in Spin Physics

And the Future of Spin At Fermilab

SPIN2021 The 24th International Spin Symposium

18-22 October 2021 Matsue, Shimane Prefecture, Japan

Dustin Keller with the University of Virginia, October 22

Artificial Intelligence and Spin Physics and the future of Spin at Fermilab

- What is Al
- Some examples in Spin
- Where are things going
- A bit about gluons
- How does FNAL fit in

What is Al?

Artificial Intelligence Ability to sense, reason, engage and learn

Computer vision

Supervised

learning

Natural Language Processing

Voice recognition Machine Learning Ability to learn

> Unsupervised learning

 Regresseion Decision trees • Etc

General AI: Full AI, Strong AI, True AI (designed to do anything)

Robotics & motion

> Planning & optimization

Specialized AI: Designed to do just one task very well

Knowledge capture

Reinforcement learning

Methods Ability to reason

Technologies Physical enablement

- Platform
- UX
- APIs
- Sensors
- Etc

ARTIFICIAL INTELLIGENCE TERMS-

• Al is an umbrella term for machines capable of perception, logic, and learning.

- Machine learning employs algorithms that learn from data to make predictions or decisions, and whose performance improves when exposed to more data over time.
- Deep learning uses many-layered neural networks to build algorithms that find the best way to perform tasks on their own, based on vast sets of data.

Basic Neural Network

"Non-deep" feedforward neural network

Perceptron Concept

Deep neural network

Evolution Timeline

R. Kurzweil

Some Important ANNs With applications to our field

- Feedforward Neural Networks
- Radial basis function Neural Networks
- Self Organizing Neural Networks
- Recurrent Neural Networks
- Convolution Neural Networks
- Modular Neural Networks
- Graph Neural Networks

Bogdan Oancea, Tudorel Andrei, Raluca Mariana Dragoescu arXiv:1408.6923v1

Machine Learning In Nuclear and Particle Physics

- Event-level Classification
- Trigger and Pattern Recognition
- Tracking/Event Reconstruction
- Cluster Reconstruction in Calorimeters
- Jet Representations and Preprocessing
- Jet Tagging
- Regression of detector drifts

- Simulation acceleration
- Systems Automation
- Detector Design
- Accelerator Design
- Optimization of workflow
- Detector Readout Optimization
- Cut Optimization

Machine Learning **In Spin Physics**

- Spin Phenomenology (information extraction)
- Model Polarized Mechanisms in PT
- Polarization Enhancement in PT *
- Material Analysis in PT⁻
- NMR Measurements
- Tracking and Online Monitoring
- Construction and Visualization of Models
- Data Analysis on event level and asymmetry extraction Multiple folks

Arthur Conover: 136. Machine Learning Online Monitoring for the SpinQuest JST 22 Oct 2021, 07:25 = EDT 21 Oct 2021, 18:25

- Traveling-wave electron linac
- Irradiated to $10^{17} e^{-/cm^2}$
- 14 GeV 10 μA under Liquid Argon (~87 K)
- Proton knocked out to from free radicals
- Also form color centers
- Material color is correlated to the dose
- Optimized for field and temperature

Irradiation Performed at NIST (MIRF Accelerator)

Work by Jack Beaty, UVA

Material Photo

Accumulated dose

Preliminary Predication using ANN Model (3% rel. error)

Target	Field (T)	Temp (K)	Dose	P(max)
ND3(D)	6.5	0.7	2.7	68%
LiD(Li7)	7.0	1	3.8	82%
CD2(D)	7.0	1	2.5	73%
LiH(Li7)	7.0	0.5	2.3	93%
LiF(F)	6.0	1	3.3	78%

S. Bultmass et al, NIM 425 (1999) 23-36

D. Crabb, W. Meyer, Annu. Rev. NPC (1997) 47

W. Meyer, NIM A526 (2004) 12-21

Some Examples In Phenomenology (Understanding Femtoscale Dynamics)

- Inverse Problem: Determine definitive measures of proton structures using experimental information, Lattice Calculations, and Phenomenology
 - Extraction of GPDs while eliminating the reliance of model fits
 - Extraction of TMDs without assuming a Gaussian factorized form
- Curse of Dimensionality: Understanding the Mother Function (Wigner?) in terms of processes and physical observables (interpretation yields inherent sparsity)
 - How can we impose constraints at the higher-level to interpret dynamics and geometry
 - How do we best obtain information from experiments that gets us the farthest

Candidate Mother Distribution

 $W(x,b_T,k_r)$

TMDs and Impact Parameters give complementary information about partons and are fundamentally connected to the Wigner Distribution

Husimi distributions have a Gaussian regularization factor in the integrand that keeps them positive in the entire range of transverse space coordinate

> Zhi-Lei Ma and Zhun Lu Phys. Rev. D 98, 054024

1.0

Challenges in the Interpretation

Helicity Amplitudes

Y. Guo, at el., arxiv2109.10373

$$H(x, x, t) = \frac{n r}{1+x} \left(\frac{2x}{1+x}\right)^{-\alpha(t)} \left(\frac{1-x}{1+x}\right)^{b} \frac{1}{\left(1-\frac{1-x}{1+x}\frac{t}{M^{2}}\right)^{p}} \quad \text{GPDs}$$

$$egin{aligned} f_{q/p}(x,k_{ot}) &= f_q(x) rac{1}{\pi ig\langle k_{ot}^2 ig
angle} e^{-k_{ot}^2/ig\langle k_{ot}^2 ig
angle} \ \Delta^N f_{q/p^{\uparrow}}(x,k_{ot}) &= 2 \mathcal{N}_q(x) h(k_{ot}) f_{q/p}(x,k_{ot}) \ h(k_{ot}) &= \sqrt{2e} rac{k_{ot}}{M_1} e^{-k_{ot}^2/M_1^2} \end{aligned}$$

