Measurements of Antiquark Distributions in Proton via Unpolarized/Polarized Drell-Yan Process at FNAL-SeaQuest/SpinQuest Experiments

RCNP Seminar 2022/09/12

Kenichi Nakano

University of Virginia

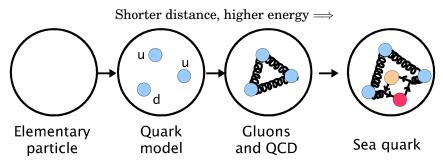
Outline

1. Introduction

- Partonic (quark, antiquark & gluon) structure of proton
- Drell-Yan process for measurements of parton distribution function (PDF)

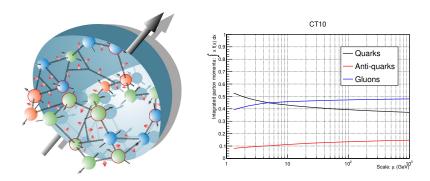
2. SeaQuest experiment

- Beam & spectrometer
- Unpolarized targets
- Flavor asymmetry of light anti-quarks: $\bar{d}(x)/\bar{u}(x)$
- Nuclear effects


3. SpinQuest experiment

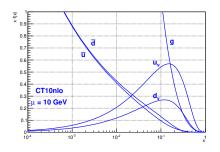
- Polarized targets
- Sivers function
- Spin asymmetry of J/ψ productions
- Schedule

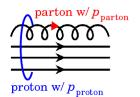
4. Summary


Internal Structure of Proton (Nucleon)

Representations at various scale

- Proton structure at energy scale $\mu \gtrsim 1$ GeV will be discussed
- Dynamical creation of anti-quarks from gluons ... g o q ar q


Proton @ Short Distance


- Valence quarks, sea quarks & gluons
- Breakdown of proton momentum
 - ... $q:\bar{q}:g\sim45\%:10\%:45\%$ @ $\mu\sim10$ GeV

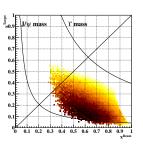
Parton Distribution Function: PDF

Quarks, anti-quarks & gluons

- Global analyses of multiple experimental data
 - \Longrightarrow Practical understanding of PDFs
 - Cf.: QCD-based models/calculations
 - ⇒ Theoretical understanding

Access to Antiquarks via Drell-Yan Process

- Drell-Yan process: $p + p \rightarrow \gamma^* \rightarrow \mu^+ + \mu^-$
 - Invariant mass: $M^2 = x_{beam}x_{target}s$,


Rapidity: $\exp Y = \sqrt{x_{beam}/x_{target}}$

 \circ Bjorken $x_{beam} = \frac{M}{\sqrt{s}}e^{Y}, \quad x_{target} = \frac{M}{\sqrt{s}}e^{-Y}$

• Cross section @ LO

$$\begin{split} \frac{d^2\sigma}{dx_{Beam}dx_{Target}} &= \frac{4\pi\alpha^2}{9x_{Beam}x_{Target}} \frac{1}{s} \sum_{i} {e_i}^2 \cdot \\ & \left\{ q_i(x_{Beam}) \bar{q}_i(x_{Target}) + \bar{q}_i(x_{Beam}) q_i(x_{Target}) \right\} \end{split}$$

- \circ Only " $q(x_{Beam})ar{q}(x_{Target})$ " survives @ forward rapidity $\Longrightarrow q$ having $x_{Beam} \& ar{q}$ having x_{Target} are distinguishable event-by-event
- Larger invariant mass \Rightarrow Larger x_{Target} (and x_{Beam})
- Lower rate because of EM interaction
 - ⇒ Need larger luminosity & compete with more BGs

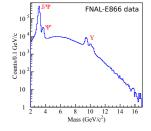
For PDF measurements

Cross section

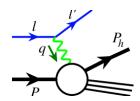
 \Longrightarrow Unpolarized PDFs

Angular distribution

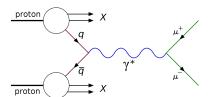
 \Longrightarrow Boer-Mulders


With polarization

 \Longrightarrow Sivers, Transversity, etc.


