Measurement of *p+d / p+p* Cross-Section Ratio of Drell-Yan Process at FNAL-SeaQuest

> HAWAII 2023 2023/Nov/30, F06.7

Kenichi Nakano

University of Virginia

Outline

- 1. Aim & method of experiment
 - $\bar{d}(x)/\bar{u}(x)$ = Flavor asymmetry of light-quark sea in the proton
 - Method of measuring $\overline{d}(x)/\overline{u}(x)$ via Drell-Yan process
- 2. SeaQuest experiment
 - Beam, target & spectrometer
 - Data taking & analysis
- 3. Measurement of $\bar{d}(x)/\bar{u}(x)$
 - $\circ~$ Two methods of extracting cross-section ratio ($\sigma^{pd}/2\sigma^{pp})$
 - Result of cross-section ratio: Phys. Rev. C 108, 035202 (2023)
 - ° Results of $\bar{d}(x)/\bar{u}(x)$ & $\bar{d}(x) \bar{u}(x)$
- 4. Conclusions

Anti-Quark Flavor Asymmetry: d/\bar{u}

- Symmetric in gluon splitting: $g
 ightarrow u ar{u}$ or $d ar{d}$
- CERN NMC ('90): deep inelastic muon scattering
 - $\circ~~ ext{Gottfried Sum:}~S_G=0.235\pm0.026<1/3$
 - $\int_0^1 \bar{d}(x) dx \int_0^1 \bar{u}(x) dx = 0.147 \pm 0.039$ Asymmetry!
- Measurement of x dependence of $\bar{d}(x)/\bar{u}(x)$: Drell-Yan process
 - $\circ~$ CERN NA51 ('94): $\bar{d} > \bar{u}$ at $x \sim 0.18$
 - FNAL E866/NuSea ('98): $\bar{d}(x)/\bar{u}(x)$ for $x \in (0.015, 0.35)$

Measurement of p+d / p+p Cross-Section Ratio of Drell-Yan Process at FNAL-SeaQuest

Measurement of $\bar{d}(x)/\bar{u}(x)$ with Drell-Yan Process

- Drell-Yan process: $p + p \rightarrow \gamma^* \rightarrow \mu^+ + \mu^-$
 - Virtual photon
 - •• Invariant mass: $M^2 = x_1 x_2 s$
 - •• Rapidity: $\exp Y = \sqrt{x_1/x_2}$
 - Beam $x_1 = \frac{M}{\sqrt{s}}e^Y$, Target $x_2 = \frac{M}{\sqrt{s}}e^{-Y}$
 - Cross section at LO:

$$rac{d^2\sigma}{dx_1dx_2} = rac{4\pilpha^2}{9x_1x_2}rac{1}{s}\sum_{q=u,d} e_q^{-2}\left\{q_{beam}(x_1)ar{q}_{target}(x_2) + ar{q}_{beam}(x_1)q_{target}(x_2)
ight\}$$

- Only " $q_{beam}(x_1)\bar{q}_{target}(x_2)$ " survives @ forward rapidity, i.e. quark in beam & anti-quark in target
- Ratio of cross sections with LH2 & LD2 targets

$$rac{\sigma_{pd}(x_2)}{2\sigma_{pp}(x_2)}pprox rac{1}{2}\left(1+rac{ar{d}(x_2)}{ar{u}(x_2)}
ight)$$

• SeaQuest measures the x dependence of $\bar{d}(x)/\bar{u}(x)$ particularly at high x (0.15 $\lesssim x \lesssim 0.45$)

Fermilab Proton Beam

- Energy E = 120 GeV($\sqrt{s} = 15 \text{ GeV}$)
- Duty cycle
 - 5 sec for E906
 - \circ 55 sec for ν exp.
- Bunch
 - Length: 1 nsec
 - Interval: 19 nsec (53 MHz)
 - 10¹³ protons in 5 sec in spot size

Measurement of p+d / p+p Cross-Section Ratio of Drell-Yan Process at FNAL-SeaQuest

E906/SeaQuest Spectrometer

- Targets: LH₂, LD₂, C, Fe, W
- Focusing magnet (FMag) & Tracking magnet (KMag)
- Iron inside FMag, as hadron absorber & beam dump

