
ar
X

iv
:1

70
7.

07
06

5v
1 

 [
nu

cl
-t

h]
  2

1 
Ju

l 2
01

7

EPJ manuscript No.
(will be inserted by the editor)

Modeling Alignment Enhancement for Solid Polarized Targets

D. Keller1

University of Virginia, Charlottesville, Virginia 22901

March 19, 2018

Abstract. A model of dynamic orientation using optimized radiofrequency (RF) irradiation produced perpendicular

to the holding field is developed for the spin-1 system required for tensor-polarized fixed-target experiments. The

derivation applies to RF produced close to the Larmor frequency of the nucleus and requires the electron spin-resonance

linewidth to be much smaller than the nuclear magnetic resonance frequency. The rate equations are solved numerically

to study a semi-saturated steady-state resulting from the two sources of irradiation: microwave from the DNP process

and the additional RF used to manipulate the tensor polarization. The steady-state condition and continuous-wave NMR

lineshape are found that optimize the spin-1 alignment in the polycrystalline materials used as solid polarized targets in

charged-beam nuclear and particle physics experiments.

PACS. 21.10.Hw 29.25.Pj

1 Introduction

Recent growing interest in tensor-polarized observables acces-
sible in fix-target experiments stems from their unique ability
to allow access to information not available using a vector-
polarized target. The tensor-polarized structure functions [1]
arising in spin-1 decomposition of the hadronic tensor in deep
inelastic scattering (DIS) is one example of this. An experiment
to measure the leading-twist spin-1 tensor-polarized structure
functions from a solid polarized target has been proposed at
Jefferson Lab [2], and it is also possible to study the effects of
deuteron alignment in short range correlations [3,4]. However,
very little data on tensor-polarized observables from solid po-
larized target experiments exists to date [5,6,7,8,9,10] largely
because it is necessary to maximize both the tensor polariza-
tion and beam intensity simultaneously to achieve sufficiently
high measurement precision.

Maximizing the likelihood of interaction when probing tensor-
polarized observables requires generating a high tensor polar-
ization of the target. The figure-of-merit for such experiments
typically scales as the square of the tensor polarization. In ad-
dition, time-dependent drifts are suppressed by the magnitude
of the polarization, setting the scale of the asymmetry that the
experiment can probe. The requirement of having both high
tensor polarization and beam intensity simultaneously has not
been available in previous experiments. Deuteron vector po-
larizations of 80-90%, corresponding to tensor polarizations
of 55-75%, have been demonstrated in deuterated butanol and
propanediol samples dynamically polarized at temperatures be-
low 300 mK using 3He/4He dilution refrigerators [11,12]. How-
ever, beam heating and radiation damage limit these systems to
luminosities less than 1032 cm−2 s−1. Much higher luminosi-
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ties, up to 1036 cm−2 s−1, can be achieved with samples of ND3

or 6LiD polarized at 1 K [13], but in these cases the deuteron
vector polarization is typically less than 50%, corresponding to
a tensor polarization less than 20%.

This article examines a method whereby the tensor polar-
ization can be significantly increased in 1 K systems by us-
ing RF radiation (hole burning) to manipulate the NMR line
of deuterons in ND3. Tensor polarization manipulation using
saturating RF has been discussed by previous authors [14,15]
for ND3 and 1,2-propanediol respectively. The work in [14]
suggested that such a method could be use to enhance tensor
polarized targets in particle physics experiments but could only
offer rough estimates of the tensor polarization after applying
RF. The work in [15] offered a simple measurement technique
using 1,2-propanediol samples dynamically polarized at 2.5 T
and 0.3 K. The RF application occurred only after switching
off the microwave source for dynamic polarization and plac-
ing the sample in the frozen spin condition at either 1.25 or
2.5 T and temperatures below 100 mK. The authors found their
determination of the polarization after RF manipulation incon-
sistent with experimental results found by measuring the tensor
analyzing power T20 in πd elastic scattering. The present work
utilizes a model resulting in a measurement method based on
numerical solutions to the spin-1 solid-effect rate equations that
describe the three spin states of the deuteron under the dual
processes of dynamic polarization and RF manipulation. These
solutions are then applied to data on ND3 polarized at 1 K and
5 T, demonstrating an RF manipulation and measurement tech-
nique testable with scattering experiments.

The remainder of this article is organized as follows. In
Sections 2 and 3 brief descriptions are presented, respectively,
of the deuteron lineshape of ND3 and enhancement with the
intent to increase the deuteron tensor polarization. Section 4
gives a set of coupled differential equations that describe the
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action of the lineshape during both dynamic polarization and
RF saturation along with the bulk behavior of the material. De-
tails of the CW-NMR setup used to obtain the data needed to
parameterize the simulations are given in Section 5. Section 6
contains the solutions and interpretation of the aforementioned
rate equations. Further discussion is given in Section 7 on the
optimization of the tensor-enhancement mechanism and result-
ing theoretical lineshape based on the simulation. Section 8 dis-
cusses possible methods to verify the results using specialized
NMR experiments as well as the use of known tensor analyzing
powers in nuclear scattering.

2 The Deuteron NMR Lineshape

The polarized target apparatus includes a strong magnet pro-
ducing a cylindrically symmetric field B0, oriented in a direc-
tion taken as the z-axis. In this case, the density matrix describ-
ing an ensemble of spin-1 particles like the deuteron, respects
the same cylindrical symmetry and can be expressed as

̺ =
1

3
1+

1

2
PnIz +

1

6
QnIzz. (1)

Here, Iz and Izz are the two remaining, nonzero Hermitian basis
operators and pertain to rotations about the z-axis only. The
parameters Pn and Qn are the vector and tensor polarizations of
the ensemble:

Pn = < Iz >=
n+− n−

n
and (2)

Qn = < Izz >=
1− 3n0

n
, (3)

where ni is the population of the mi magnetic substate and the
total number of spins is n = n+ + n0 + n−. The polarizations
may take values −1 ≤ Pn ≤ 1 and −2 ≤ Q ≤ 1. Note that the
tensor polarization (sometimes referred to as the alignment or
quadrupole polarization) can be seen as a measure of the n0

population: to increase the tensor polarization means decreas-
ing n0, and vice versa. Because dynamic polarization requires
doping the sample with free or unpaired electron spins in the
form of paramagnetic radicals, the polarization of these spins
is also specified:

Pe =
(ne

+− ne
−)

ne
. (4)

When the Zeeman levels are populated according to Boltz-
mann statistics at some temperature T , the polarizations for a
spin-1 system can be calculated using standard Brillouin func-
tions:

Pn =
4tanh(h̄ωD/2kT )

3+ tanh2(h̄ωDB0/2kT )
, (5)

Qn =
4tanh2(h̄ωD/2kT )

3+ tanh2(h̄ωDB0/2kT )
, and

Pe = tanh(h̄ωS
0 B0/2kT ),

)1/3(-1=cosθ
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Fig. 1. The energy level diagram (not to scale) for deuterons in a mag-

netic field for three values of θ where h̄ωD is the deuteron Zeeman en-

ergy, h̄ωQ = (eq)(eQ)/8 is the quadrupole energy, and θ is the angle

between the magnetic field and the EFG. The red (blue) lines indicate

the transitions from the magnetic sublevels −1 ↔ 0 (0 ↔ 1).

where h̄ωD(h̄ωS
0 ) is the deuteron (electron) Zeeman energy. For

the case where the system is in Boltzmann equilibrium, Qn only
exists in the range from 0 ≤Qn ≤ 1, and the following relation-
ship holds for Pn and Qn,

Qn = 2−
√

4− 3P2
n . (6)

With only irradiation from the microwave source the DNP pro-
cess can be described as the cooling of the nuclear moments
to a very low spin temperature that can be either positive or
negative, depending on the sign of the vector polarization.