Nuclear targets

 \Longrightarrow Nuclear effects


- Specialty w.r.t. SIDIS
 - Sensitivity to \bar{q}
 - TMD sign change

Semi-Inclusive DIS

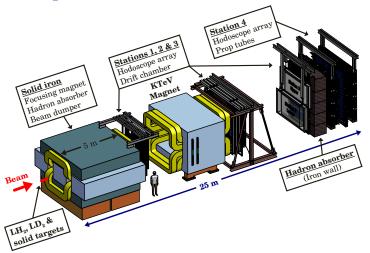
Drell-Yan

Aim to Research Antiquarks in Proton

- Proton is simplest stable object bound by strong force (QCD)
 - Best system to study QCD
 - Antiquarks are sensitive to QCD dynamics in proton (because quarks are diluted with valence component)
- Ex.: Antiquark flavor asymmetry $(\bar{d}(x)/\bar{u}(x))$?
 - o Non-perturbative (i.e. low-energy) QCD effect?
 - Behavior at large x?

 $\downarrow \downarrow$

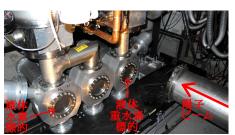
- 1. Improve the accuracy of antiquark PDFs
 - $\circ \ ar{q}(x)$ is an input of hadron-induced processes (ex: $u + ar{d} o W^+$)
- 2. Understand "how the hadrons are constructed by QCD"
 - o Together with spin polarization and orbital angular momentum
 - Relation/unification with hadron models based on QCD effective theory


SeaQuest Experiment (Unpolarized Targets)

Proton Beam @ FNAL

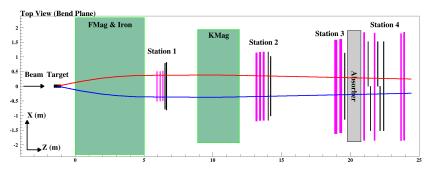
- Energy E = 120 GeV($\sqrt{s} = 15 \text{ GeV}$)
- Duty cycle
 - 5 sec for Sea/SpinQuest
 - \circ 55 sec for ν exp.
- Bunch
 - Interval: 19 nsec (53 MHz)
 - \circ 10¹³ protons in 5 sec

SeaQuest Spectrometer

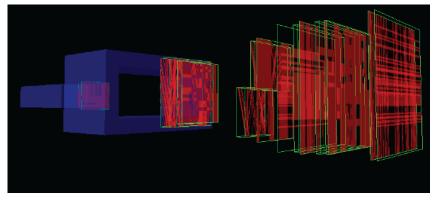

- Targets: LH₂, LD₂, C, Fe, W
- Focusing magnet (FMag) & Tracking magnet (KMag)
- Iron inside FMag, as hadron absorber & beam dump

SeaQuest Hall — 2015-July-27

SeaQuest Targets

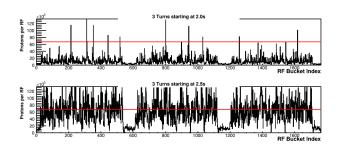

- LH₂, LD₂
 - $^{\circ}~50.8~cm \sim 0.1~interaction~lengths$
- Iron, Carbon, Tungsten

Signal Event


• A typical Drell-Yan event (top view) ... mass = 6 GeV, θ_{μ^+} = 90°, ϕ_{μ^+} = 0°

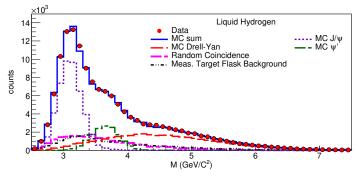
- Detection of dimuons
 - Station 1-3: Tracking with drift chambers
 - Station 4 : Particle identification with drift tube
 - Momenta of detected muons are 40 GeV/c on average

Background Event


• Typical BG event during commissioning

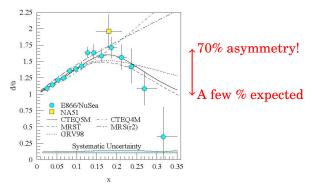
○ Detector occupancy ~ 100%!!