TMDs

Hagiwara and Hattaj.nuclphysa.2015.04.005, arxiv:1412.4591

Explore the Feature Space A Second Look at Multilayered Integration

- ANN Global Analysis
- Feed in Data, Constraints, Framework
- Run encoder to map to GPU n-body sims
- Output through decoder to map to observables and

Explore the Feature Space A Second Look at Multilayered Integration

- ANN Global Analysis
- Feed in Data, Constraints, Framework
- Run encoder to map to GPU n-body sims
- Output through decoder to map to observables and

Al in Future Experiments And the Future of Fermilab Spin

- 120 GeV proton beam
- $\sqrt{s} = 15.5 \, \text{GeV}$
- 1×10^{12} pro/sec for 4.4 sec/min

Applications in AI-NMR

Yoshiyuki Miyachi: Room 601. Polarized Dell-Yan experiment at Fermilab... JST 22 Oct 2021, 09:34

Al in Future Experiments And the Future of Fermilab Spin

$\substack{ ext{leading}\\ ext{twist}}$		quark operator				
		unpolarized [U] longitudinal [L]		transverse [T]		
	U	$f_1 = \bigcirc$ unpolarized		$h_1^{\perp} = \bigcirc - \diamondsuit$ Boer-Mulders		
ation	L		$g_1 = \longrightarrow - \longleftrightarrow$ helicity	$h_{1L}^{\perp} = \underbrace{\swarrow}_{\text{worm gear 1}} - \underbrace{\checkmark}_{\text{worm gear 1}} \rightarrow$		
target polariz	т	$f_{1T}^{\perp} = \underbrace{\bullet}_{\text{Sivers}}^{\bigstar} - \underbrace{\bullet}_{\Psi}$	$g_{1T} = \underbrace{\bigstar}_{\text{worm gear 2}} - \underbrace{\bigstar}_{\text{gear 2}}$	$h_{1} = \underbrace{\begin{pmatrix} \bullet \\ \bullet \\ transversity \end{pmatrix}}_{transversity}$ $h_{1T}^{\perp} = \underbrace{\begin{pmatrix} \bullet \\ \bullet \\ \bullet \\ pretzelosity \end{pmatrix}}_{pretzelosity}$		
	HENSOR	$egin{aligned} & f_{1LL}(x,m{k}_T^2) \ & f_{1LT}(x,m{k}_T^2) \ & f_{1TT}(x,m{k}_T^2) \ & f_{1TT}(x,m{k}_T^2) \end{aligned}$	$egin{aligned} g_{1TT}(x,oldsymbol{k}_T^2)\ g_{1LT}(x,oldsymbol{k}_T^2) \end{aligned}$	$egin{aligned} h_{1LL}^{\perp}(x,m{k}_{T}^{2})\ h_{1TT}, & h_{1TT}^{\perp}\ h_{1LT}, & h_{1LT}^{\perp} \end{aligned}$		

Gluon Operator				
Le	ading Twist	Unpolarized	Circular	Linear
rized	U	f_1		h_1^\perp
or Pola	L		g_1	h_{1L}^{\perp}
Vecto	т	f_{1T}^{\perp}	g_{1T}	$h_{1,h_{1T}^{\perp}}$
	u	f_{1LL}		h_{1LL}^{\perp}
or Pola	ιτ	f_{1LT}	g_{1LT}	h_{1LT}, h_{1LT}^{\perp}
	π	f_{1TT}	<i>g</i> _{1<i>TT</i>}	$egin{array}{ccc} m{h_{1TT}}, & h_{1TT}^{\perp} \ & h_{1TT}^{\perp\perp} \ & h_{1TT}^{\perp\perp} \end{array}$

https://confluence.its.virginia.edu/display/twist/FNAL+Proposal+2020?preview=/18177846/18177847/FNAL_proposal_2020.pdf

Al in (Possible) Future Experiments And the Future of Fermilab Spin **Transversely Polarized Target Quark/Gluon Transversity**

- Tensor/Vector Polarized (ND3 Target)
- Proton vs Deuteron (Mixed ND3-NH3)
- Li-7, F
- N14(spin-1), N15(spin-1/2)

Longitudinally Polarized Target

- Polarized (NH3 Target)
- Proton vs Deuteron (Mixed ND3-NH3)
- ND3

Spin Dependent Flavor Asymmetry

Polarized EMC Study

Nuclei TMDs and gluon structure

Helicity

Spin Dependent Flavor Asymmetry

Tensor Pol SF

Dark Sector Physics at SpinQuest A Unified Effort 10^{-2}

 SpinQuest has unique potential for dark sector searches OLarge dark sector production cross section, 120 GeV p beam • Geometry sensitive to unique lifetime baseline, covers open phase space KMAG provides good momentum measurement for forward decays

OEMCal upgrade opens up new final states distinct from muon backgrounds

- Wide array of signatures in electron, muon, photon, and pion final states
 - Testing many dark sector signatures: dark photon, SIMPs, inelastic DM, heavy neutrino, ALPs, g-2, etc.
 - New personpower joining SpinQuest collaboration to build this program!

 $m_{A'}$ [GeV]

Thinking of Joining SpinQuest or Future Projects: (dustin@virginia.edu) https://spinguest.fnal.gov/ http://twist.phys.virginia.edu/E1039/