The equilibrium electronic polarization P0 comes directly
from spin-temperature theory [16],

P0 =−tanh(hωS
0/2kT )≡−(1− r)/(1+ r),

r ≡ exp(−hωS
0/kT ), (7)

where T is the temperature and k is the Boltzmann constant.
The value of P0 is sensitive to the spin-temperature conditions
imposed by the cryostat and RF environment and is treated as a
parameter in the rate equations. The deuteron nuclear equilib-
rium polarization is comparatively small for relevant field and
temperature.

In this situation, the relation in Eq. 6 between Qn and Pn

still holds, and a measurement of the vector polarization can be
used to determine the tensor polarization. In addition to their
magnetic dipole moment, spin-1 nuclei can have an electric
quadrupole moment (eQ) which results from a nonspherical
charge distribution in the nucleus. In the case of materials with
cubic symmetry, the electric field gradient (eq) is zero and the
quadrupole nuclei (e.g. 6LiD and HD) behave similarly to the
spin-1/2 nuclei. The two Zeeman transitions for the deuteron
in an isotropic condition are degenerate, resulting in a single
NMR peak spectrum in the frequency domain. For materials
without cubic symmetry (e.g. ND3), the interaction of the eQ

with the electric field gradient (EFG) breaks the degeneracy of
the energy transitions, leading to two overlapping absorption
lines in the NMR spectra, which indicates a quadrupolar split-
ting (∆νQ). The magnitude of the quadrupole splitting is de-
pendent on the EFG, the size of the quadrupolar moment, and
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the relative orientation of the EFG with respect to the magnetic
field B0. The energy levels, Fig. 1, of this type of spin-1 system
can be expressed as,

Em = −mh̄ωD + h̄ωQ[(3cos2 θ − 1) (8)

+ η sin2 θ cos2φ ](3m2 − 2),

where h̄ωD is the deuteron Zeeman energy, h̄ωQ = (eq)(eQ)/8
is the quadrupole energy, and θ is the angle between the mag-
netic field and the EFG. The azimuthal angle φ and asymme-
try parameter η are required for describing energies where the
EFG is not symmetric about the bond axis [22]. The two al-
lowed transitions from the magnetic sublevels (−1 ↔ 0) and
(0↔ 1) correspond to energy differences (E−1−E0) and (E0−
E1), respectively. There are two resonant frequencies for any
given θ corresponding to the (0 ↔ 1) transition with intensity
I+ and the (−1 ↔ 0) transition with intensity I−. A fitting tech-
nique of the spin-1 NMR signal which relies on the system
maintaining the thermal equilibrium relationship between vec-
tor and tensor polarization has been previously outlined [34]. A
spin-1 NMR signal is shown in Fig. 2 with a fit demonstrating
the two intensities I+ (in blue) and I− (in red).

It is convenient to define a dimensionless position in the
NMR line R = (ω − ωD)/3ωQ, spanning the domain of the
NMR signal. The degree of axial symmetry and dependence
on the polar angle can be understood by using the basis line-
shape for an isotropic rigid solid or the Pake doublet [35], al-
lowing for a fit of the NMR data. This is simply a sum of the
areas of the two absorption lines. The peaks of the Pake dou-
blet (R ∼ ±1) correspond to the principal axis of the coupling
interaction perpendicular (θ = π/2) to the magnetic field. This
is the most probable configuration within each transition, as
indicated by the intensity of each peak. The opposing end in
each transition in the lineshape corresponds to the configura-
tion occuring when the principal axis of the coupling interac-
tion is parallel (θ = 0) to the magnetic field; this has much less
statistical significance, as indicated by the intensities in each
transition around (R ∼∓2).

The spin-spin interactions cause a distribution in the local
holding field for a given spin, leading to slight variations of ωD.
The spectrum displays a dipolar broadening from these effects,
approximated by using a convolution of the density of states
with a Lorentzian [22,34]. The resulting analytic function is
defined over all values of R and expressed as

F =
1

2πX

[

2cos(α/2)

(

arctan

(

Y 2 −X 2

2Y X sin(α/2)

)

+
π

2

)

(9)

+ sin(α/2) ln

(

Y 2 +X 2 +2Y X cos(α/2)

Y 2 +X 2 −2Y X cos(α/2)

)]

,

where X 2 =
√

Γ 2 +(1− εR−η cos2φ)2, Y =
√

3−η cos2φ and

cosα = (1− εR−η cos2φ)/X 2. After a φ -average and fit to ND3

experimental data, η cos2φ evaluates to ∼0.04. The Lorentzian width,

Γ∼0.05, is related to the degree of dipolar broadening of the NMR

signal [34] and ε references the specific intensity curve so that F (ε =
±1) = I±.

The NMR signal, properly fitted, measures the intensity of each

peak in the doublet. These fitted intensities are used to extract the av-

eraged polarization of the ensemble over the course of the nuclear

scattering experiment.

R
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Fig. 2. A demonstration fit to ND3 NMR data using the discussed line-

shape. The fit based on the intensity from each peak is Pn = 42.3%

(vector polarization) and Qn = 13.1% (tensor polarization). The in-

tensity I+ (I−) is shown in blue (red).

The response of a spin system to NMR probing RF irradiation is

described by its magnetic susceptibility χ(R) = χ ′(R)−χ ′′(R), where

χ ′′ is the absorption function and χ ′ is the dispersion function. The

vector polarization of the spin-1 system with residual quadrupole cou-

pling can be described [37] by

Pn =
2h̄

g2µ2
NπN

∫ ∞

−∞

3ωQωD

3RωQ +ωD
χ ′′(R)dR

=
1

CE

∫ ∞

−∞
I+(R)+ I−(R)dR, (10)

where g is the dimensionless magnetic moment of the particle with

spin and µN is the nuclear magneton. The total deuteron NMR signal,

consisting of the output voltage integrated over frequency, is the total

area of the two separate intensities I+ and I− originating from the (1→
0) and (0 →−1) transitions, respectively. Each transition’s intensity

is proportional to the differences of the level populations within that

transition so that I+ =CE(ρ+−ρ0) and I− =CE(ρ0 −ρ−), where CE

is the calibration constant encoding the relationship between signal

area and polarization and ρi is the level population normalized to the

total ensemble population. A measurement with the spin system in a

known polarization state determines the calibration constant, such as

when the ensemble is in thermal equilibrium with the lattice and Eq.

5 can be used. After acquiring the calibration, the vector polarization

can be calculated as Pn = (I+ + I−)/CE , and the tensor polarization

as Qn = (I+− I−)/CE for RF manipulated or dynamically enhanced

targets.

