Focusing magnet (FMag) & Tracking Magnet (KMag)
- Iron core of FMag = Hadron absorber & Beam dump

Polarized NH₃ and ND₃ Targets at FNAL-SpinQuest

SpinQuest Hall (NM4) — 2022-August-26

Polarized NH₃ and ND₃ Targets at FNAL-SpinQuest

3. Polarized-Target System

Target Cave

- Target cryostat surrounded by concrete blocks for radiation shielding
- On "Cryo Platform"
 - Helium liquefaction plant
 - "Roots pump" for evaporation fridge
- Gaseous helium tank at outside

- Polarized target in Target Cave
 - $^\circ~$ Standalone test in 2018 at UVA
 - Installed in 2020
 - $\circ~$ Being commissioned without beam

Polarized NH₃ and ND₃ Targets at FNAL-SpinQuest

- Roots Pump & Helium liquefaction plant
 - $\circ~$ High capacity for high beam intensity
 - •• Gas intake: 16,800 m³/hour
 - •• Liquefaction: 200 L/day
 - Being commissioned without beam

Cryostat for Pol. Target

- Superconducting magnet
 - Vertical field for transverse polarization
 - B = 5 T
 - $^\circ~dB/B < 10^{-4}~{
 m over}~z = 8~{
 m cm}$
- Cooling system for 1 K
 - Evaporation method
 - Power: 3 W at max
 - $\circ~$ Heat load $\sim 1~W$ from beam & microwave

Vacuum Chamber Top

Polarized NH₃ and ND₃ Targets at FNAL-SpinQuest

Polarized-Target Material

- Material spec
 - Solid NH₃ & ND₃ beads
 - $^\circ~$ Electron irradiation @ NIST 10 MeV, $10^{17}~e^{-}/{\rm cm}^{-2}$

Material	Density	Dilution factor	Packing fraction	Polarization	Interaction length
NH_3	0.867 g/cm^3	0.176	0.60	$>\!80\%$	5.3%
ND_3	1.007 g/cm^3	0.300	0.60	>32%	5.7%

- Target cell \times 3
 - $\circ~$ Dimensions: L~80 mm, $\phi~40$ mm
 - Combination of NH₃, ND₃ & Empty
 - Annealing & polarization flip every 16 hours
 - Material replacement every 7 days

Polarization Method

- Dynamic nuclear polarization (DNP)
 - Magnetic field: B = 5 T
 - $^\circ~$ Microwave: $f\approx 140~{\rm GHz}$
 - •• High-power EIO (CPI EIK)
 - + Stepper Motor
- Polarization
 - Test without beam (2018/12, UVA)

- $^{\circ\circ}~95\%$ for NH_3 & 50% for ND_3 at max
- \circ With beam? \Longrightarrow Beam commissioning

Polarized NH₃ and ND₃ Targets at FNAL-SpinQuest

Polarization Measurement

- Nuclear magnetic resonance (NMR)
- "NMR Rack" Constructed by UVA
 - Resonance circuit: Liverpool Q-Meter

• GUI: "Polarization Display Panel"

• Preparing new system by LANL — NIMA 995, 165045

4. Preparation Status

Polarized $\rm NH_3$ and $\rm ND_3$ Targets at FNAL-SpinQuest

Magnet Cool-Down

- LHe was transfered from the liquefier once per 1-2 days
- The magnet coil was kept at 4 K

LHe Transfer from Liquefier to Magnet

- Many repeated studies to optimize the transfer efficiency
 - $^\circ~$ LHe evaporates in the long (~20 m) transfer line & the magnet
- An example in 2023/03

 $^{\circ}$ Efficiency = 70% \sim design value

Magnet Ramp-Up

• Test without beam in 2023/01

- $\circ I = 75 \text{ A for } B = 5 \text{ T}$
- $\circ~$ Switched to/from "persistent" mode smoothly
- Stable for 40 hours

Oxford Mercury iPS

Fridge Cool-Down

- Test without beam on 2023/01/14
 - The roots pump was fully running for max cooling power
 - The LHe level was kept constant (60%) by adding LHe from magnet with PID control
 - \circ Saturated vapor pressure of gHe \implies Temperature of LHe
 - $\circ~$ Reached at 0.24 Torr $\Longrightarrow 1.07~K$

Polarized NH₃ and ND₃ Targets at FNAL-SpinQuest

8.8

Anticipated Systematic Errors

• Contribution to TSSA of Drell-Yan process

Polarized target	Total	6-7%	
	TE calibration	2.5% (p), $4.5%$ (d)	
	Polarization inhomogenity	2%	
	Material density	1%	
	Non-uniform radiation damage	3%	
	Beam-target misalignment	0.5%	
	Packing Fraction	2%	
	Dilution Factor	3%	
Beam	Total	2.5%	
Analysis	Total	3.5%	
	(E1039 proposal)		

 $^{\circ}~$ Investigating more precise estimates & reduction methods

Position Dependence & De-polarization

- Measurements of polarization vs time & position (with beam)
 - 3 NMR coils/cell ($\delta_z = 8 \text{ cm}$)
 - 4 NMR measurements/spill ($\delta_t = 4 \text{ sec}$)
- Simulation of polarization
 - Geant4 & LabVIEW
 - \circ Heat load = Beam particles + Microwave
 - Extraction of functional form: P(z,t)

• Polarization per beam spill = Average of measured polarization with interpolation by P(z,t)

Dilution Factor

- Dilution factor: $f pprox N_{
 m protons}/N_{
 m nucleons} = 3/17$ for $m NH_3$
- Dependence on kinematic variables (i.e. *x*_{Beam} & *x*_{Target})
 - $\circ f(x_T) = rac{3d\sigma_H/dx_T}{3d\sigma_H/dx_T + d\sigma_N/dx_T}$
 - Numerical estimate with MCFM

(Monte-Carlo for Femtobarn Process, https://mcfm.fnal.gov/)

5. Perspective & Summary

Perspective

- Schedule for data taking
 - Lab-wide safety assessments are ongoing at Fermilab
 - \Longrightarrow Approval for beam operation for SpinQuest in March 2024
 - $\circ~$ Safety reviews on the handling of target materials (NH_3) at SpinQuest are nearly complete
 - $\circ~2024/01$: Commissioning of target without beam
 - 2024/04: Commissioning with beam
 - \implies Demonstrate the full performance of the target system
 - 2024-2025: Physics data taking
- SpinQuest upgrades
 - $^\circ\,$ Tensor polarization of anti-quarks in deuteron PRD 94, 054022 (2016)
 - "DarkQuest": Dark-photon search

Summary

- SpinQuest
 - Sivers function of anti-quarks in proton
 - High-intensity 120-GeV proton beam @ FNAL
 - Transversely-polarized NH₃ & ND₃ targets
 - TSSA of Drell-Yan process
- Polarized-target system
 - High cooling power for high beam intensity
 - $^{\circ}$ Each component has been tested & functioning
 - Beam commissioning is starting soon
- If you are interested in target and/or physics at SpinQuest, please contact me or spokespersons;
 - Dustin Keller (UVA, dustin@virginia.edu) & Kun Liu (LANL, liuk@lanl.gov)
- This work is supported by DOE contract DE-FG02-96ER40950