陽子内の海クォークはどこまでわかったか? 一反クォークのドレル・ヤン反応による検出—

日本物理学会 2023 年春季大会 チュートリアル講演 2023/03/22, 22aV1-7

中野 健一

バージニア大学

- 1. はじめに 陽子の内部構造 & "核子物理"
- 2. 陽子のパートン構造
 - 深非弾性散乱 (Deep Inelastic Scattering)
 - パートン分布関数
 - 海クォーク (∼ 反クォーク) の生成機構
- 3. ドレル・ヤン反応
 - 反クォークの直接測定法
 - 実験セットアップ例
- 4. 反クォーク分布のフレーバー非対称性
 - フレーバー非対称性の理論的・実験的背景
 - SeaQuest 実験による測定結果 & 理論計算との比較
- 5. 反クォークの軌道運動
 - 反クォークの Sivers 分布関数
 - ドレル・ヤン反応を用いた測定法
 - SpinQuest 実験で予想される測定結果
- 6. まとめ

クォーク

• カレント (Current) クォーク

Particle Data Group, PTEP 2022, 083C01

フレーバー		質量	電荷	アイソスピン I_z
アップ	<i>(u)</i>	$2 { m MeV}$	+2/3~e	+1/2
ダウン	(d)	$5 { m MeV}$	-1/3~e	-1/2
チャーム	(c)	$1.3~{ m GeV}$	+2/3~e	0
ストレンジ	<i>(s)</i>	$90 { m MeV}$	-1/3~e	0
トップ	(<i>t</i>)	$170~{ m GeV}$	+2/3~e	0
ボトム	(<i>b</i>)	$4.2~{ m GeV}$	-1/3~e	0

● 反クォーク

反アップ	(\bar{u})	$2 { m MeV}$	-2/3~e	-1/2
反ダウン	(\bar{d})	$5 { m MeV}$	+1/3~e	+1/2

- 比較: 構成子 (Constituent) クォーク
 - 陽子 = u + u + d 質量 938.27 MeV
 - ○構成子クォーク質量 ~ 300 MeV

陽子 (核子)の内部構造 — 観測スケール依存

○ 構成子クォーク

• 動的生成 $g \rightarrow q\bar{q}$

クォーク

核子物理

- 高エネルギー散乱を通じて核子(陽子)のパートン構造を解き明かす
- エネルギー $\gtrsim 1 \, {
 m GeV} \Longleftrightarrow$ 距離 $\lesssim 1 \, {
 m fm}$
- クォーク・反クォーク・グルーオン構造
- 本講演では海クォークに注目

2. 陽子のパートン構造

深非弾性散乱 (Deep Inelastic Scattering: DIS)

• $l + p \rightarrow l + X$

	1	1
	2	
	\geq	γ*
h	q	q
		X

$P \stackrel{lab}{=} (M, 0)$	陽子の 4 元運動量
$\ell = (\epsilon, \ell)$	始状態の電子の 4 元運動量
$\ell' = (\epsilon', \pmb{\ell}')$	終状態の電子の 4 元運動量
$q=\ell-\ell'$	仮想光子の 4 元運動量
$ u = P \cdot q / M$	仮想光子のエネルギー
$Q^2 = -q^2$	観測スケール
$x = \frac{Q^2}{2P \cdot q}$	Bjorken のスケーリング変数

• 反応断面積 (実験室系)

$$rac{d^2\sigma}{d\Omega d\epsilon'} = rac{lpha^2}{4\epsilon^2\sin^4rac{ heta}{2}}\left(rac{1}{
u}F_2(x,Q^2)\cos^2rac{ heta}{2} + rac{2}{M}F_1(x,Q^2)\sin^2rac{ heta}{2}
ight)$$

。 構造関数: $F_1(x,Q^2)$ & $F_2(x,Q^2)$ — 電磁相互作用の対称性を満たす自由度

DIS によるパートンの発見

- パートンは強い相互作用の閉じ込めにより単独では存在・観測しえない
- Bjorken スケーリング則
 - $\stackrel{\circ}{=} \begin{array}{l} F_1(x,Q^2) \xrightarrow[x \text{ fixed}]{Q^2 \to \infty} \\ F_2(x,Q^2) \xrightarrow[x \text{ fixed}]{Q^2 \to \infty} \\ F_2(x) \end{array} F_2(x)$
 - ○○ 構造関数は x のみに依存する

- Callen-Gross 関係式
 - $2xF_1 = F_2$
 - パートン = スピン 1/2 粒子
 = クォーク

パートン分布関数 (Parton Distribution Function)