In the example fit to the ND3 NMR data (Fig. 2), the magnitude

of the powder pattern, I, is in units of millivolts multiplied by the cal-

ibration constant CE . Based on the intensity from each peak, a mea-

surement of Pn = 42.3% (vector polarization) and Qn = 13.1% (tensor

polarization) results.

As the sample vector polarization increases, the difference be-

tween the intensities I+ and I− becomes greater. The change to the the-

oretical lineshape for increasing positive vector polarization is shown

in Fig. 3 for polarization of 13%, 42%, and 78%. The area of the NMR

signal gets progressively larger with increasing polarization. Under-

standing the change in the relative size of the intensities I+ and I−
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Fig. 3. Simulated lineshape showing the increase in positive vector

polarization of 13%, 42%, and 78%.

as a function of vector polarization is critical for the RF tensor en-

hancement. As the vector polarization decreases, the degree of po-

tential tensor polarization enhancement per total area of NMR signal

increases. During scattering experiments the relative improvement in

tensor enhancement at low polarization can partially offset the loss of

polarization due to radiation damage.

3 Polarization Enhancement

To manipulate the magnitude of tensor polarization during DNP pump-

ing, a separate source of coil-generated RF irradiation is used to selec-

tively saturate some portion of the deuteron NMR line. Application of

RF irradiation at a single frequency or over a frequency range induces

transitions between the magnetic sublevels within the frequency do-

main of the applied RF. A spin-diffusion rate that is small compared

to the effective nuclear relaxation rate allows for significant changes

to the NMR line via the RF, which can be strategically used to manip-

ulate the spin-1 alignment. The present study gives the rate equations

for both the microwave and the additional coil-RF irradiation, solving

them numerically for the polarizations of an electron spin-1 nuclear

system. A semi-saturated steady-state condition is proposed which

manipulates and holds the magnetic sublevels responsible for polar-

ization enhancement. To be useful for a nuclear experiment setting,

the target ensemble averaged tensor polarization must be increased

and held in a continuous mode. This model of the spin dynamics pro-

duces a simple simulation which generates the CW-NMR lineshape

that maximizes tensor polarization values for the optimal steady-state

condition.

Manipulation of the population in the m = 0 state through the use

of RF irradiation at certain positions in the doublet results in limited

modular control of the target alignment. Selective excitation of one

of the allowed transitions over a frequency range reduces the absolute

value of tensor polarization at the RF frequencies but enhances it at

the same polar angle θ in the other transition. The RF sweep rate must

be fast with respect to the relaxation rates so as to simultaneously

manipulate a portion of the NMR line. The irradiation from the RF

causes population exchange between the two sublevels in a transition,

transforming pure Zeeman order into a combination of Zeeman and

quadrupolar order. The other transition responds reflecting the change

in population at θ and leading to an enhancement through the polar-

ization and relaxation pathways generated by the RF.

The deuterated ammonia target material possesses one of the high-

est deuteron polarizations along with good resistance to radiation dam-

age under a charged beam [23,24], making it the essential spin-1 solid

target for electron/proton scattering (such as in DIS and the proton-

deuteron Drell-Yan process). The 6LiD target material has consider-

able radiation resistance; however, its cubic symmetry results in an

NMR spectrum with no first order quadrupole splitting, making it in-

adequate for tensor polarization enhanced scattering experiments. Un-

der optimal conditions in a high-cooling power evaporation refrigera-

tor, ND3 can be polarized to well above 45% at 5 T. The polarization

mechanism for radiation doped 14ND3 in various thermal conditions is

complex and still under study. Measurements of the ESR line of warm

(∼87 K) irradiated ND3 indicate that radical ṄD2 is responsible for

the DNP process [25]. This warm dose is typically in the form of 10-

20 MeV electrons, with integrated fluxes of about 1017 e−/cm2. The

Larmor frequency of 14N is small with respect to the ESR linewidth of

the radiation-induced paramagnetic centers; however, for the Larmor

frequency of the deuteron this is less true [26,25]. The theory of equal

spin temperature does not apply to ND3, and there is some evidence

[13,25,27] that the differential solid-effect [22,29,30] is the domi-

nant spin-transfer mechanism for samples prepared in this manner.

However, ND3 exhibits unusual behavior as it accumulates additional

cold (∼1 K) irradiation during the scattering experiment. First, the

maximum attainable polarization increases significantly, from about

15% to nearly 50%. Second, the optimum microwave frequencies for

positive and negative polarization separate [27,28]. A full understand-

ing of all aspects of the observed behavior of irradiated ND3 and its

polarization mechanisms requires much more research. In this initial

study, the solid-effect is used demonstrating a technique to model the

RF-manipulated NMR line with sensitivity to the polarization and re-

laxation pathways. The microwaves are assumed to be at resonance

for the material under study.

The process of the solid-effect uses unpaired electrons in free

atoms to interact with a nuclear spin. These spins are subject to a

static magnetic field B0 at cryogenic temperature with the system re-

ceiving irradiation from a microwave field 2Bµ cosωµ t at frequencies

that induce simultaneous ESR and NMR. The electrons are quickly

polarized by brute force in the strong holding field while the vector

polarization comes from the DNP process. An additional field is im-

posed for the purpose of manipulating the spin-1 alignment through

use of a modulated RF field 2Bν cosων t produced by current in a he-

lical wire coil around the coupled spin system. The frequency ωµ is

chosen to be near the ESR frequency ωS
0 = −γs|B0| and ων is cho-

sen to be at the Larmor frequency ωI
0 = γI |B0|, where γS and γI are

the gyromagnetic ratios of the electron and nucleon spin respectively.

Choosing the z-axis to be the direction of the holding field, as in Eq. 1,

the single-frequency solid-effect Hamiltonian contains only the Zee-

man, RF-irradiation, and hyperfine contributions to the system so that,

HSE = ωS
0 Sz −ωI

0Iz (11)

+ 2ωS
µ Sxcosωµ t +2ωI

ν Iycosων t +S ·A · I,

where ωS
µ = γs|Bµ | and ωI

ν = γI |Bν |, such that γs is negative while γI

is positive. The set of dot products represents the hyperfine interaction

between the two spins where A is the hyperfine interaction tensor.

The microwave term can induce simultaneous transitions of the

electron spin and the nuclear spin, the RF-irradiation term can only

affect nuclear transitions. The two Zeeman terms in the Hamiltonian

can be interpreted as the unperturbed part, and the RF terms with the

hyperfine interaction term can be interpreted as the perturbation. The

resulting rate of the transitions induced by the microwave takes the
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form

β± = 2π

(

Bµ aµ

B0

)2

δ (ωS
0 ±ωI

0 −ωµ ), (12)

which reflects the two types of flip-flop transitions producing both

positive and negative polarization. The resulting rate of the transitions

induced by the RF takes the form

ξ = 2π

(

Bν aν

B0

)2

δ (ωI
0 −ων ), (13)

which can only play a role between nuclear spin energy levels that

differ by the spin of the mediating photon while the electron spin in

the hyperfine coupling remains unchanged. In each expression, aµ and

aν are constants depending on the coupling strength.

