Measurements of Antiquark Distributions in Proton via Unpolarized/Polarized Drell-Yan Process at FNAL-SeaQuest/SpinQuest Experiments

> JAEA Seminar 2022/09/14

Kenichi Nakano

University of Virginia

Outline

- 1. Introduction
 - Partonic (quark, antiquark & gluon) structure of proton
 - $\circ~$ Drell-Yan process for measurements of parton distribution function (PDF)
- 2. SeaQuest experiment
 - Beam & spectrometer
 - Unpolarized targets
 - $^\circ~$ Flavor asymmetry of light anti-quarks: $ar{d}(x)/ar{u}(x)$
 - Nuclear effects
- 3. SpinQuest experiment
 - Polarized targets
 - Sivers function
 - $\circ~{
 m Spin}~{
 m asymmetry}~{
 m of}~J/\psi~{
 m productions}$
 - Schedule

4. Summary

Internal Structure of Proton (Nucleon)

• Representations at various scale

- $\circ~$ Proton structure at energy scale $\mu\gtrsim\!\!1~{\rm GeV}$ will be discussed
- $^\circ~~$ Dynamical creation of anti-quarks from gluons ... g
 ightarrow qar q

3/48

Proton @ Short Distance

- Valence quarks, sea quarks & gluons
- Breakdown of proton momentum ... $q: ar{q}: g \sim 45\%: 10\%: 45\%$ @ $\mu \sim 10~{
 m GeV}$

4/48

Parton Distribution Function: PDF

• Quarks, anti-quarks & gluons

- Global analyses of multiple experimental data
 Practical understanding of PDFs
 - Cf.: QCD-based models/calculations
 - \Longrightarrow Theoretical understanding

Access to Antiquarks via Drell-Yan Process

- Drell-Yan process: $p + p \rightarrow \gamma^* \rightarrow \mu^+ + \mu^-$
 - Invariant mass: $M^2 = x_{beam} x_{target} s$, Rapidity: $\exp Y = \sqrt{x_{beam} / x_{target}}$ • Bjorken $x_{beam} = \frac{M}{\sqrt{s}} e^Y$, $x_{target} = \frac{M}{\sqrt{s}} e^{-Y}$
- Cross section @ LO

- $\circ \text{ Only } ``q(x_{Beam})\bar{q}(x_{Target})" \text{ survives } @ \text{ forward rapidity} \\ \Longrightarrow q \text{ having } x_{Beam} \& \bar{q} \text{ having } x_{Target} \text{ are} \\ \\ \text{ distinguishable event-by-event}$
- Larger invariant mass
 - \implies Larger x_{Target} (and x_{Beam})
- $\circ~$ Lower rate because of EM interaction
 - \implies Need larger luminosity & compete with more BGs

- For PDF measurements
 - $^{\circ}$ Cross section \implies Unpolarized PDFs
 - \circ Angular distribution \implies Boer-Mulders
 - With polarization
 - Nuclear targets
- Specialty w.r.t. SIDIS
 - \circ Sensitivity to $ar{q}$
 - TMD sign change

Drell-Yan

 \implies Sivers, Transversity, etc.

 \implies Nuclear effects

Aim to Research Antiquarks in Proton

- Proton is simplest stable object bound by strong force (QCD)
 - Best system to study QCD
 - Antiquarks are sensitive to QCD dynamics in proton (because quarks are diluted with valence component)
- Ex.: Antiquark flavor asymmetry $(\bar{d}(x)/\bar{u}(x))$?
 - $^{\circ}~$ Non-perturbative (i.e. low-energy) QCD effect?
 - Behavior at large x?