- スケーリング変数 x は "パートンが担う運動量比"と解釈可: x = ^{pparton} Porton
- 非偏極 PDF
 - 運動量比 x を担うパートンの分布密度
 フレーバー毎: $u(x), \bar{u}(x), d(x), \bar{d}(x), G(x),$ etc.
 ⇒ $\int_0^1 u(x)dx$ 陽子内の u クォークの総数
 ⇒ $\int_0^1 xu(x)dx u$ クォークが担う運動量比の合計

$$egin{array}{lll} \circ & u_v(x)\equiv u(x)-ar{u}(x)\ \circ & d_v(x)\equiv d(x)-ar{d}(x)\ \circ & \int_0^1 u_v(x)dx=2$$
個
 $\circ & \int_0^1 d_v(x)dx=1$ 個

小 x では海クォークが支配的

電荷を持たないパートン = グルーオン

- *e* + *p* & *e* + *n* の DIS による 構造関数 *F*₂ の測定
 - $\circ \ \int_0^1 dx \left(F_2^{ep}(x) + F_2^{en}(x) \right) = \\ \frac{5}{9} \int_0^1 dx \, x \left(q(x) + \bar{q}(x) \right) = \frac{5}{9} \cdot 0.54$
 - 陽子の運動量の約 1/2 は DIS (電磁相 互作用) で見えない

- グルーオン分布: G(x)
 - DIS 反応断面積の観測スケール依存性
 - ハドロン + ハドロンでのジェット生成断面積 $(g + g \rightarrow g + g, \text{etc.})$
- 陽子の運動量の内訳
 - $-q:ar{q}:g\sim 45\%:10\%:45\%$ @ $\mu\sim 10~{
 m GeV}$
 - 動的に生じる海クォークとグルーオンの寄与がむしろ支配的
 - PDF の観測スケール依存性 = DGLAP 発展方程式

陽子のスピン問題

- 縦偏極 PDF: パートンのスピン状態を定 めた PDF
 - $\Delta q(x) \equiv q^+(x) q^-(x)$
 - $\Delta \bar{q}(x) \equiv \bar{q}^+(x) \bar{q}^-(x)$
 - $\Delta G(x) \equiv G^+(x) G^-(x)$
- EMC 実験の測定結果 (1989)
 - クォークのスピンの総和: $\frac{1}{2}\Delta\Sigma \equiv \frac{1}{2}\sum_{a}\int dx \left(\Delta q(x) + \Delta \bar{q}(x)\right)$
 - クォークのスピンの寄与は (12±9±14)% とたいへん小さい
- 多数の実験結果の総合解析
 - $\frac{1}{2}\Delta\Sigma \approx 30\%$
- グルーオンのスピン △G とパートンの軌 道角運動量 L_z の必要性
 - $\frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_z^q + L_z^G$
 - 広汎な核子研究の発端となった

-: 🗲

海クォーク (≈ 反クォーク)の生成機構

- クォーク (摂動論) 的過程
 - グルーオンからのクォーク対の生成 中間子雲モデル

- ハドロン (非摂動論) 的過程

中間子雲モデルでの反クォークの生成

• 陽子 _{観測} = ハドロン + 中間子雲:

$$|p\rangle = (1 - a - b)|p_0\rangle + a|N\pi\rangle + b|\Delta\pi\rangle$$

 $\circ \overline{d} \mid n\pi^+\rangle$ 状態の π^+ 等として生じる
 $\circ \overline{u} \mid |\Delta^{++}\pi^-\rangle$ 状態の π^- 等として生じる

- - *d
 _p(x)* も同様
 - 実験データの総合解析の結果 (CT14)とおよそ一致
 - この描像はどこまで正しいのか?
 他の量の再現性は?

海クォーク研究の意義

- 海クォーク = 陽子の構造に欠かせない一成分
 - "価" クォークだけでは陽子の価数 (valence) は決まらない
 - 陽子の運動量・スピン・空間分布の一部は海クォークが担っているはず
- 海クォークは、陽子内のパートン相互作用の機構に比例的感度がある
 - 全ての海クォーク (≈ 反クォーク) は生成・消滅を繰り返している
 - 反クォーク生成の状態(スピン/フレーバー等)で相互作用の性質が変われば、
 それは反クォークの分布量に比例して現れる
 (cf. クォーク生成量は価クォーク分布量で薄められてしまう)
 - $\circ\circ$ 例: $\bar{u} \ge \bar{d}$ はどのように生成するか? 強い相互作用なのでフレーバー間に差異は無いか?