The DNP polarization enhancement process is modeled with the

solid-effect while the tensor polarization enhancement process is mod-

eled with dynamic orientation using the coil-RF at a single frequency

in the CW-NMR signal. A family of numerical solutions are generated

and used to interpret the behavior of the magnetic sublevel population

at the coil-RF irradiated frequency.

4 Modeling the Lineshape

The method presented here generates a theoretical lineshape based on

the rate equations at just a single line position, R, where the RF-coil

irradiation is selectively saturated or semi-saturated. These solutions

combine with bulk spin effects acquired empirically to describe the

dynamics of the overlapping absorption lines in the CW-NMR. The

relationship between the two intensities I+ and I− at R must be calcu-

lated in order to obtain the overall area change under each absorption

line which can then be used to calculate the resulting vector and tensor

polarization.

A simulation is used to describe any particular CW-NMR fre-

quency response of the longitudinal magnetization behavior under the

implemented RF-irradiation. The physical environment of the spin

system is not rigorously simulated here rather, a simplified approach

is used which relies on empirical information extracted from NMR

and polarization build up data. The lineshape in the model pertains to

frozen polycrystalline ND3 with free radicals in a glassy matrix. At the

required temperature of ∼1 K, there are little relevant molecular dy-

namics with rotations mostly quenched by lockup from intermolecu-

lar bonding. The simulation uses the lineshape from Eq. 9, augmented

with Voigt functions, as a response to the coil-RF irradiation. Here,

500 bins represent the 500 RF scan steps of the CW-NMR. Monte

Carlo sampling of a distribution defined by the theoretical lineshape

generates the values of the 500 bins. Iteratively regenerating the distri-

bution as the system evolves under the correct RF conditions simulates

changes in the system. Parameterization of the relationship between

microwave power and the material characteristics requires empirical

data; the simulated lineshape can then be used to study the target align-

ment phenomenology for the RF-manipulated CW-NMR.

Adding a measured diffusion parameter related to the NMR line

recovery rate (after RF terminates) incorporates the transverse effect

of homonuclear polarization-transfer (spin-diffusion). A fit also pa-

rameterizes the spread of the RF power absorbed in the NMR-line.

In the real system, polarization transfer through spin-diffusion occurs

as part of the bulk material polarization process. Spectral diffusion

also plays a role in the bulk behavior of the material, as seen in the

line recovery over time after a selective excitation. Because the rate

calculations here hold strictly for a single frequency, these aspects of

spin-diffusion are largely ignored in the handling of the rate equations.

The lineshape changes as the intensity decreases at the RF line po-

sition R=R and increases for the same θ at R=−R. Inhomogeneous

broadening occurs in individual spin packets within the absorption en-

velope of the line. The application of RF at a select frequency R in

the CW-NMR signal results in a range of resonance-frequency spins

in the envelope experiencing different field strengths. This leads to a

change in the width of the individual Lorentzian spin packets in each

absorption line in the irradiated frequency domain. The variation in

the Lorentzian widths depends on the inhomogeneity of the field gen-

erated by the RF. The lineshape depletion over the affected frequency

range is approximated by a subtracted Voigt. The Lorentzian width at

each spin packet depends on the spin-spin relaxation under the inho-

mogeneous field of the RF. The shape of the resulting Voigt represents

the response of the absorption envelope to the power profile generated

by the RF-coil. These characteristics largely depend on the coil de-

sign and amplitude of the signal generated. The region around R = R

in each absorption line can be simulated by fitting a Voigt function

to NMR data and using the resulting fit parameters in the simulation

assuming equal Voigt widths for the two overlapping absorption lines.

The lineshape also changes in the region around R =−R, where

the intensities increase by a positive Voigt function with initially the

same shape as the negative Voigt at a smaller amplitude. An addi-

tional broadening occurs from the spin-diffusion to neighboring spins.

The spin-diffusion process occurs when individual nuclear spins un-

dergo continuous exchange of energy, resulting in a transfer of po-

larization between spins of close proximity. The mechanism has a

unitary quantum-mechanical nature with geometric dependence gov-

erning the fundamental rate of the flip-flop process and can be ap-

proximated using the diffusion equation [22,38,39,40]. Changes oc-

cur to the line after selective excitation when nuclear spin polariza-

tion transfers across the NMR spectrum (spectral diffusion). In the

steady-state condition of dynamic orientation, using both DNP and

the coil-generated RF, broadening from spin-diffusion competes with

the continual RF pumping, leading to a measurable width that can pa-

rameterize the simulations. The diffusion is more evident and easier to

measure after discontinuing all sources of RF irradiation and allowing

the enhancement at R = −R to evolve in time. Changes to the Gaus-

sian component of the initial width of the positive Voigt continue in

time such that σ(t) =σ0+σd

√
t, where the polarization moves within

the line at time t with diffusion constant σd [38]. Neglecting diffusion,

the Gaussian σ of the positive Voigt is the same as it is for the negative

Voigt σ0. The overall change in the lineshape results from addition of

the Voigt functions to the two absorption lines. Fig 4 shows a fit used

to extract the Voigt parameterization from ND3 NMR data. The in-

tensity change to each absorption line requires studying the rate equa-

tions at R =R. Understanding the relationship between the intensities

I+(R = R) and I−(R = R) gives a unique constraint to the central

amplitude in each Voigt. Given the shape of the Voigt (determined ex-

perimentally) only the rate equation solutions at this single position in

the line R are needed to simulate the rest of the NMR signal and to

generate a theoretical lineshape after any RF manipulation.

The solid-effect rate equations for spin-1 have been written and in-

vestigated in previous work [31,32,33], and a similar notation is used

here. All rates in the solid-effect equations [33] are preserved in the

formalism that follows, but in the final evaluation only the irradiation-

induced rates from DNP and the coil-generated RF prove critical to

the dynamics of interest. In the following derivation, an extension is

made to include RF near the Larmor frequency to study the rates at

a select position in the NMR line. The electronic and nuclear spin

have magnetic quantum numbers mS = ±1/2 and mI = −1,0,1, re-

spectively. The rates are all expressed in terms of ω1, the rate for the

∆mS = ±1, ∆mI = 0 transition. The fundamental rate constant ω1 is
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Fig. 4. Partial saturation and response of the I+ transition in polarized

ND3. The RF is applied at a frequency corresponding to R = 0.75,

which partially saturates the I+ transition (blue curve) for deuteron

spins with θ near 73◦. The I− transition (red curve) is also slightly af-

fected, in this case for deuterons near 40◦. The black line is the sum of

both transitions, while the crosses represent experimental NMR data

points. Note that saturation of one transition at R = R results in an in-

crease in the other transition at R = −R. The dashed line shows both

the positive and negative contributions from each Voigt function in the

absorption line.

defined as ω1 ≡ 1/(2T1e), where T1e is the longitudinal relaxation rate

for the electrons. The transition rate involving the microwave pumping

in the electron-spin system is ω1β where ∆mS = ±1 and ∆mI = ±1.