 \Downarrow

- 1. Improve the accuracy of antiquark PDFs
 - $\circ~ar{q}(x)$ is an input of hadron-induced processes (ex: $u+ar{d}
 ightarrow W^+$)
- 2. Understand "how the hadrons are constructed by QCD"
 - $^{\circ}\,$ Together with spin polarization and orbital angular momentum
 - $\circ~$ Relation/unification with hadron models based on QCD effective theory

SeaQuest Experiment (Unpolarized Targets)

Proton Beam @ FNAL

- Energy E = 120 GeV($\sqrt{s} = 15 \text{ GeV}$)
- Duty cycle
 - 5 sec for Sea/SpinQuest
 - 55 sec for ν exp.
- Bunch
 - Interval: 19 nsec (53 MHz)
 - $\circ~10^{13}~{\rm protons}$ in 5 sec

SeaQuest Spectrometer

- Targets: LH₂, LD₂, C, Fe, W
- Focusing magnet (FMag) & Tracking magnet (KMag)
- Iron inside FMag, as hadron absorber & beam dump

SeaQuest Hall — 2015-July-27

Measurements of Antiquark Dist. in Proton via Unpol./Pol. Drell-Yan Process at FNAL-SeaQuest/SpinQuest Exp.

SeaQuest Targets

- LH₂, LD₂
 - $^\circ~50.8~cm\sim0.1$ interaction lengths
- Iron, Carbon, Tungsten

Signal Event

• A typical Drell-Yan event (top view) ... mass = 6 GeV, $\theta_{\mu^+} = 90^\circ$, $\phi_{\mu^+} = 0^\circ$

Detection of dimuons

- Station 1-3 : Tracking with drift chambers
- Station 4 : Particle identification with drift tube
- $^{\circ}$ Momenta of detected muons are 40 GeV/c on average

Background Event

• Typical BG event during commissioning

 $^{\circ}~$ Detector occupancy $\sim 100\%!!$

Intensity of Beam RF-Buckets

• Example in Run 2

- 1 RF = 19 ns
- Supposed intensity = 40k protons/RF at max
- As high as $\times 5!!$
 - •• Improvement at accelerator
 - •• Veto in trigger (and analysis)

Reconstruction & Identification of Drell-Yan Events

- Unlike-sign muon pairs were triggered and reconstructed
- Distribution of dimuon mass

- $\circ~$ Drell-Yan, J/ψ & ψ' events from simulation
- Non-target events from empty target
- Random-coincidence BGs from real data via event mixing
- Origins of measured dimuons well understood
- Dominated by Drell-Yan at M > 4.5 GeV

Flavor Asymmetry of Light Antiquarks $(\bar{d}(x)/\bar{u}(x))$ @ SeaQuest

Anti-Quark Flavor Asymmetry: d/\bar{u}

- CERN NMC ('90): deep inelastic muon scattering
 - $^\circ~~{
 m Gottfried~Sum:}~S_G=0.235\pm0.026<1/3$
 - $\int_0^1 \bar{d}(x) dx \int_0^1 \bar{u}(x) dx = 0.147 \pm 0.039 \dots$ discovery of flavor asymmetry of anti-quarks in the proton (more \bar{d} than \bar{u})
- Measurement of x dependence of $\overline{d}(x)/\overline{u}(x)$: Drell-Yan process
 - $\sim \, {
 m CERN} \, {
 m NA51}$ ('94): ${ar d} > {ar u} \, {
 m at} \, x \sim 0.18$
 - FNAL E866/NuSea ('98): $\bar{d}(x)/\bar{u}(x)$ for $x \in (0.015, 0.35)$

Measurements of Antiquark Dist. in Proton via Unpol./Pol. Drell-Yan Process at FNAL-SeaQuest/SpinQuest Exp.

Theories of \bar{d}/\bar{u} Asymmetry (1)

- Mass difference between u & d (~2 & 5 MeV) in g
 ightarrow q ar q
 - $^\circ~$ Very small and even results in $ar{d} < ar{u}$
- Pauli blocking ... *PRD15*, 2590 (1977)
 - $\circ \ \textit{Prob}(g \rightarrow u \bar{u}) < \textit{Prob}(g \rightarrow d \bar{d}) \ \text{since} \ p = u u d$
 - Cannot explain the measured size ... NPB149, 497 (1979)
 - Even $\bar{d} < \bar{u}$ via connected sea (at high x)? ... *PLB736*, 411 (2014)
- Chiral quark model ... PRD59, 034024 (1999)
 - Effective interaction between Goldstone boson (π) & constituent quark

Theories of \bar{d}/\bar{u} Asymmetry (2)