Intensity of Beam RF-Buckets

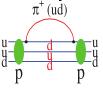

• Example in Run 2

- 1 RF = 19 ns
- Supposed intensity = 40k protons/RF at max
- As high as ×5!!
 - $\circ \circ \ \ Improvement \ at \ accelerator \\$
 - oo Veto in trigger (and analysis)

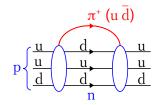
Reconstruction & Identification of Drell-Yan Events


- Unlike-sign muon pairs were triggered and reconstructed
- Distribution of dimuon mass

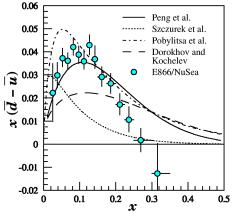
- Drell-Yan, J/ψ & ψ' events from simulation
- Non-target events from empty target
- o Random-coincidence BGs from real data via event mixing
- Origins of measured dimuons well understood
- Dominated by Drell-Yan at M > 4.5 GeV


Flavor Asymmetry of Light Antiquarks $(\bar{d}(x)/\bar{u}(x))$ @ SeaQuest

- CERN NMC ('90): deep inelastic muon scattering
 - \circ Gottfried Sum: $S_G=0.235\pm0.026<1/3$
 - $\int_0^1 \bar{d}(x)dx \int_0^1 \bar{u}(x)dx = 0.147 \pm 0.039$... discovery of flavor asymmetry of anti-quarks in the proton (more \bar{d} than \bar{u})
- Measurement of x dependence of $\bar{d}(x)/\bar{u}(x)$: Drell-Yan process
 - CERN NA51 ('94): $\bar{d} > \bar{u}$ at $x \sim 0.18$
 - FNAL E866/NuSea ('98): $\bar{d}(x)/\bar{u}(x)$ for $x \in (0.015, 0.35)$

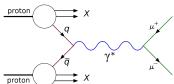

Theories of \bar{d}/\bar{u} Asymmetry (1)

- ullet Mass difference between $u\ \&\ d\ ({\sim} 2\ \&\ 5\ {
 m MeV})\ {
 m in}\ g o qar q$
 - \circ Very small and even results in $ar{d} < ar{u}$
- Pauli blocking ... PRD15, 2590 (1977)
 - $\circ \ Prob(g
 ightarrow uar{u}) < Prob(g
 ightarrow dar{d}) \ {
 m since} \ p = uud \ {
 m and}$
 - Cannot explain the measured size ... NPB149, 497 (1979)
- time ->
 - Even $\bar{d} < \bar{u}$ via connected sea (at high x)? ... *PLB736*, 411 (2014)
- Chiral quark model ... PRD59, 034024 (1999)
 - \circ Effective interaction between Goldstone boson (π) & constituent quark
 - $|q_{
 m constituent}
 angle = \left(1-rac{3a}{2}
 ight)|q
 angle + rac{3a}{2}|q\pi
 angle$


Theories of \bar{d}/\bar{u} Asymmetry (2)

- Statistical model ... *NPA941*, 307 (2015)
 - Based on the Fermi & Bose statistics
 - Predicts $\bar{d}(x) \bar{u}(x) = -\left[\Delta \bar{d}(x) \Delta \bar{u}(x)\right]$
- Meson cloud model ... PRD58, 092004 (1998)
 - $|p\rangle = (1-a-b)|p_0\rangle + a|N\pi\rangle + b|\Delta\pi\rangle$
 - More \bar{d} in π^+ as $|n\pi^+\rangle$ etc.
 - Less \bar{u} in π^- as $|\Delta^{++}\pi^-\rangle$ etc.
 - Predict non-zero $L_{q,\bar{q}}$ like "meson tornado" (need L=1 of π to make $J^P=1/2^+$ of proton, as parity of π is $J^P=0^-$)