The nuclear relaxation rates are ω1λ , where ∆mS = 0 and ∆mI =±1

and ω1σ , where ∆mS = ±1 and ∆mI = ±1. The transition rate in-

duced by the RF magnetic field is ω1ξ . Also included are two NMR

relaxation rates incorporating minor polarization losses induced by the

measurement process [33]. The rate φ1ω1 is the single-spin transition

due to ∆mI =±1 transitions, and the rate φ2ω1 comes from the double

quantum transition ∆mI = ±2 transitions. Neglecting the quadrupole

interaction for the time being, the energy level diagram is shown in

Fig. 5. All discussed rates are preserved in the derivation, but the RF

transition rates ω1β and ω1ξ are dominant. Many of the smaller rates

are negligible in the final evaluation of the solutions.

The population and orientation are a function of two distinct types

of irradiation of field strengths Bµ and Bν . Considering the strength

of each field as an independent control parameter in the two decay

constants, β and ξ , respectively, leads to multiple states that are sat-

urated, semi-saturated, or exhibit transient behavior in which the dy-

namic population of the sublevels can only be understood by solving

the rate equations for the system.

For a system of six levels with S = ±1/2 and I = 1,0,−1, let

ρ i be the population and E i the energy of the ith state. Using the

above-mentioned set of applied RF fields and relaxation processes,

the change in the population for all energy levels is given by the rate

equations,

2T1e
dρ i

dt
= ∑

j 6=i

(

ρ jω ji −ρ iωi j

)

, (14)

with ω ji (ωi j) being the spin dependent coefficients for the gain (loss)

pathways from state j → i (i → j). Note that each coefficient of the re-

laxation terms represents the decay constant for thermal processes and

(1/2,-1)

(-1/2,-1)

(1/2,0)

(-1/2,0)

(1/2,1)

(-1/2,1)

1ω

σ1ω
λ1ω

ξ1ω

β1ω

1ρ

2ρ

3ρ

4ρ

5ρ

6ρ

Fig. 5. Energy level diagram for the electronic and nuclear spins

(ms,mI) for the Zeeman states of an electron-deuteron system that

is weakly coupled by the dipole-dipole interaction using DNP with an

additional RF irradiation field. The rates are explained in the text.

must contain the corresponding multiplicative factor for the pathways

that follow a transition probability according to Boltzmann statistics.

The irradiation-induced transition rate contributions to the magnetic

sublevel populations are found by taking into account all of the irradiation-

induced spin-flipping processes:

ρ̇1(Bµ ,Bν ) = ξω1(ρ
2 −ρ1)

ρ̇2(Bµ ,Bν ) = βω1(ρ
4 −ρ2)+ξω1(ρ

3 −2ρ2 +ρ1)

ρ̇3(Bµ ,Bν ) = βω1(ρ
5 −ρ3)+ξω1(ρ

2 −ρ3)

ρ̇4(Bµ ,Bν ) = βω1(ρ
2 −ρ4)+ξω1(ρ

5 −ρ4)

ρ̇5(Bµ ,Bν ) = βω1(ρ
3 −ρ5)+ξω1(ρ

4 −2ρ5 +ρ6)

ρ̇6(Bµ ,Bν ) = ξω1(ρ
5 −ρ6).

The populations are normalized to unity so that ∑i ρ i = 1. Expressing

the full rate equations in terms of polarization yields,

T ′
1eṖe =

β

6 f0
[PeQn(θ )−4Pe −3Pn(θ )]

+
σ

6 f0
(1+ r)(Pe −P0)Qn(θ )− (Pe −P0)

T ′
1nṖn(θ ) = − β

4 f1

[

Pn(θ )+
4

3
Pe −

1

3
PeQn(θ )

]

+
λ

12 f1
(1+ r)P0(Qn(θ )−4)

− ξ

2 f1
Pn(θ )−Pn(θ )

T ′
1qQ̇n(θ ) = − 3

4 f2
[β (Qn(θ )+PePn(θ ))+λ (1+ r)P0Pn(θ )]

− 3ξ

2 f2
Qn(θ )−Qn(θ ),

(15)
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where

f0 =
(1+ r)T1e

2T ′
1e

, f1 =
(1+ r)T1e

2cT ′
1n

, f2 =
(1+ r)T1e

2cT ′
1q

,

and the effective longitudinal relaxation rates are

T ′
1e = T1e

(

1+
4

3
σ

)−1

T ′
1n = T1e

(

φ1 +
1

2
cλ +

1

2
cσ(1−PeP0)

)−1

T ′
1q = T1e

(

φ2 +
3

2
cλ +

1

2
cσ(1−PeP0)

)−1

The ratio of unpaired electrons to nuclear spins c = ne/n is a param-

eter used to related to the materials paramagnetic spin density. The

polarizations are functions of θ , the angle between the magnetic field

and the electric field gradient. Expressing the rates in this way only

allows us to understand the change in polarizations if the RF irradia-

tion was applied at the same θ in the line or over the entire resonance

range. Applying RF to the same θ requires selective saturation at two

frequencies in the NMR line simultaneously or at the center of the

NMR line where θ is the same for both transitions (θ = 54.7◦). Here

our interest lies in applying RF at a single frequency to understand the

changes in the overlapping absorption lines.

Modeling the RF-manipulated NMR line for the purpose of align-

ment enhancement requires rewriting the rate equations to study the

change in polarizations at a single irradiated frequency. It is conve-

nient to use the previously defined NMR line position, R, which spans

the domain of the NMR signal. The rate contributions to the magnetic

sublevel populations at the irradiated position, R = R for Bν in the

transition (−1 → 0) are,

ρ̇1(Bν ,R) = ξω1(ρ
2(R)−ρ1(R))

ρ̇2(Bν ,R) = ξω1(ρ
1(R)−ρ2(R))

ρ̇3(Bν ,R) = 0

ρ̇4(Bν ,R) = ξω1(ρ
5(R)−ρ4(R))

ρ̇5(Bν ,R) = ξω1(ρ
4(R)−ρ5(R))

ρ̇6(Bν ,R) = 0.

These contributions are for positive polarization where the popula-

tions ρ2 +ρ5 > ρ1+ρ4. The same can be expressed for the transition

(0 → 1),

ρ̇1(Bν ,R) = 0

ρ̇2(Bν ,R) = ξω1(ρ
3(R)−ρ2(R))

ρ̇3(Bν ,R) = ξω1(ρ
2(R)−ρ3(R))

ρ̇4(Bν ,R) = 0

ρ̇5(Bν ,R) = ξω1(ρ
6(R)−ρ5(R))

ρ̇6(Bν ,R) = ξω1(ρ
5(R)−ρ6(R)),

where these contributions are again used for positive polarization.