- Statistical model ... NPA941, 307 (2015)
 - Based on the Fermi & Bose statistics
 - Predicts $\bar{d}(x) \bar{u}(x) = -\left[\Delta \bar{d}(x) \Delta \bar{u}(x)\right]$
- Meson cloud model ... PRD58, 092004 (1998)

$$\circ ~|p
angle = (1-a-b)|p_0
angle + a|N\pi
angle + b|\Delta\pi
angle$$

- More \overline{d} in π^+ as $|n\pi^+\rangle$ etc.
- ° Less \bar{u} in π^- as $|\Delta^{++}\pi^-\rangle$ etc.
- Predict non-zero $L_{q,\bar{q}}$ like "meson tornado" (need L = 1 of π to make $J^P = 1/2^+$ of proton, as parity of π is $J^P = 0^-$)

Comparison of Theories to Measurements

Meson cloud model: PRD58, 092004 Chiral quark model: NPA596, 397 Chiral quark model: PRD59, 034024 Instanton model: PLB304, 167 (Updated calculations exist)

The x dependence of d(x)/ū(x) is the key to develope/examine models
 ○ Sharp drop at x ~ 0.3. Even go down to d
 < ū?

Method of Measuring $\bar{d}(x)/\bar{u}(x)$

• Drell-Yan process @ forward rapidity

$$rac{d^2\sigma}{dx_b dx_t} pprox rac{4\pilpha^2}{9x_b x_t} rac{1}{s} \sum_i e_i{}^2 q_i(x_b) ar q_i(x_t)$$

Ratio of cross sections with LH2 & LD2 targets

$$rac{\sigma_{pd}(x_t)}{2\sigma_{pp}(x_t)} = rac{\sigma_{pp}(x_t) + \sigma_{pn}(x_t)}{2\sigma_{pp}(x_t)} pprox rac{1}{2} \left(1 + rac{ar{d}(x_t)}{ar{u}(x_t)}
ight)$$

• Larger invariant mass \implies Larger x_{Target} (and x_{Beam})

Cross-Section Ratio: $\sigma_{pd}/2\sigma_{pp}$

SeaQuest result

Nature 590, 561 (2021)

- Systematic errors
 - Beam-intensity extrapolation
 - Relative luminosity
- $\sigma_{pd}/2\sigma_{pp}$ always > 1 in measured *x* range

Cross-Section Ratio: $\sigma_{pd}/2\sigma_{pp}$

- Effects of experimental kinematics
 - Shown by the calculations using CT18 NLO
 - $\,\circ\,$ Account for the difference at $x_t\sim 0.15$

Anti-Quark Flavor Asymmetry: $ar{d}/ar{u}$

SeaQuest result

Nature 590, 561 (2021)

- Systematic errors
 - Errors of cross-section ratio
 - \bar{d}/\bar{u} above measured *x* region (> 0.45)
 - Nuclear effect for deuterium
- Large asymmetry at high *x* as well as low *x*

Anti-Quark Flavor Asymmetry: $ar{d}/ar{u}$

• Comparison to NuSea/E866 result

- Agreement at low $x (\sim 0.2)$
- The trends at high *x* are quite different
 - $^{\circ}$ No explanation has been found yet for these differences

Anti-Quark Flavor Asymmetry: $ar{d}/ar{u}$

• Comparison to theory calculations

- Reasonably described by the predictions of
 - "Pion cloud model" (Alberg & Miller) and
 - "Statistical model" (Basso et al.)
- Unique data to constrain anti-quark PDFs at high x in global analyses

Nuclear Effects @ SeaQuest

Nuclear Effects in Drell-Yan Process

- Observable: $R_A \equiv \hat{\sigma}^{p+A}(x) / \hat{\sigma}^{p+p}(x)$ = Ratio of per-nucleon D-Y cross sections
- Mechanism for $R_A
 eq 1$
 - Change of PDF in nucleus
 "Nuclear effects" observed in DIS
 - •• Shadowing & anti-shadowing
 - •• EMC effect PLB 123, 275 (1983)
 - •• Fermi motion
 - Parton energy loss in cold nuclear matter
 - ••• Soft interaction between beam-side parton & nuclear matter
 - •• Collisional or radiative?
 - No final-state interaction
- *R*_A should be comprehensively examined to untangle the mechanisms

