

Novel CFFs Extraction in Unpolarized DVCS

Liliet Calero Diaz Zulkaida Akbar Prof. Dustin Keller

October 21th 2021

Introduction Generalized Parton Distributions

GPDs provide correlated information of the **transverse position** and the **longitudinal momentum** distributions of partons.

- R. Dupre et al arXiv:1/04.0/330
 - CFFs are directly linked to the tomography of the proton.
 - CFFs give insights on: Spin structure, energy-momentum structure

Introduction Generalized Parton Distributions

Deep Virtual Compton Scattering (DVCS) is the simplest process involving Generalized Parton Distribution functions (GPDs).

 Twist-2

 Chiral even GPDs: quark helicity is conserved

 H E

 averages over quark helicities

 "unpolarized"

 \widetilde{H} \widetilde{E}

 differences of quark helicities

 "polarized"

 conserve nucleon

 helicity

Accesing GPDs through DVCS

DVCS cross section is parametrized in terms of the Comptom Form Factors (CFFs). At twist-2 there are 8 CFFs $(\mathcal{H}, \mathcal{E}, \widetilde{\mathcal{H}}, \widetilde{\mathcal{E}})$ considering their $\Re e$ and $\Im m$ parts, that are given by the convolution of GPDs:

$$\mathcal{H}(x_B, t, Q^2) = \int_{-1}^{1} dx \left[\frac{1}{\xi - x - i\epsilon} - \frac{1}{\xi + x - i\epsilon} \right] H(x, \xi, t, Q^2)$$

Introduction

DVCS cross section

a
$$x_B$$
 Bjorken variable: $x_B = \frac{Q^2}{2(pq)}$
Momentum fraction of the quark or gluon on which the photon scatters

DVCS cross section formulations

- VA [B. Kriesten, S. Liuti, et al arXiv:1903.05742]
 - Written in terms of helicity amplitudes.
 - Covariant description
- BKM (2002) [A.V. Belitsky, D. Muller, A. Kirchner arXiv:0112108v2]
 - Written in terms of harmonics of the azimuthal angle, φ, and in kinematic powers of 1/Q.

Unpolarized

 $\Re e \mathcal{H}, \Re e \mathcal{E}, \Re e \widetilde{\mathcal{H}}$

[B. Kriesten, S. Liuti, et al arXiv:1903.05742]

JLab Hall A @ 6 GeV

- Unpolarized beam
- Unpolarized H₂ target
- 20 kinematic sets in x_B, t, Q^2
- $Q^2[1.453, 2.375]GeV^2$
- $t[-0.121, -0.4]GeV^2$
- x_B[0.336, 0.401]

Extraction Methods ϕ space fit

$$\frac{d^5\sigma}{dx_{Bj}dQ^2d|t|d\phi d\phi_S} = \frac{\alpha^3 x_B y^2}{16\pi^2 Q^4 \sqrt{1+\epsilon^2}} \frac{1}{e^6} \Big[\underbrace{\left(\mathcal{T}^{BH}\right)^2}_{\text{Exact (QED)}} + \underbrace{\left(\mathcal{T}^{DVCS}\right)^2}_{\phi\text{-indep}} + \underbrace{\mathcal{I}}_{3\text{ CFFs}} \Big] \ .$$

$$\begin{split} |\mathcal{T}_{DVCS}|^2 &= \frac{1}{Q^2(1-\epsilon)} \underbrace{F_{UU,T}}_{\text{8 CFs}} \\ \mathcal{I}^{VA} &= \frac{1}{Q^2(1)} \Big[A^{VA}_{UU} \big(F_1 \Re e \mathcal{H} - \frac{t}{4M^2} F_2 \Re e \mathcal{E} \big) \\ &+ B^{VA}_{UU} G_M \left(\Re e \mathcal{H} + \Re e \mathcal{E} \right) + C^{VA}_{UU} G_M \Re e \widetilde{\mathcal{H}} \end{split}$$

VΑ

$$\begin{split} |\mathcal{T}_{DVCS}|^2 &= \frac{e^6}{y^2 Q^2} \bigg\{ 2(2-2y-y^2) \bigg\} \underbrace{\mathcal{C}_{unp}^{DVCS}(\mathcal{F},\mathcal{F}^*)}_{\textbf{8} \text{ CFFs}} \\ \mathcal{I}^{BMK} &= \frac{e^6}{x_B y^3 t \mathcal{P}_1(\phi) \mathcal{P}_2(\phi)} \bigg[A_{UU}^{BKM} \big(F_1 \Re e \mathcal{H} - \frac{t}{4M^2} F_2 \Re e \mathcal{E} \big) \\ &+ B_{UU}^{BKM} G_M \big(\Re e \mathcal{H} + \Re e \mathcal{E} \big) + C_{UU}^{BKM} G_M \Re e \tilde{\mathcal{H}} \bigg] \end{split}$$

ó ídea

4 fit parameters:

 $\Re e \mathcal{H}, \Re e \mathcal{E}, \Re e \widetilde{\mathcal{H}},$ pure DVCS

Extraction Methods

Improve results by imposing fit constraints.