Here both sets of equations correspond to a different θ at the position

R in the line. The normalization ∑i ρ i(R) = dn integrates over fre-

quency to unity and represents the fractional magnetic sublevel occu-

pancy at R. The rate equations can then be expressed using the vector

polarization Pn and tensor polarization Qn, which are unique to R but

are coupled to the vector polarization Pn and tensor polarization Qn

at the same polar angle θ with negative R. The final rate equations at

the RF irradiated position R in the NMR line are,

T ′
1eṖe =

β

6 f0
[g1PeQn −4Pe −3g2Pn]

+
g1σ

6 f0
(1+ r)(Pe −P0)Qn − (Pe −P0)

T ′
1nṖn = − β

4g2 f1

[

g2Pn +
4

3
Pe −

g1

3
PeQn

]

+
g1λ

12g2 f1
(1+ r)P0(Qn −

1

g1
4)

− ξ

3 f1

[

3

2
(Pn +1)− 1

2
(1−Qn)+(1−Qn)

]

− Pn

T ′
1qQ̇n = − 3g2

4g1 f2

[

β

(

g1

g2
Qn +PePn

)

+λ (1+ r)P0Pn

]

− ξ

3 f2

[

3

2
(Pn +1)− 1

2
(1−Qn)− (1−Qn)

]

− Qn

T ′
1eṖe =

β

6 f0
[g3PeQn −4Pe −3g4Pn]

+
g3σ

6 f0
(1+ r)(Pe −P0)Qn − (Pe −P0)

T ′
1nṖn = − β

4g4 f1

[

g4Pn +
4

3
Pe −

g3

3
PeQn

]

+
g3λ

12g4 f1
(1+ r)P0(Qn −

1

g3
4)

+
ξ

6 f1

[

3

2
(Pn +1)− 1

2
(1−Qn)+(1−Qn)

]

− Pn

T ′
1qQ̇n = − 3g4

4g3 f2

[

β

(

g3

g4
Qn +PePn

)

+λ (1+ r)P0Pn

]

− ξ

6 f2

[

3

2
(Pn +1)− 1

2
(1−Qn)− (1−Qn)

]

− Qn.

(16)

The gi are constants defining the normalization at position R in the

line. The normalization constants for Qn and Pn are g1 and g2, respec-

tively. Likewise, the normalization constants for Qn and Pn are g3

and g4, respectively. The normalization constants characterize the ini-

tial polarizations for a given NMR line position. The set of equations

shown in Eq. 16 approximate the behavior of both overlapping absorp-

tion lines under the irradiation field Bν with the microwaves for DNP

active.

5 Empirical Techniques

Experimental CW-NMR data is used to parameterize the simulation

as well as demonstrate qualitatively that the predictions overlap well

with NMR experiments. All data used to compare with the calcula-

tions presented in this work were taken at the University of Virginia’s

Solid Polarized Target Lab. The experimental data is taken at 5 T and

1 K with an evaporation refrigerator [13,17] that has a cooling power

of just over 1 W and a DNP microwave source generating approxi-

mately 20 W. This microwave power is reduced to less than 1 W after

attenuation to reach the target cell. The cell is 2.5 cm in diameter and 3
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Pn

Qn
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0.0
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T1 n

Fig. 6. The solutions to the rate equation in terms of the dynamic nu-

clear polarizations Pn(θ ) and Qn(θ ) for spin-1 with only microwave

irradiation showing the progress to the system’s steady-state, using ar-

bitrary material parameterization. The microwave decay parameter β
is varied 10% to make each band in the solutions.

cm long which holds about 10 g of ND3. The nuclear spin polarization

is measured with an NMR coil and Liverpool Q-meter [21]. The RF

susceptibility of the material is inductively coupled to the NMR coil,

part of a series LCR Q-meter circuit tuned to the Larmor frequency of

the nuclei of interest. This provides a non-destructive CW-NMR. For

selective excitation, an additional coil for RF-irradiation is connected

to a generator and amplified to around 10 mW. There are many vari-

ations of the coil that are perfectly acceptable for this application but

in the study presented here a coil was fitted outside the material hold-

ing cell perpendicular to the holding field and consisted of 20 turns

of nonmagnetic silver-plated-copper-clad stainless steel of ∼0.2 mm

in diameter. Under circumstances of limited RF power the coil can be

matched and tuned. A high RF coil Q-factor can help to minimize the

needed input power but for the present application no specialized tun-

ing was performed as power specifics were not required. However, the

change to the lineshape is sensitive to the coil Q-factor and geometry

as well as orientation, so the shape change to the NMR line was stud-

ied empirically to implement in the simulation. This allows analysis

in the scope of lineshape rather than the specifics of the coil and RF

power.

6 Evaluation of the Rates

The nonlinear coupled differential equations in Eq. 16 are solved nu-

merically to study the behavior of the family of parameterized solu-

tions. The anharmonic Raman process is the most common nuclear-

spin phonon decay leading to T ′
1q = 5

3 T ′
1n [32,41]. In addition, T ′

1e ≪
T ′

1q ∼ T ′
1n, where T ′

1e is the parameter that sets the time scale. The free

radical density parameter c can be varied to study different DNP satu-

ration conditions for a given T ′
1e and P0 allowing the study of different

materials. These characteristics can be adjusted to model the behavior

and polarization states of various materials.

An initial evaluation of the rate equations for spin-1 using the

low temperature limit (r → 0), (P0 → −1) for a generic material is

shown in Fig. 6. The only RF-induced transitions come from the mi-

crowave source used to produce the standard DNP behavior. Although

not tuned to a real physical material, this system still exhibits the cor-

rect relationship (Eq. 6) between vector and tensor polarization, as

the nuclear Zeeman levels populate according to Maxwell-Boltzmann

statistics. The vector and tensor polarization build-up shown in Fig.

6, use initial conditions Pn(0) = Qn(0) = 0 and Pe(0) = −1. The mi-

crowave decay parameter β is varied by 10% to generate each band.

The resulting family of solutions, previously described in [32,33],

forms the starting point for all of the extensions presented here. The

units of time are in terms of the effective nuclear relaxation T ′
1n, a

parameter easily accessible in CW-NMR studies.

Using the rate equations to describe a particular material like ND3

requires adjustment of the parameters to have the correct build-up and

steady-state saturation for a particular T ′
1n at a fixed β . In this way, the

behavior of a material can be approximated for the DNP response to a

particular paramagnetic center composition. The characteristic set of

parameters specific to the material are (T ′
1e, P0, c), using the same ini-

tial conditions, such that Pn(0) = Qn(0) = 0 and Pe(0) = −1. The set

of differential equations with resulting numerical solutions are used

to fit DNP build-up from experimental data. The parameters extracted

from the fit result in T ′
1e = 35 ms, P0 =-0.34, c = 1.8× 10−4. The

other rates are small and have little impact on the dynamics of inter-

est. The polarization build-up and resulting fit is shown in Fig. 7 with

the experimental data for electron irradiated ND3 that has been opti-

mized for a nuclear scattering experiment to run at 1 K and 5 T [13].

To analyze the behavior of Eq. 16 at a particular R in the NMR

line, the steady-state intensities I+(R) and I−(R) at any frequency R

can be understood by allowing the two overlapping absorption lines

to increase in magnitude with respect to the Boltzmann distribution of

the magnetic sublevels. The intensities at position R =−1 are shown

in Fig. 8 (gray line) and are the results of evaluation of the theoretical

lineshape of each of the absorption lines at R for the modeled ND3 for

a vector polarization of Pn = 42%. The intensities at any position R in

the line are defined as,

I+(R) =
CE

2
(Pn(R)+Qn(R))

I−(R) =
CE

2
(Pn(R)−Qn(R)) .