SeaQuest Targets

- LH₂, LD₂
 - $^\circ~50.8~cm\sim0.1$ interaction lengths
- Iron, Carbon, Tungsten

Reconstruction & Identification of Drell-Yan Events

- Physics data were taken in 2013-2017
 - Unlike-sign muon pairs were triggered and reconstructed
 - The 1st half was used for this study
- Distribution of dimuon mass

- $~\circ~$ Drell-Yan, J/ψ & ψ' events from simulation
- $^\circ~$ Events on non-target materials from empty-target data
- $^\circ\,\, {
 m Random}$ -coincidence BGs from real data via event mixing
- Origins of measured dimuons well understood
 - Dominated by Drell-Yan at M > 4.5 GeV Measurement of p+d/p+p Cross-Section Ratio of Drell-Yan Process at FNAL-SeaQuest

Two Methods of Extracting Cross-Section Ratio $\frac{\sigma_{pd}(x_2)}{2\sigma_{pp}(x_2)} \approx \frac{1}{2} \left(1 + \frac{\bar{d}(x_2)}{\bar{u}(x_2)} \right)$

- To crosscheck the extracted result
- Dimuon rates in p+p & p+d at M > 4.5 GeV

$$Y_{H,D}(x_2,I) = rac{N_{H,D}(x_2,I)}{L_{H,D}} - rac{N_{Empty}(x_2,I)}{L_{Empty}}$$

- Normalized by relative luminosity (L)
- Corrected for non-target-material events 0
- 1. Intensity extrapolation (IE) method Nature 590, 561
 - 0 Random BG & reco. inefficiency $\rightarrow 0$ when beam intensity $(I) \rightarrow 0$

$$rac{Y_D(x_2,I)}{2Y_H(x_2,I)} = rac{\sigma_{pd}(x_2)}{2\sigma_{pp}(x_2)} + a\,I + b\,I^2$$

Data-driven correction

- 2. Mass fit (MF) method PRC 108, 035202
 - Random BG
 - •• Mixed events normalized via the mass fit
 - Reconstruction inefficiency
 - •• Embedding of detector hits into MC dimuon events
 - •• As function of detector occupancy (= rate dependence)
 - Optimization of simulation & analysis cut
 Reasonable agreement
 between real data & simulation

Cross-Section Ratio: $\sigma_{pd}/2\sigma_{pp}$

- The data set is common to the two methods
- Systematic error of the MF method
 - •• Beam flux normalization
 - •• Efficiency correction
 - •• Simulation-parameter dependence
 - •• Mostly uncorrelated with the IE method
- Excellent agreement between the two methods Measurement of p+d / p+p Cross-Section Ratio of Drell-Yan Process at FNAL-SeaQuest

Anti-Quark Flavor Asymmetry: $\bar{d}(x)/\bar{u}(x)_{_{\mathrm{PRC\ 108,\ 035202}}}$

• Derived from the cross-section ratio extracted with the IE method

$$rac{\sigma_{pd}(x_2)}{2\sigma_{pp}(x_2)}pprox rac{1}{2}\left(1+rac{ar{d}(x_2)}{ar{u}(x_2)}
ight)$$

• The cause of the drop in the E866 data above x = 0.2 remains unexplained

Asymmetry in Difference: $\bar{d}(x) - \bar{u}(x)$

- Direct measure of contribution from nonperturbative processes
 - $^\circ~$ Determined from $\bar{d}(x)/\bar{u}(x)$ measured in SeaQuest
 - $\bar{d}(x) + \bar{u}(x)$ was taken from CT18 PDF

- Good agreement with calculations
- Better agreement with calculations than $\bar{d}(x)/\bar{u}(x)$

Conclusions

- Flavor asymmetry of light-quark sea; $ar{d}(x)/ar{u}(x)$
 - As large as 70% at $x \sim 0.2$
 - What QCD mechanism generates the asymmetric sea?
- SeaQuest experiment
 - $\circ~$ Use of the Drell-Yan process in p+p & p+d at forward rapidity