Comparison of Theories to Measurements


Meson cloud model: PRD58, 092004 Chiral quark model: NPA596, 397 Chiral quark model: PRD59, 034024 Instanton model: PLB304, 167 (Updated calculations exist)

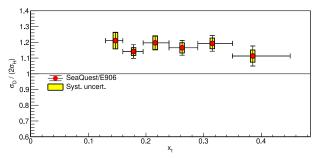
- The *x* dependence of $\bar{d}(x)/\bar{u}(x)$ is the key to develope/examine models
 - Sharp drop at $x \sim 0.3$. Even go down to $\bar{d} < \bar{u}$?

Method of Measuring $\bar{d}(x)/\bar{u}(x)$

Drell-Yan process @ forward rapidity

$$\frac{d^2\sigma}{dx_bdx_t} \approx \frac{4\pi\alpha^2}{9x_bx_t}\frac{1}{s}\sum_i {e_i}^2q_i(x_b)\bar{q}_i(x_t)$$

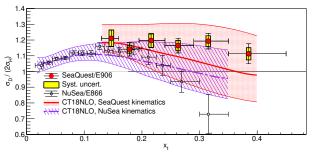
Ratio of cross sections with LH2 & LD2 targets


$$\frac{\sigma_{pd}(x_t)}{2\sigma_{pp}(x_t)} = \frac{\sigma_{pp}(x_t) + \sigma_{pn}(x_t)}{2\sigma_{pp}(x_t)} \approx \frac{1}{2}\left(1 + \frac{\bar{d}(x_t)}{\bar{u}(x_t)}\right)$$

• Larger invariant mass \Longrightarrow Larger x_{Target} (and x_{Beam})

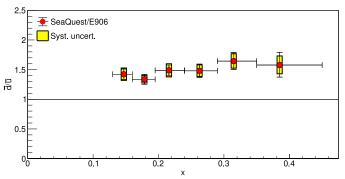
Cross-Section Ratio: $\sigma_{pd}/2\sigma_{pp}$

SeaQuest result

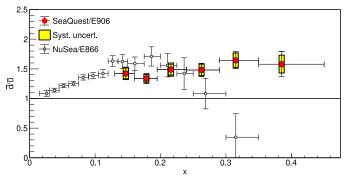

Nature 590, 561 (2021)

- Systematic errors
 - Beam-intensity extrapolation
 - Relative luminosity
- $\sigma_{pd}/2\sigma_{pp}$ always > 1 in measured x range

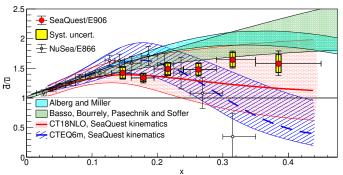
Cross-Section Ratio: $\sigma_{pd}/2\sigma_{pp}$


Comparison to NuSea/E866 result

- Effects of experimental kinematics
 - Shown by the calculations using CT18 NLO
 - Account for the difference at $x_t \sim 0.15$


• SeaQuest result

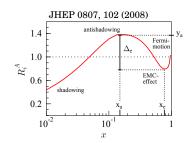
Nature 590, 561 (2021)

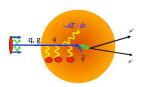

- Systematic errors
 - Errors of cross-section ratio
 - \bar{d}/\bar{u} above measured *x* region (> 0.45)
 - Nuclear effect for deuterium
- Large asymmetry at high *x* as well as low *x*

Comparison to NuSea/E866 result

- Agreement at low $x (\sim 0.2)$
- The trends at high *x* are quite different
 - No explanation has been found yet for these differences