To study the dynamic behavior of the system, the RF irradiation is

introduced with a Heaviside step function after the DNP steady-state

is reached. The RF is turned on at T1n = 2. The progressive build-up to

the steady-state polarization conditions and the changes to each inten-

sity from the RF irradiation at position R are shown in Fig. 9. The RF

irradiation decay parameter, ξ , is more than two orders of magnitude

smaller than that of β , which corresponds to the mW scale in terms

of RF power. The system approaches a new equilibrium, minimizing

the negative tensor polarization Qn(R) at R =−1 resulting in a semi-

saturated steady-state condition. Equilibrium is achieved when equiv-

alence in the loss rate from induced RF transitions and re-population

rates at the position R =−1 occurs. Using semi-saturating RF irradi-

ation, the absorption line with the largest intensity or the greatest pop-

ulation difference absorbs most of the RF resulting in more induced

transitions, with only marginal transitions induced in the smaller in-

tensity absorption line. This is advantageous for quadrupole enhance-

ment.

Applying semi-saturating RF anywhere in the line reduces the ab-

solute value of the tensor polarization quickly with respect to the effec-

tive nuclear relaxation. The rate of minimization of |Qn(R)| directly

results from the effective RF power. However, greater RF power re-

sults in a greater depletion of the smaller intensity which begins to

work against tensor polarization enhancement. Optimal total align-

ment enhancement is achieved when the negative tensor polarization

in the full signal has been minimized for the largest value of the vector

polarization.

Enhancement of the tensor polarization from the minimization of

Qn(R) has two places in the NMR line where the effect can be seen.
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Fig. 7. The tuned solution to the rate equations for ND3 (the red line)

is compared to experimental data (blue data points) for electron irradi-

ated ND3 that has been optimized for a nuclear scattering experiment

to run at 1 K and 5 T.

Fig. 8. The lineshape with the steady-state intensities I+(R) and I−(R).
The intensities at R = −1 are shown as the gray vertical line for the

two overlapping absorption lines.

Fig. 9. The solutions to the rate equations (Eq. 16) of the resulting

transition intensities after turning on RF irradiation at T1n = 2. Here

the microwave decay parameter is held at 10 with the RF irradiation

decay parameter ξ held at 0.08.

Fig. 10. The simulated lineshape (red line) based on numerical solu-

tions to the intensities in each absorption line (pink and blue) com-

pared to experimental data (black points). There is a reduction in the

intensities at R and an increase at −R, leading to the net quadrupole

enhancement in the signal.

The RF-induced transition at R reduces the total negative tensor po-

larization in the deuteron NMR signal but also increases the total pos-

itive tensor polarization by increasing the difference in the intensities

at −R, seen in both Fig. 10 and Fig. 11.

7 Enhancement Optimization

To optimize the enhancement, the selective RF excitation must min-

imize the negative tensor polarization, Qn(R), for all R. This can be

identified by looking at places in the NMR line where I+(R)−I−(R)<
0. The two critical regions lie around R ∼ −1 and 1 < R < 2. For

positive vector polarization, as in Fig. 2, the greatest integrated ten-

sor polarization enhancement is achieved through selective excitation

to reduce the size of the smaller transition area with intensity I−. For

negative vector polarization, the greatest enhancement comes from the

reduction of the transition area with intensity I+, otherwise the treat-

ment of both cases are identical, so it is convenient to focus on positive

vector polarization.

Minimization of the smaller transition area (I− in this case) around

1 < R < 2 is managed using continuously modulated RF with suffi-

cient power to lead to full saturation, equalizing the three sublevels in

the irradiated frequency domain. The region around R = ±1 does not

benefit as much by full saturation due to the significant overlap with

the other transition (I+ in this case).

The rate equations are used to model the simultaneous change of

transition intensities at the irradiated NMR line positions. The results

of the dynamic solutions for the overlapping absorption lines define

the change in amplitude of the Voigt function (from Section 4) at R.

The rate equations are parameterized to represent the polarization state

of an NMR signal unique to position R in the line under the RF irra-

diation. The initial difference in the absorption lines is set using the

normalization constants gi. This initial condition is easy to calculate

being the system starts in Boltzmann equilibrium. The simulation in-

corporates the intensity changes from the numerical solution with the

Voigt shape from data resulting in a generated CW-NMR signal. Fig-

ure 10 shows the simulated lineshape (red line) based on the numerical

solutions of the intensities in each absorption line (pink and blue) in

comparison to ND3 experimental data at 1 K and 5 T, seen as the

black points. In this example the RF is applied to a single position at
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Fig. 11. Change in total intensity showing before RF irradiation and

after the semi-saturated steady-state is reached. The black points are

before and the dashed line is after. Both lines are from experimental

NMR data.

Fig. 12. The tensor polarization as a function of line position Qn(R)
for a vector polarization of 42%. Optimization of the tensor polariza-

tion is obtained by negating the values that drop below zero using RF

induced transition for that selected frequency range.

the smaller peak. This example serves as a qualitative check between

simulation and experimental data in matching the sum of intensities.

Figure 11 shows a comparison of the experimental NMR lineshape

before and after the RF irradiation. The distribution of negative tensor

polarization changes about the R = 0 axis for negative vector polar-

ization. Analytical minimization is easily seen for the positive case by

studying the tensor polarization as a function of frequency. An exam-

ple of the tensor polarization as a function of line position Qn(R) is

shown in Fig. 12 for a vector polarization of 42%. The necessary RF

irradiation-induced decay constant, or alternatively the required RF

coil power, can be calculated for the minimization of Qn(R) < 0 for

overlapping transition lines by finding the extrema for the expression

for partial saturation efficiency,

Φ(ξ ) = lim
t→∞

Pn

∫ ∞

−∞
Q+

n (R)+Q−
n (R)dR. (17)

The efficiency Φ(ξ ) applies to the steady-state conditions for a value

of RF decay constant ξ with DNP microwaves active. The value of

ξ can be varied at each position R where the tensor polarization is

negative (Q−
n ) to achieve the maximum alignment for a given vector

polarization Pn. The efficiency is greatest for a integrated alignment

where the positive tensor polarization (Q+
n ) is large and the negative

tensor polarization is mitigated with only minimal reduction of Pn in

the process. The critical ξ value for optimization can be calculated

using,

lim
t→∞

dΦ(ξc)

dξ
= 0. (18)

The steady-state critical value ξc depends on the microwave power

parameter β , the composition of paramagnetic centers c, the relaxation

rates of the system, the temperature and holding field strength, and the

position in the line.

There is a steady-state critical value ξc at every position in the

NMR line for Q−
n . For optimal Qn enhancement, the modulated RF

changes in central frequency and Bν to meet the required ξc for each

position. Given the initial RF response parameterization the theoret-

ical lineshape can be used to achieve the optimal Qn enhancement,

for any initial vector polarization, without a direct measurement of the

effective RF power.

The theoretical optimization for the CW-NMR lineshape is shown

in Fig. 13. The simulation is used to generate a CW-NMR signal

for the deuteron target sample with initial nuclear polarizations of

12%, 42%, and 78%. The simulation then responds to RF irradia-

tion at the line position R with an RF decay constant ξc, chang-

ing as required to minimize Q−
n . Full enhancement occurs when the

irradiated intensities reach a steady-state for both the saturated re-

gion 1 < R < 2 and the partially saturated region R = −1. The fi-

nal alignment-optimized steady-state lineshape appears in dark blue.