○ クォーク・グルーオン分布の理解の一助

 \Downarrow

- 1. 反クォーク PDF の高精度測定
- 2. 陽子のパートン構造の解明
 - 反クォークの寄与
 - クォーク・グルーオンとの統一的理解

3. ドレル・ヤン反応

陽子内の反クォークを調べる方法

ドレル・ヤン反応とは?

• ハドロン-ハドロン散乱からの大不変質量を持つレプトン対の生成

$$q+ar{q}
ightarrow \gamma^*
ightarrow l^++l^-$$

- 始状態: p + p, $\pi + p$, p + A, etc.
- 終状態: $\mu^+ + \mu^-$, $e^+ + e^-$, etc.

最初の理論的予測

• By two theorists, S. D. Drell & T.-M. Yan — PRL25, 316 (1970) MASSIVE LEPTON-PAIR PRODUCTION IN HADRON-HADRON COLLISIONS AT HIGH ENERGIES*

Sidney D. Drell and Tung-Mow Yan Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305 (Received 25 May 1970)

On the basis of a parton model studied earlier we consider the production process of large-mass lepton pairs from hadron-hadron inelastic collisions in the limiting region, $s \rightarrow \infty$, Q^2/s finite, Q^2 and s being the squared invariant masses of the lepton pair and the two initial hadrons, respectively. General scaling properties and connections with deep inelastic electron scattering are discussed. In particular, a rapidly decreasing cross section as $Q^2/s \rightarrow 1$ is predicted as a consequence of the observed rapid falloff of the inelastic scattering structure function νW_2 near threshold.

最初の実験的観測

• In *p*+U at CERN — PRL25, 1523 (1970)

Observation of Massive Muon Pairs in Hadron Collisions*

J. H. Christenson, G. S. Hicks, L. M. Lederman, P. J. Limon, and B. G. Pope Columbia University, New York, New York 10027, and Brookhaven National Laboratory, Upton, New York 11973

and

E. Zavattini CERN Laboratory, Geneva, Switzerland (Received 8 September 1970)

Muon pairs in the mass range $1 < m_{\mu\mu} < 6.7 \ {\rm GeV}/c^2$ have been observed in collisions of high-energy protons with uranium nuclei. At an incident energy of 29 GeV, the cross section varies smoothly as $d/m_{\mu\mu} \approx 10^{-2} M_{\mu\mu}^2 \sin^2 (-3/c^2)/c^2$ and exhibits no resonant structure. The total cross section increases by a factor of 5 as the proton energy rises from 22 to 29.5 GeV.

- "No resonant structure"...
- J/ψ discovery in 1974 at SLAC SPEAR ($e^+ + e^-$) & BNL AGS (p+Be)

- M: 不変質量 (= $x_{beam}x_{target}s$)
- *x_{beam}*: ビーム側の Bjorken *x*
- *x_{target}*:標的側の Bjorken *x*
- 反応断面積 @ LO

$$\frac{d^2\sigma}{dx_{beam}dx_{target}} = \frac{4\pi\alpha^2}{9x_{beam}x_{target}} \frac{1}{s} \sum_i e_i^{\ 2} \big\{ q_i(x_{beam})\bar{q}_i(x_{target}) + \bar{q}_i(x_{beam})q_i(x_{target}) \big\}$$

J/ψ, ↑ 等の共鳴ピークの下の連続分布がシグナル

ドレル・ヤン反応を用いた反クォークの直接測定

• 実験的工夫

- 前方測定
 - ○○ 断面積の " $q(x_{beam})\bar{q}(x_{target})$ "の項が支配的 ⇒ 常に ビーム側に q & 標的側に \bar{q}
 - ○○ 不変質量 大 \implies x_{target} & x_{beam} 大
- 水素 & 重水素標的の併用
 - ○○ 反クォークのフレーバー (*ū* vs *d*)の実験的分離 後述

- イベントごとに q と q が各々の x の値も含めて決定可
- $\sigma(\mathbf{x}_{target}) \propto \bar{q}(\mathbf{x}_{target})$ と比例的感度
- 理論的にクリーンな終状態

 $\circ \mu^{\pm}$ は強い相互作用による副次散乱を起こさない

ドレル・ヤン反応の計測@フェルミ国立加速器研

- 陽子ビーム (Main Injector より)
- ・エネルギーE = 120 GeV($\sqrt{s} = 15 \text{ GeV}$)
- 強度 $\sim 10^{12}$ protons/sec