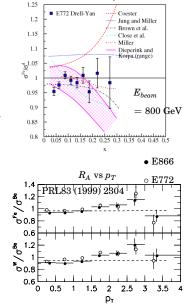
Comparison to theory calculations



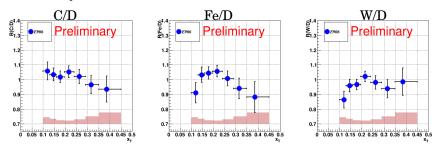

- Reasonably described by the predictions of
 - o "Pion cloud model" (Alberg & Miller) and
 - "Statistical model" (Basso et al.)
- Unique data to constrain anti-quark PDFs at high *x* in global analyses

Nuclear Effects @ SeaQuest

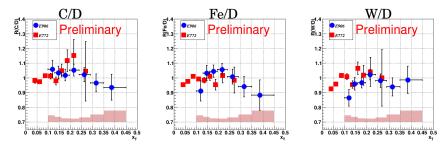
Nuclear Effects in Drell-Yan Process


- Observable: $R_A \equiv \hat{\sigma}^{p+A}(x)/\hat{\sigma}^{p+p}(x)$
 - = Ratio of per-nucleon D-Y cross sections
- ullet Mechanism for $R_A
 eq 1$
 - Change of PDF in nucleus
 - = "Nuclear effects" observed in DIS
 - oo Shadowing & anti-shadowing
 - oo EMC effect PLB 123, 275 (1983)
 - oo Fermi motion
 - Parton energy loss in cold nuclear matter
 - oo Soft interaction between beam-side parton & nuclear matter
 - oo Collisional or radiative?
 - No final-state interaction
- R_A should be comprehensively examined to untangle the mechanisms

Measurements @ SeaQuest


- Drell-Yan process at forward rapidity
- R_A vs x_{target} : Effect on antiquarks
 - Smaller than that on quarks? (PRL64, 2479)
 - $0.1 < x_{target} < 0.45$
- Effect on quarks in beam proton
 - = Parton energy loss in cold-nuclear matter
 - \circ R_A vs x_{beam} : Energy loss
 - •• $x_{beam} > 0.6, x_{target} > 0.15$
 - \circ R_A vs p_T : p_T broadening
 - $\circ \circ \ 0.1 < x_{target} < 0.45$

 R_A vs x_{target}


R_A vs x_{target} by SeaQuest

• Preliminary result

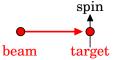
- \circ R_A deviates from 1 by 10% at max
- $\circ \circ$ Different from quarks $(R_A \gtrsim 1.1)!$
- oo Close to the calculation of pion excess model by Miller (PRC 64, 022201)
- Same trend as the EMC effect (i.e. R_A decreases at middle x)

• Comparison with E772 result

- Agreement within measurement accuracy
- \circ Better precision at $x_{target} \gtrsim 0.2$ by SeaQuest

SpinQuest Experiment (Polarized Targets)

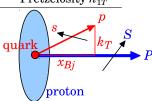
SpinQuest Hall — 2022-August-26


Polarized Targets of SpinQuest

- Solid NH₃ & ND₃ beads
 - O L 80 mm, φ 40 mm

Transverse polarization

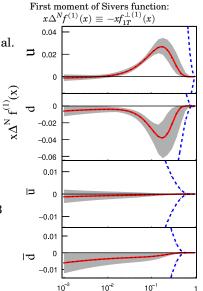
- Cryostat in "Target Cave"
 - Standalone test completed in 2018 at UVA
 - Piping & safety test ongoing in Target Cave


Sivers Function @ SpinQuest

Sivers Function: $f_{1T}^{\perp}(x, k_T)$

One of the eight Transverse-Momentum-Dependent (TMD) PDFs

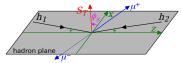
			Parton spin	
		U	L	T
Nucleon	U	Density f_1		Boer-Mulders h_1^\perp
spin	L		Helicity g_1	Worm gear #2 h_{1L}^\perp
	\mathbf{T}	Sivers f_{1T}^{\perp}	Worm gear $#1g_{1T}$	Transversity h_1 &
				$\text{Pretzelosity } h_{1T}^{\perp}$