The simulation study results in the maximum tensor polarizations of

1.3 → 5.4%, 13.6 → 23.8%, and 52.2 → 58.5%, respectively. These

values represent the theoretical maximums for various vector polariza-

tions for a static polycrystalline target with all discussed contributions.

Additional enhancement is possible in slowly rotating targets, which

later works will address.

In electron-scattering experiments where the target uses a 1 K

evaporation refrigerator and a 5 T holding field, ND3 is realistically

expected to polarize to around 42% at the dose where the materials

paramagnetic centers are optimized and with the heat load of the elec-

tron beam. Under optimal condition, with the beam off, ND3 can po-

larize significantly more (≥50%), however it takes much longer than

most experiments’ allotted polarization build-up time (greater than 10

hours using 1 W microwave power on the target).

8 Experimental Verification

Using the simulation and the theoretical lineshape for the semi-saturated

steady-state, it is possible to predict the enhanced deuteron target align-

ment achievable during nuclear and particle physics experiments. How-

ever, the comparisons here between CW-NMR data and the predic-

tions are not independently conclusive. The comparisons only con-

firm that the sum of the two absorption lines remains consistent with

the calculations presented here, while leaving room for error regarding

their difference, particularly at the position of RF irradiation. The dif-

ference of the lines is needed for an unambiguous verification of the

tensor polarization. The simulation can continue to be improved us-

ing empirical information from solid-state experiments. More precise

parameterization of the diffusion constant and the RF-induced transi-

tion rate as a function of θ can be studied using specialized solid-state

NMR experiments. One possibility is to use RF selective saturation

at a particular θ and then slightly rotate the sample while tilting at

the magic angle to separate and measure the intensity change in each

absorption line. This type of simulation can be used to study our un-

derstanding of many interdependent rate dynamics and the resulting
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Fig. 13. The theoretical CW-NMR lineshape for optimal quadrupole

enhancement at the semi-saturation steady-state condition for each po-

larization shown in Fig. 3. The plots are generated with a simulation

of the deuteron signal when RF irradiation is applied to the frequen-

cies with negative tensor polarization with optimal RF power (ξc) for

the overlapping region.

polarization in the target. For these results to be useful for CW-NMR

measurement, it is necessary to develop a full-fitting technique which

uses the theoretical lineshape discussed.

The most unambiguous verification of the tensor polarization mea-

surement is through nuclear scattering experiments. In particular, in

JLab experiment E12-14-002, the kinematic requirements of the ten-

sor asymmetry in the quasi-elastic region allows for the simultane-

ous measurement of elastic T20 at multiple Q2 points ranging from

0.2 < Q2 < 1.8 GeV2. In the region Q2 ∼ 0.2 GeV2, the T20 mea-

surements from world data [42,43,44,45] can be used to determine

the tensor polarization of the target to within less than 6%, using the

proposed precision for this calibration point. This single measurement

can verify and set the uncertainty of the tensor enhanced theoretical

lineshape presented here. Once verified, the discussed measurement

technique is required for all other kinematic settings for E12-14-002

and E13-12-011, as well as possible future solid tensor polarized target

experiments such as tensor polarized Drell-Yan [48,49,50] and tensor

polarized DVCS [51,52].

Additional scattering experiments can be used to reduce uncer-

tainty in the lineshape tensor polarization measurements. Additional

tensor polarized observables can be exploited through changes in ori-

entation of the quantization axis. The target tensor asymmetry decom-

position into analyzing powers is expressed as,

AT
d =

3cos2 θ ∗−1

2
T20 −

√

3

2
sin2θ ∗ cosφ∗T21 (19)

+

√

3

2
sin2 θ ∗ cos2φ∗T22,

where the density matrix, Eq. 1, maintains the same symmetry but the

polarization direction is now described by the polar and azimuthal an-

gles θ ∗ and φ∗ in a frame where the z-axis lies along the direction of

the virtual photon and the y-axis is defined by the vector product of

the incoming and outgoing electron momenta. With the target polar-

ization oriented in this fashion, it is possible to selectively study each

analyzing power where world data can be used to minimize uncertain-

ties. These types of studies need not be limited to electron scattering.

Photodisintegration of the deuteron also provides a significant amount

of world data [42,46,47] which could potentially be used if a solid

target was alignment enhanced following the optimization suggested.

9 Conclusion

To achieve the highest FOM for the spin-1 alignment scattering exper-

iments, it is necessary to maximize the tensor polarization of the solid-

state targets throughout the beam-target interaction time. Optimization

of the spin-1 alignment in the target ensemble can be achieved by ap-

plying RF irradiation at select frequencies. A simple theoretical line-

shape has been introduced that is based on empirical information and

the numerical solutions to the solid-effect rate equations. The solu-

tions allow determination of the steady-state intensities at the position

in the line under semi-saturation from RF irradiation. A simulation

parameterized by fitting to the polarization build-up rate is developed

and used to study the dynamics of the two absorption lines in the CW-

NMR. Optimization is achieved using a critical RF-driven decay con-

stant that partially saturates the overlapping regions of the Pake dou-

blet corresponding to Qn(R)< 0. Enhancement results from reducing

negative contributions to the tensor polarization while simultaneously

increasing positive contributions. RF manipulation of the population

of the m = 0 magnetic substate is observed in the NMR signal as a de-

crease in the intensities of the transitions at the RF line position and an

increase in opposing transitions at the same θ . Qualitative comparison

of the simulated ND3, CW-NMR signal to real experimental data un-

der similar conditions shows very good matching in overall intensity.

A tensor polarization of ∼24% is predicted given an averaged vector

polarization of 42% in a scattering experiment.

For any given vector polarization, there exists a lineshape that op-

timizes tensor polarization enhancement, accessible using RF irradia-

tion at select positions in the deuteron NMR line. Given the initial RF

response parameterization, the theoretical lineshape discussed can be

used to achieve optimal Qn enhancement, for any initial vector polar-

ization, without a direct measurement of the effective RF power. New

constraints based on the optimized RF steady-state intensities can be

used to fit and measure the manipulated CW-NMR line over the course

of the scattering experiment to monitor the degree of tensor polariza-

tion. Later work will present this.

It is possible to take these enhancement and measurement tech-

niques and apply them to slow target rotation for additional enhance-

ment. However, for a rotating target the level of enhancement achiev-

able is very much material dependent. Work on deuterated butanol and

ND3 is presently underway. It has also been suggested that single crys-

tals of ND3 could be used so that a greater percentage of NMR area

pertaining only to negative tensor polarization can be saturated [53].

The usage of single crystals may be beneficial specifically with pho-

ton beams where beam heating and radiation damage from the charged

beam is not as problematic.

The optimization approach presented here provides the required

formalism and details for the simulation needed for predictions of ten-

sor polarization enhancement of the spin-1 target. Nuclear scattering

experiments can verify these predictions. Complete verification of this

characterization of deuterated ammonia allows for the development of

future tensor-polarized experiments with the most essential solid spin-

1 target compatible with charged particle beams.
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