SeaQuest 検出器

- ターゲット: LH₂, LD₂, 他
- ドレル・ヤン反応からの µ⁺µ⁻ 対を検出
- 検出器は偏極ドレル・ヤン反応の実験 (SpinQuest) でも利用

4. 反クォーク分布のフレーバー非対称性 $\bar{u}(x) = \bar{d}(x)$ < ?? in the proton

反クォーク (\bar{u} vs \bar{d})のフレーバー対称性

- 対称であるべき?
 - 。 グルーオンからの対生成: $g
 ightarrow q ar{q} \Longrightarrow ar{d} = ar{u}$
 - Gottfried 和則:

$$\begin{split} S_G &= \int_0^1 \frac{dx}{x} \left\{ F_{2p}(x) - F_{2n}(x) \right\} \\ &= \frac{1}{3} \left\{ (u - \bar{u}) - (d - \bar{d}) \right\} - \frac{2}{3} (\bar{d} - \bar{u}) \\ &= \frac{1}{3} \quad \text{if} \ \ \bar{d} = \bar{u} \end{split}$$

- CERN NMC (1990):
 ミューオン深非弾性散乱
 - Gottfried 和: S_G = 0.235±0.026 < 1/3
 一和則の破れ
 - $\int_0^1 \bar{d}(x) dx \int_0^1 \bar{u}(x) dx = 0.147 \pm 0.039$ 反クォークのフレーバー対称性の破れ
 ($\bar{d} > \bar{u}$)の発見

- 非対称度の x 依存性 (d(x)/ū(x))の測定: ドレル・ヤン反応
 - CERN NA51 実験 (1994): $\bar{d} > \bar{u}$ @ $x \sim 0.18$
 - FNAL E866/NuSea 実験 (1998): $\bar{d}(x)/\bar{u}(x)$ @ $x \in (0.015, 0.35)$

大きな x (≥ 0.2) での測定誤差が大きく、理論計算も大きくばらつく
 ⇒ SeaQuest 実験による高精度測定

• 陽子ビームと水素 & 重水素標的による反応断面積の比の測定

$$\frac{\sigma_D(x_{target})}{2\sigma_H(x_{target})} \approx \frac{1}{2} \left(1 + \frac{\sigma_{p+n}(x_{target})}{\sigma_{p+p}(x_{target})} \right) \approx \frac{1}{2} \left(1 + \frac{\overline{d}(x_{target})}{\overline{u}(x_{target})} \right)$$

○ データ解析時は断面積比を高次項 (NLO) まで計算

◦ 強い相互作用によるバックグラウンド粒子 ($\pi^\pm o \mu^\pm$ 等)を測定データより除外

$ar{d}(x)/ar{u}(x)$ の測定結果

• SeaQuest 実験 — Nature 590, 561 (2021)

○ 大きな x (0.45) まで測定

。全ての測定範囲で大きな $\bar{d}/\bar{u} > 1$ の非対称度を観測

NuSea/E866 実験との比較

小さな x (~ 0.2) で一致
 より大きな x (0.45) まで高精度に測定
 x ~ 0.3 で実験間に差異

 理論モデル計算との比較

- 中間子雲モデルで x 依存性を再現可 PRC 100, 035205 (2019)
- 大きな *x* で反クォーク分布を決定するユニークなデータ
- モデル計算の再評価 (PRD 105, 114054 (2022)) や SeaQuest データを含めた総合 解析が進展中

SeaQuest データを含めた反クォーク PDF の総合解析

• SeaQuest および RHIC-STAR W $^{\pm}$ データを含めた $ar{d}(x)/ar{u}(x)$ 抽出の例

種々の分布形状や分布モデルを用いたデータの検証が進行中

分布量の差: $\overline{d}(x) - \overline{u}(x)$

- ハドロン (非摂動論) 的過程で生じる q に注目
 - \circ パートン (摂動論) 的過程 ($g
 ightarrow qar{q}$) は $ar{d}pproxar{u}$ なので相殺
- $d(x)/\bar{u}(x)$ の測定結果より抽出 arXiv:2212.12160 (Jan. 2023)

- \circ モデル計算との一致度は $\overline{d}(x)/\overline{u}(x)$ よりも良い
- モデル計算におけるパートン的過程の精度が誤差要因?