- Proposed in 1990s already
- Nucleon structure can be rich
 - \iff Can be simple (i.e TMD PDFs = 0) if k_T doesn't correlate with spins

• Correlation between the nucleon spin (S) & the parton transverse momentum (k_T)

Sivers Function of Anti-Quarks

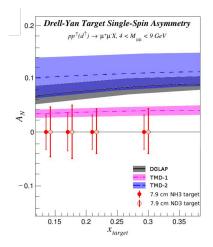
- Extraction by global analyses
 - PRD88 (2013) 114012, P. Sun & F. Yuan
 - PRD89 (2014) 074013, M. G. Echevarria et al.
 - JHEP 04 (2017) 046, M. Anselmino et al.
 - $\circ\circ~$ Use of HERMES, COMPASS & JLab data
- $f_{1T}^{\perp}(x)$ of anti-quarks is not well known
 - $\circ~$ Since $\bar{q}~\&~q$ are mixed up in SIDIS
- SpinQuest will
 - \circ Measure Sivers asymmetry of $ar{u}$ & $ar{d}$
 - Via proton-induced Drell-Yan process
 - Using new polarized targets of NH3 & ND3



Measurement Method @ SpinQuest

- Proton beam + Transversely-polarized NH₃ & ND₃ targets
- ullet Drell-Yan processes in $p+ec{p}\ \&\ p+ec{d}$
- ullet Observable: Transverse Single-Spin Asymmetry A_N

$$A_N(\phi_S) \equiv rac{\sigma^{\uparrow}(\phi_S) - \sigma^{\downarrow}(\phi_S)}{\sigma^{\uparrow}(\phi_S) + \sigma^{\downarrow}(\phi_S)} \sim rac{f(x_B) \cdot f_{1T}^{\perp,f}(x_T)}{f(x_B) \cdot ar{f}(x_T)}$$


 \circ ϕ_S : Angle of proton spin w.r.t. transverse momentum of quarks

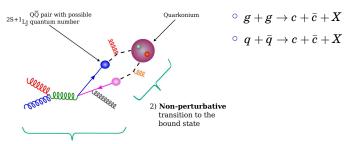
- Sivers function = correlation between proton spin & quark k_T
- \circ Non-zero correlation \Longrightarrow Momentum bias in angle \Longrightarrow Non-zero TSSA
- Sivers function of antiquarks
 - \circ Combined analysis of TSSAs in $p + \vec{p} \& p + \vec{d} \Longrightarrow$ Separation of $\bar{u} \& \bar{d}$

Anticipated Sensitivity

- Conditions
 - Two years of data taking
 - $NH_3:ND_3 = 50\%:50\%$ in time
 - o Details in the E1039 proposal
- Transverse Single-Spin Asymmetry (TSSA): $A_{IIT}^{\sin\phi_S}$
 - $0.1 \leq x_{Target} \leq 0.3$
 - \circ Measurement precision $\delta_{A_N} \sim 0.04$
- Aim to observe non-zero anti-quark Sivers asymmetry!!

SpinQuest Timeline

Schedule for data taking


Year	Month	Event	
2022	12	Commission target & spectrometer using beam	
2023	02	Start the 1st data taking	
		$\Downarrow 4.5 \text{ months}$	
	07	Accelerator summer shutdown	
	12	Start the 2nd data taking	

- "Day-One" Physics
 - TSSA of J/ψ production
 - Sufficient statistics with first one month
- SpinQuest Upgrades?
 - Tensor polarization of antiquarks in deuteron PRD 94, 054022 (2016)
 - Polarized nuclear effects
 - o "DarkQuest": Dark-photon search

$\begin{array}{c} \textbf{Spin Asymmetry of } \textbf{\textit{J}}/\psi \\ \textbf{Productions @ SpinQuest} \end{array}$