Measurements @ SeaQuest

- Drell-Yan process at forward rapidity
- *R_A* vs *x_{target}*: Effect on antiquarks
 Smaller than that on quarks? (PRL64, 2479)
 0.1 < *x_{target}* < 0.45
- Effect on quarks in beam proton
 = Parton energy loss in cold-nuclear matter
 - R_A vs x_{beam} : Energy loss
 - $\sim x_{beam} > 0.6, x_{target} > 0.15$
 - R_A vs p_T : p_T broadening
 - $\circ \circ \ 0.1 < x_{target} < 0.45$

• E866

R_A vs x_{target} by SeaQuest

• Preliminary result

- $\circ R_A$ deviates from 1 by 10% at max
 - $\,^{\circ\circ}\,$ Different from quarks ($R_A\gtrsim 1.1$)!
 - •• Close to the calculation of pion excess model by Miller (PRC 64, 022201)
- Same trend as the EMC effect (i.e. R_A decreases at middle x)

• Comparison with E772 result

- Agreement within measurement accuracy
- $\circ~$ Better precision at $x_{target}\gtrsim 0.2$ by SeaQuest

SpinQuest Experiment (Polarized Targets)

SpinQuest Hall — 2022-August-26

Measurements of Antiquark Dist. in Proton via Unpol./Pol. Drell-Yan Process at FNAL-SeaQuest/SpinQuest Exp.

Polarized Targets of SpinQuest

- Solid NH₃ & ND₃ beads
 - $^\circ\,$ L 80 mm, ϕ 40 mm

• Transverse polarization

- Cryostat in "Target Cave"
 - Standalone test completed in 2018 at UVA
 - Piping & safety test ongoing in Target Cave

Measurements of Antiquark Dist. in Proton via Unpol./Pol. Drell-Yan Process at FNAL-SeaQuest/SpinQuest Exp.

Sivers Function @ SpinQuest

Sivers Function: $f_{1T}^{\perp}(x, k_T)$

• One of the eight Transverse-Momentum-Dependent (TMD) PDFs

			Parton spin	
		U	L	Т
Nucleon	U	Density f_1		Boer-Mulders h_1^\perp
spin	\mathbf{L}		Helicity g_1	Worm gear #2 h_{1L}^{\perp}
	Т	Sivers f_{1T}^{\perp}	Worm gear $#1 g_{1T}$	Transversity h_1 &
				$\text{Pretzelosity} \ h_{1T}^\perp$

- Proposed in 1990s already
- Nucleon structure can be rich
 - \iff Can be simple (i.e TMD PDFs = 0)

if k_T doesn't correlate with spins

• Correlation between the nucleon spin (S) & the parton transverse momentum (k_T)

Sivers Function of Anti-Quarks

Extraction by global analyses PRD88 (2013) 114012, P. Sun & F. Yuan PRD89 (2014) 074013, M. G. Echevarria et al. 0 JHEP 04 (2017) 046, M. Anselmino et al. •• Use of HERMES, COMPASS & JLab data $x\Delta^N \; f^{(1)}(x)$ • $f_{1T}^{\perp}(x)$ of anti-quarks is not well known

Since $\bar{q} \& q$ are mixed up in SIDIS 0

- SpinQuest will
 - Measure Sivers asymmetry of $\bar{u} \& \bar{d}$ 0
 - Via proton-induced Drell-Yan process
 - Using new polarized targets of NH3 & ND3

Measurement Method @ SpinQuest

- Proton beam + Transversely-polarized NH₃ & ND₃ targets
- Drell-Yan processes in $p+ec{p}$ & $p+ec{d}$
- Observable: Transverse Single-Spin Asymmetry A_N

$$A_N(\phi_S) \equiv rac{\sigma^{\uparrow}(\phi_S) - \sigma^{\downarrow}(\phi_S)}{\sigma^{\uparrow}(\phi_S) + \sigma^{\downarrow}(\phi_S)} \sim rac{f(x_B) \cdot f_{1T}^{\perp,f}(x_T)}{f(x_B) \cdot ar{f}(x_T)}$$

