
Progress Report
Pranav & Aaryan

11/02/2021



Summary of Ideas Discussed

Changing architecture - not much difference 

Individual results are not accurate, these would help reduce the bounds of CFF 
distribution → More confident in our averages if they are more localized

Ant Hill Optimization 

Averaging Weights

Parallel Training

XGBoost



Observations on Architecture

● Modifications Attempted
○ Dropouts (should reduce overfitting)
○ Additional dense/other layers
○ Changed node amounts in each layer
○ Activation functions

● After utilizing combinations of these modifications, no significant differences in 
bounds or accuracy of CFF distributions were observed 

● Possible limiting factor: training time; more combinations could be tried in 
more time, as it takes ~2 hours to run the local fits



Overall Observations 

● Each individual replica does not create an 
accurate ‘guess’ of the CFFs but overall they 
can give a much more accurate representation 
of CFFs (Regression towards the mean)

● What we are thinking: 
○ How can we have networks communicate with each 

other so they go towards a successful path?
○ How can we increase speed taken for regression 

towards the mean? 
○ Can we improve the results of the individual replicas?
○ Can throwing out “bad” intermediate networks reduce 

training time?



Possible Ideas

● Intermediate weight averaging/combination
○ after a certain n training epochs or some frequency, average weights of a certain number of 

subsets of all the models and begin training again with a reduced number of models
● After half of the replicas are done we find the mean that they are tending 

towards → encourage new networks to follow path towards the means
○ Possible Methods: Pruning out networks not going towards that path, utilizing stigmergic 

optimization, track initial starting weights of ‘successful’ networks and use them to create new 
networks



XGBoost

● Another commonly used machine learning algorithm in industry
● Implements “Gradient Boosting Tree” algorithm
● Combines many “weak learners,” or small decision trees

○ Similar to random forests; difference is that combination of weak learners is done differently
● Utilizes gradient descent to minimize loss while combining learners
● Extremely fast training and easier architecture optimization compared to 

neural networks
● Can operate on large datasets efficiently
● Could potentially be used in place of a neural network in the first and/or 

second stage of the model



Implementations to Try

● Intermediate weight averaging
● Parallel training/intermediate mean evaluation
● Stigmergic optimization

○ Stimergic Reinforcement Learning: Attractor Selection, ‘Pheromone Placement’, Rewards, 
Action Priority, Defining Loss for Evaluation and Behavior Modules

● XGBoost as part of model architecture