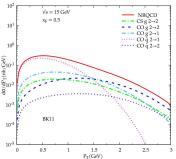
J/ψ Productions in p+p

• $p+p \rightarrow J/\psi + X$

- 1) Perturbative part
- o Color Evaporation Model (CEM) ... NPB 405, 507 (1993)

$$\circ \circ \ \frac{d\sigma_{J/\psi}}{dx_F} = F_{J/\psi} \sum_{i,j=q,\bar{q},G} \int_{2m_c}^{2m_D} dM \frac{2M}{s\sqrt{x_F^2 + 4M^2/s}} f_i(x_1) f_j(x_2) \sum_n \hat{\sigma}_{ij \to c\bar{c}[n]}(x_1,x_2)$$

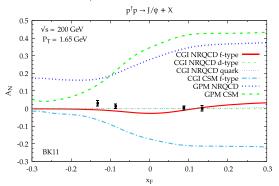
Non-Relativistic QCD (NRQCD) ... arXiv:2103.11660


$$\circ \circ \frac{d\sigma_{J/\psi}}{dx_F} = \sum_{i,j=q,\bar{q},G} \int_0^1 dx_1 dx_2 \delta(x_F - x_1 + x_2) f_i(x_1) f_j(x_2) \hat{\sigma}_{ij \to J/\psi}(x_1, x_2)$$

$$\circ \circ \hat{\sigma}_{ij o J/\psi} = \sum_n C^{ij}_{c\overline{c}[n]} \left\langle \mathcal{O}^{J/\psi}_n \right
angle$$

J/ψ @ SpinQuest

- Cross section
 - Based on NRQCD

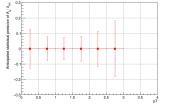

(https://confluence.its.virginia.edu/display/twist/Seminars)

- Subprocess fractions vary with p_T largely
- Sensitive to distributions of anti-quarks and gluons (at target side)
- $^{\circ}$ All depend on theoretical parameters (LDMEs & $\left\langle k_{\perp}^{2}
 ight
 angle ^{quark, ilde{gluon}}$)
- Unique in terms of $\sqrt{s} \& x_F$

Transverse Single Spin Asymmetry of J/ψ

- Sensitive to the Sivers functions of antiquark & gluon
- Measurement at RHIC-PHENIX PRD 98, 012006 (2018)
 - $\circ \sqrt{s} = 200 \text{ GeV}, x_F \sim 0.1$
- Theoretical estimate
 - Maximum TSSA PRD 102, 094011

Wide ranges of explorable asymmetry sizes & kinematic regions


Anticipated J/ψ TSSA @ SpinQuest

Theoretical estimate of max Sivers asymmetry

 $\sqrt{s} = 15~{\rm GeV}, x_F \sim 0.5 \qquad \qquad {\rm by~Rajesh~Sangem}$ $\sqrt{s} = 15~{\rm GeV}, x_F = 0.5$ \sqrt{s}

- δ_{AN} of J/ψ vs x_2 and p_T (GeV)

- Anticipated statistical precision: δ_{AN}
 - Based on PYTHIA8
 - In case of one-week data taking

Summary

- Drell-Yan process
 - Simplest/cleanest process in p+p scatterings
 - Becoming more important in measuring (TMD) PDFs of antiquarks
- SeaQuest experiment
 - Unpolarized Drell-Yan process
 - Flavor asymmetry of light anti-quarks: $\bar{d}(x)/\bar{u}(x)$
 - Nuclear effects
- SpinQuest experiment
 - Transversely-polarized Drell-Yan process
 - Sivers function
 - TSSA of J/ψ productions
- SpinQuest is starting the beam commissioning & the 1st data taking in December 2022. Please contact the spokespersons if interested:
 - Dustin Keller (UVA, dustin@virginia.edu) & Kun Liu (LANL, liuk@lanl.gov)