5. 反クォークの軌道運動

Sivers 分布関数

Sivers 分布関数

• パートンの横運動量 (k_T) を自由度に追加

 \implies Transverse-Momentum-Dependent (TMD) PDF

・ Sivers 分布関数: $f_{1T}^{\perp}(x,k_T)$ \approx 陽子スピン (S) とパートン横運動量 (k_T)の相関の強さ

EPJA 52, 268

≜S

パートンの軌道運動 \implies 空間分布の偏り $\implies k_T$ の偏り
 パートンが陽子スピンを軸として多次元構造をしている証拠

Sivers 分布関数の現状

- 実験データの総合解析による抽出
 - HERMES (2005), COMPASS & JLab 実験データの利用
 - 。例: JHEP 04 (2017) 046, M. Anselmino et al.
- クォークの Sivers 分布関数は非ゼロ
 クォーク横運動量は陽子スピンと相関有り
- 反クォークの Sivers 分布関数
 - そもそも相関は有る?
 - クォークとの違いは?
- SpinQuest 実験 @ フェルミ国立加速器研:
 反クォークの Sivers 分布関数の直接測定
 - 横偏極の (重) 陽子標的の開発
 - 横偏極ドレル・ヤン反応の計測
 - 非ゼロの結果
 - ⇒ 反クォークが横運動量・軌道角運動量を持つ
 - ⇒ 陽子の多次元パートン構造の一成分

反クォーク Sivers 分布関数の測定 @ SpinQuest 実験

- 陽子ビーム + 横偏極 NH₃ & ND₃ 標的
- ドレル・ヤン反応 @ 前方 SeaQuest 実験の測定手法と同様
 GMW (標的)の反クォークが反応

- 観測量: 横単スピン非対称度 A_N
 A_N(ϕ_S) = $\frac{\sigma^{\uparrow}(\phi_S) \sigma^{\downarrow}(\phi_S)}{\sigma^{\uparrow}(\phi_S) + \sigma^{\downarrow}(\phi_S)} \sim \frac{f(x_B) \cdot f_{1T}^{\downarrow,\bar{f}}(x_T)}{f(x_B) \cdot \bar{f}(x_T)}$ $\phi_S \sim$ 陽子スピンとミューオン対 (=仮想光子) の間の方位角
 Sivers 分布関数が非ゼロ
 ⇒ 陽子スピンと反クォーク横運動量が相関
 - $\Longrightarrow \phi_S$ 分布が偏る
 - $\Longrightarrow A_N$ が非ゼロ

SpinQuest 実験で予想される結果

- 実験の現状 & 計画
 - 偏極標的・検出器は準備完了
 - 2023 年春:

陽子ビームを用いたコミッショニング

- 2023 年から 2 年間のデータ収集
- 横単スピン非対称度: $A_N^{\sin\phi_s}$
 - $\circ 0.1 \lesssim x_{target} \lesssim 0.3$
 - 測定精度 $\delta_{A_N} \sim 0.04$
- 非ゼロの反クォーク Sivers 分布関数 (と x 依存性)の初観測を目指す

6. まとめ

- 核子物理
 - 陽子 = クォーク + 反クォーク + グルーオン @ 高エネルギースケール
 - 陽子の質量/電荷/スピン等はどう形作られているか?
- 陽子内の海クォーク
 - 存在は確認されており、分布量が測定されつつある
 - 精密測定に基づいて生成機構を検証中
 - パートン相互作用の新たな性質に感度があると期待
- ドレル・ヤン反応: $q + \bar{q} \rightarrow \gamma^* \rightarrow l^+ + l^-$
 - 古く 1970 年から理論的・実験的に研究
 - 反クォーク分布のフレーバーごとの直接測定が可能

- 反クォーク分布のフレーバー非対称性 ── SeaQuest 実験
 - 広い x の範囲 (0.1–0.45) で大きな非対称度 ($\overline{d}/\overline{u} \approx 1.5$)
 - 中間子雲モデルなどである程度再現可
 - ハドロン (非摂動論) 的な反クォーク生成過程が支配的か
 - モデル計算の再評価や新データを含めた総合解析が進展中
- 反クォークの軌道運動 SpinQuest 実験
 - Sivers 分布関数 \approx 陽子スピン (S) とパートン横運動量 (k_T)の相関の強さ
 - 反クォークの Sivers 分布関数が非ゼロ
 - ⇒ 反クォークが横運動量・軌道角運動量を持つ
 - 横偏極標的を用いたドレル・ヤン反応の測定
 - 2023 年に2 年間のデータ収集を開始