 $\circ~\phi_S$: Angle of proton spin w.r.t. transverse momentum of quarks

- Sivers function = correlation between proton spin & quark k_T
- \circ Non-zero correlation \Longrightarrow Momentum bias in angle \Longrightarrow Non-zero TSSA
- Sivers function of antiquarks
 - $^\circ~~{
 m Combined}$ analysis of TSSAs in $p+ec{p}$ & $p+ec{d}$ \Longrightarrow Seperation of $ar{u}$ & $ar{d}$

Anticipated Sensitivity

- Conditions
 - Two years of data taking
 - $NH_3:ND_3 = 50\%:50\%$ in time
 - Details in the E1039 proposal
- Transverse Single-Spin Asymmetry (TSSA): $A_{UT}^{\sin \phi_S}$
 - $\circ~0.1 \lesssim x_{Target} \lesssim 0.3$
 - $^\circ~~{
 m Measurement}~{
 m precision}~\delta_{A_N}\sim 0.04$
- Aim to observe non-zero anti-quark Sivers asymmetry!!

SpinQuest Timeline

Schedule for data taking

Year	Month	Event	
2022	12	Commission target & spectrometer using beam	
2023	02	Start the 1st data taking	
		\Downarrow 4.5 months	
	07	Accelerator summer shutdown	
	12	Start the 2nd data taking	

- "Day-One" Physics
 - $\circ~\mathrm{TSSA}~\mathrm{of}\,J/\psi~\mathrm{production}$
 - $^{\circ}$ Sufficient statistics with first one month
- SpinQuest Upgrades?
 - $\circ~$ Tensor polarization of antiquarks in deuteron PRD 94, 054022 (2016)
 - Polarized nuclear effects
 - "DarkQuest": Dark-photon search

Spin Asymmetry of J/ψ Productions @ SpinQuest

J/ψ Productions in p + p

• $p + p \rightarrow J/\psi + X$

Measurements of Antiquark Dist. in Proton via Unpol./Pol. Drell-Yan Process at FNAL-SeaQuest/SpinQuest Exp.

J/ψ @ SpinQuest

- Cross section
 - Based on NRQCD

(https://confluence.its.virginia.edu/display/twist/Seminars)

- \circ Subprocess fractions vary with p_T largely
- Sensitive to distributions of anti-quarks and gluons (at target side)
- $^\circ~~
 m All~depend~on~theoretical~parameters~(LDMEs~\&~ig k_{ot}^2ig)^{quark,ar{gluon}}$)
- Unique in terms of $\sqrt{s} \& x_F$

Transverse Single Spin Asymmetry of J/ψ

- Sensitive to the Sivers functions of antiquark & gluon
- Measurement at RHIC-PHENIX PRD 98, 012006 (2018)
 - $^\circ~\sqrt{s}=200~{
 m GeV}, x_F\sim 0.1$
- Theoretical estimate
 - Maximum TSSA PRD 102, 094011

Wide ranges of explorable asymmetry sizes & kinematic regions

Measurements of Antiquark Dist. in Proton via Unpol./Pol. Drell-Yan Process at FNAL-SeaQuest/SpinQuest Exp.

Anticipated J/ψ TSSA @ SpinQuest

 $\circ~\sqrt{s}=15~{
m GeV}, x_F\sim 0.5$

- Anticipated statistical precision: δ_{AN}
 - Based on PYTHIA8
 - In case of one-week data taking

 δ_{AN} of J/ψ vs x_2 and p_T (GeV)

by Rajesh Sangem

Summary

- Drell-Yan process
 - Simplest/cleanest process in *p*+*p* scatterings
 - Becoming more important in measuring (TMD) PDFs of antiquarks
- SeaQuest experiment
 - Unpolarized Drell-Yan process
 - $^\circ~$ Flavor asymmetry of light anti-quarks: $ar{d}(x)/ar{u}(x)$
 - Nuclear effects
- SpinQuest experiment
 - Transversely-polarized Drell-Yan process
 - Sivers function
 - $\circ~{
 m TSSA}~{
 m of}\,J/\psi~{
 m productions}$
- SpinQuest is starting the beam commissioning & the 1st data taking in December 2022. Please contact the spokespersons if interested: Dustin Keller (UVA, dustin@virginia.edu) & Kun Liu (LANL, liuk@lanl.gov)