 $rac{\sigma_{pd}\left(x_{2}
ight)}{2\sigma_{pp}\left(x_{2}
ight)}pproxrac{1}{2}\left(1+rac{ec{d}\left(x_{2}
ight)}{ec{u}\left(x_{2}
ight)}
ight)$

- With the first half of recorded data
- Measurement of flavor asymmetry PRC 108, 035202
 - $\circ~$ Two methods of extracting $\sigma_{pd}(x_2)/2\sigma_{pp}(x_2)$ resulted in excellent agreement
 - $\circ \ ar{d}(x)/ar{u}(x)$ & $ar{d}(x)-ar{u}(x)$ were derived and compared to theory calculations
- Improved analyses are ongoing
 - $\circ~$ Better statistics with full dataset & looser cut

Backup Slides

Theories of \bar{d}/\bar{u} Asymmetry (1)

- Mass difference between u & d (~2 & 5 MeV) in g
 ightarrow q ar q
 - $^\circ~$ Very small and even results in $ar{d} < ar{u}$
- Pauli blocking ... *PRD15*, 2590 (1977)
 - $\circ \ \textit{Prob}(g \rightarrow u \bar{u}) < \textit{Prob}(g \rightarrow d \bar{d}) \ \text{since} \ p = u u d$
 - $\circ\,$ Cannot explain the measured size ... NPB149, 497 (1979) $\,$ time $ightarrow\,$
 - Even $\bar{d} < \bar{u}$ via connected sea (at high x)? ... *PLB736*, 411 (2014)
- Chiral quark model ... PRD59, 034024 (1999)
 - $\circ~$ Effective interaction between Goldstone boson (π) & constituent quark

Theories of \bar{d}/\bar{u} Asymmetry (2)

- Meson cloud model ... PRD58, 092004 (1998)
 - $^{\circ} ~~ |p
 angle = (1-a-b)|p_0
 angle + a|N\pi
 angle + b|\Delta\pi
 angle$
 - More \bar{d} in π^+ as $|n\pi^+\rangle$ etc.
 - Less \bar{u} in π^- as $|\Delta^{++}\pi^-\rangle$ etc.
 - \circ Predict non-zero $L_{q,\bar{q}}$ like "meson tornado" (need L = 1 of π to make $J^P = 1/2^+$ of proton, as parity of π is $J^P = 0^-$)

Based on the Fermi & Bose statistics

• Predict
$$\bar{d}(x) - \bar{u}(x) = -\left[\Delta \bar{d}(x) - \Delta \bar{u}(x)\right]$$

• Global understandings together with $\Delta ar q(x)$ & $L_{ar q}$ are anticipated

Comparison of Theories to Measurements

Meson cloud model: PRD58, 092004 Chiral quark model: NPA596, 397 Chiral quark model: PRD59, 034024 Instanton model: PLB304, 167 (Updated calculations exist)

- The x dependence of d(x)/ū(x) is the key to develope/examine models
 Sharp drop at x ~ 0.3. Even go down to d
 < u?
- Reveal what QCD mechanism generates the asymmetric sea!

Theoretical Calculations about $ar{d}/ar{u}$

• The SeaQuest data have been analyzed, together with the RHIC-STAR W^{\pm} data, including but not limited to

JAM

• CT18sq

Mass Distribution — LH2

PRC 108, 035202

Measurement of p+d / p+p Cross-Section Ratio of Drell-Yan Process at FNAL-SeaQuest

Mass Distribution — LD2

PRC 108, 035202

Cross-Section Ratio $(\sigma_{pd}/2\sigma_{pp})$ vs x_2

Cross-Section Ratio ($\sigma_{pd}/2\sigma_{pp}$) vs Dimuon p_T

Measurement of p+d / p+p Cross-Section Ratio of Drell-Yan Process at FNAL-SeaQuest

Cross-Section Ratio $(\sigma_{pd}/2\sigma_{pp})$ vs x_1

Cross-Section Ratio $(\sigma_{pd}/2\sigma_{pp})$ vs x_F

Measurement of p+d / p+p Cross-Section Ratio of Drell-Yan Process at FNAL-SeaQuest