
BKM Formalism:
TensorFlow Graph Execution and 

tf.function
Cole Weis - 12/21/21



Graph Execution vs. 
Eager Execution



Eager Execution

• Expressions evaluate as if 
executed exactly in order, one at 
a time
• In python they are always 

executed explicitly in order

Graph Execution

• Functions are localized, with
more defined inputs and outputs

• Allows for graph optimization of
function dependencies and lazy 
execution

• Much more efficient for lots of 
small operations

• Better optimized for use with 
TPUs (Tensor Processing Units)



f() Runs 500 times



f
b=f(0)

b=5

g
tf.mul
a=b*2
a=0*2

a

b

x100

tf.mul
a=b*2
a=10

…

x5



f
b=f(0)

b=5

g
tf.mul
a=b*2
a=0*2

a

b

x100

tf.mul
a=b*2
a=10

…

x5

-> Graph is only retraced for each different set
of inputs to a function



f
b=f(0)

b=5

g
tf.mul
a=b*2
a=0*2

a

b

x100

tf.mul
a=b*2
a=10

…

x5

f() Runs 5 times

-> Graph is only retraced for each different set
of inputs to a function



f
b=f(0)

b=5

g
tf.mul
a=b*2
a=0*2

a

b

x100

tf.mul
a=b*2
a=10

…

x5

-> Allows for Lazy Execution



Local Fit Model





Predefined TensorFlow layers: 
already optimized for graph execution



Predefined TensorFlow layers: 
already optimized for graph execution

Custom defined layer: 
not optimized for graph execution



Graph Execution vs. Eager Execution

Restrictions for Graph Execution of a function (@tf.function):

1. Replace Pythonic Expressions with tensorflow equivalents

2. All inputs and outputs are tensors

3. Can only modify local method variables and outputs

Defining input shape of tensors is helpful for increasing efficacy



Refactoring TotalF Layer for 
Graph Execution
Localizing Methods, Calling all methods externally, Passing tensors instead of 
python variables



Results

Eager Execution Graph Execution

5 Sets

50 Sets



Problem: Excessive Graph Retracing