Extraction Methods A_{UU}/B_{UU} space fit

VA Linear Method [B. Kriesten, S. Liuti, et al arXiv:1903.05742]

Change of variables

$$\phi \longrightarrow \frac{A_{UU}^{I}}{B_{UU}^{I}}$$

Extraction Methods

A_{UU}/B_{UU} space fit

Extraction Methods A_{UU}/B_{UU} space fit

Extraction Methods

Pseudo-data study

 $\frac{A_{UU}}{B_{UU}}$ Systematics

 $\frac{A^{I}_{uu}}{C^{I}_{uu}} \Longrightarrow Large$

 $\frac{c_{1u}^{I}}{b_{uu}^{u}}$ is generally small. BKM has a larger plateau around the largest values of the $\frac{c_{1uu}^{I}}{b_{uu}}$. This behavior depends on the kinematic settings.

To account for the effect of this approximation, pseudo-data is generated at the HallA kinematics.

$\phi\text{-fit}$ and VA line fit comparison

$$\begin{split} k &= 5.75 GeV \\ Q^2 [1.453, 2.375] GeV^2 \\ t [-0.121, -0.4] GeV^2 \\ x_B [0.336, 0.401] \end{split}$$

CFFs set at the values obtained from the data ϕ fit.

Cross sections with 5% variation.

VA linear method greatly improve the extraction of the $\Re e \mathcal{H}$ and $\Re e \mathcal{E}$ CFFs at the HallA kinematics.

Results will be reported using the **linear fit** method for the **VA formulation**.

$\phi\text{-fit}$ and VA line fit comparison

BKM Pseudo-data

20 kinematics sets of the HallA data.

$$\begin{split} k &= 5.75 GeV \\ Q^2 [1.453, 2.375] GeV^2 \\ t [-0.121, -0.4] GeV^2 \\ x_B [0.336, 0.401] \end{split}$$

CFFs set at the values obtained from the data ϕ -fit.

Cross sections with 5% variation.

There are no marked improvements applying the VA linear method fit for the extraction of CFFs $\Re \mathcal{CH}$ and $\Re \mathcal{CE}$ at the HallA kinematics.

Results will be reported using the ϕ -fit for the BKM formulation.

Extraction Methods

Simultaneous fit

 $\Re_e \widetilde{\mathcal{H}}$ cannot be extracted from VA linear method

Set constraints to extract $\Re e \widetilde{\mathcal{H}}$ by performing a simultaneous fit:

The results for the extraction of $\Re e \widetilde{\mathcal{H}}$ from the VA formalism are reported performing a simultaneous fit

CFFs extraction with BKM formalism are shown with the ϕ results since the extraction does not improve with the VA line method

Results

k = 5.75 GeV $Q^{2}[1.453, 2.375]GeV^{2}$ $t[-0.121, -0.4]GeV^{2}$ $x_{B}[0.336, 0.401]$ Kin 3: $x_B [0.345, 0.373]$, $Q^2 [2.218, 2.375] GeV^2$

Sample the cross section within 5% error for each set to obtain the distribution of CFFs extracted with the VA linear method.

Systematics

16

Local fit using the VA linear method with ANN (pseudo-data)

___ ANN

Propose experimental data taken at kinematic points were both formulations are expected to have different behaviors.

In this kinematic set the difference remains when the CFFs change significantly.

Future Work

Using the local fits as input for the ANN global fit.

HallB data - 110 sets

- The CFFs $\Re e \mathcal{H}$, $\Re e \mathcal{E}$ and $\Re e \widetilde{\mathcal{H}}$ were extracted from the JLab Hall A @ 6 GeV DVCS data using the VA and BKM(2002) model fit.
- The obtained CFFs are consistent in the 2 formulation within the errors for all kinematic settings, except for $\Re e \mathcal{H}$ that displays a different sign behavior.
- Use additional constraints with Artificial Neural Network to optimize the CFFs extraction.
- \circ Study the systematic limits of the extraction in the A_{UU}/B_{UU} -space.

THANK YOU!