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1 Introduction

The presence of 15N in the ammonia used in the polarized targets introduces
an unwanted asymmetry because the nitrogen is partly polarized relative to
the hydrogen or deuterium. To correct the proton or deuteron asymmetry
we need to estimate or measure the nitrogen contribution to the measured
asymmetry. The corrections for each target type are discussed below

2 Proton

For the proton measurements on ordinary ammonia NH3, the 15N contribu-
tion can be determined from our measured asymmetry in the region below the
e−p elastic peak where no proton asymmetry is expected because scattering
on free protons is forbidden.

We call AM(W ) the measured counts asymmetry ε corrected for the beam
Pb and (proton) target P1 polarizations

AM(W ) =
ε(W )

PbP1

(1)

AM(W ) for protons is tabulated for W < 1.073 GeV in the output files of the
analysis. AM(W < Wel) depends only on the nitrogen contribution, where
Wel is the lowest value of invariant mass for elastic scattering. Wel = 0.85
GeV is a value that works for both parallel and perpendicular asymmetries.

The expected number of counts from all the target components for each
beam helicity L(W ) or R(W ) for every bin in W can be written as

L(R) = Φ(N15σ
L(R)
15 +N1σ

L(R)
1 +

∑
NAσA) (2)
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where Φ is a flux factor, NA are the numbers of scattering nuclei of mass A,
σ
L(R)
A (W ) represent polarized e − nucleus cross sections (elastic or inelastic

for H, quasielastic or inelastic for N). All unpolarized nuclei are lumped in
the sum. The polarized cross sections can be written in terms of nucleon
polarized and unpolarized cross sections

σ
L(R)
A (W ) = (Z − Zpol)σp(A) + (N −Npol)σn(A) + Zpolσ

L(R)
p(A) +Npolσ

L(R)
n(A)

(3)

where Z, N refer to the total numbers of protons and neutrons in the nucleus
and Zpol, Npol represent the polarized ones; σp,n(A) are e−nucleon unpolarized
cross sections for nuclear species A. The polarized nucleon cross sections
σ
L(R)
p,n(A) can be expressed in terms of unpolarized nucleon cross sections σp,n(A)

and nucleon asymmetries Ap,n(A)(W )

σ
L(R)
p,n(A)(W ) = σp,n(A)(A)(1± PbPAAp,n(A)(W )) (4)

where Pb is the beam polarization and PA is the polarization of nucleus A.
For 15N which has only one polarizable proton, we can simplify this no-

tation using σ
L(R)
15 = σ15 ± σp(15)PbP15A15, where A15 ≡ Ap(15). The rates for

each helicity are

L(R) = Φ(N15(σ15 ± σp(15)PbP15A15) +N1σ1(1± PbP1Ap) +
∑

NAσA), (5)

where P1, P15 are the hydrogen and nitrogen polarizations.
The difference over the sum of counts for each helicity is the counts asym-

metry ε(W )

ε =
L−R
L+R

=
Pb(N15σp(15)A15P15 +N1σ1ApP1)

N15σ15 +N1σ1 +
∑
NAσA

(6)

The customary approach is to factor out the product N1σ1 and write ε
in terms of the proton dilution factor f1

ε = f1Pb(
N15σp(15)
N1σ1

A15P15 + ApP1)

f1 =
N1σ1

N15σ15 +N1σ1 +
∑
NAσA

(7)
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However, this form becomes undefined for σ1(W < Wel) = 0. The alternative
solution is not to factor out N1σ1 but define a nitrogen dilution factor f15,
as used by C. Harris [1]

ε(W ) = Pb(f15(W )P15A15(W ) + f1(W )P1Ap(W )); (8)

fi(W ) =
Niσi(W )

N15σ15(W ) +N1σ1(W ) +
∑
NAσA(W )

where i= 1 or p(15).
With (8) it becomes possible to correct the measured asymmetry for

the nitrogen contribution, using the average nitrogen asymmetry 〈A15(W )〉
measured for W < Wel, assuming that the asymmetry is independent of W :

ε(W < Wel) = PbP15f15(W < Wel)A15(W < Wel)

= PbP1A
M(W < Wel) (9)

in terms of the measured asymmetry defined in (1). The nitrogen asymmetry
is then

〈A15(W < Wel)〉 =
P1

P15

〈A
M(W < Wel)

f15(W < Wel)
〉 (10)

and the proton asymmetry for W ≥ Wel can be obtained from

ε(W ) = Pb(f15(W )P15〈A15〉+ f1(W )P1Ap(W )) (11)

or

Ap(W ) =
1

f1(W )

(ε(W )

PbP1

− f15(W )
P15

P1

〈A15〉
)

=
1

f1(W )

(
AM(W )− f15(W )〈A

M(W < Wel)

f15(W < Wel)
〉
)
. (12)

A15 can also be estimated from models of 15N [2]. From the angular
momentum decomposition of the p1/2 level that is populated by the un-
paired proton in the single particle shell model, one expects Amodel

15 (W ) =
Pp(15)Ap(W ) = −Ap(W )/3, where Ap is the proton asymmetry and the fac-
tor −1/3 is the effective polarization of the unpaired proton in nitrogen Pp(15).
In order to solve for Ap using Amodel

15 one needs to go back to (8),
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ε(W ) = Pb(−
1

3
f15(W )P15A1(W ) + f1(W )P1Ap(W ))

= PbP1f1(W )(−1

3

f15(W )

f1(W )

P15

P1

+ 1)Ap(W )

= PbP1f1(W )CNAp(W ) (13)

and the customary nitrogen correction CN for DIS is recovered

CN = 1− 1

3

f15(W )

f1(W )

P15

P1

= 1− 1

3

1

3

P15

P1

gEMC(W ) (14)

where the last form comes from

f15(W )

f1(W )
=
N15

N1

σp(15)
σ1

=
1

3
gEMC(W ) (15)

where the ratio of the DIS e−p cross sections on nitrogen and on hydrogen is
approximated by the EMC effect parameterization gEMC(W ) (more correctly
gEMC(x)).

It is important to keep track of the opposite relative signs of P15 and P1.
P1 and P15 are related by fits to experimental data, for example

|P15|% = −
(
0.0312%+5.831×10−2|P1|+8.935×10−4|P1|2+8.685×106|P1|3

)
(16)

which is based on E143 plus PSI measurements of positive and negative
enhancements. P1 needs to be in %.

Applying this correction to the asymmetries in the resonances, where

AM(W ) =
ε(W )

f1(W )PtPb

(17)

the inelastic proton asymmetry is

Ap(W ) =
AM(W )

CN

. (18)

This form actually is valid at any W ≥ Wel, with

CN = 1 +
A15(W )

Ap(W )

f15(W )

f1(W )

P15

P1

. (19)
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If the expected value of Ap is known from other measurements, such as
the elastic asymmetry Ap = Ael(e − p), the absolute size of the nitrogen
asymmetry can be estimated from Amodel

15 to compare with the measured
quantity

AM(W ) =
ε(W )

PbP1

= f1(W )Ap(W )− 1

3
f15(W )

P15

P1

Ap(W ) (20)

For example, for W < Wel where only nitrogen contributes (f1 = 0), f15 '
0.7, P15/P1 ∼ −0.165, Ap = 0.21 for parallel data, and AM(W < Wel) '
0.008. For perpendicular data, Ap = −0.103 and AM(W < Wel) ' −.004

The predicted values disagree with the measured values AM(W < Wel) '
0.0029 ± 0.0024 for parallel data and AM(W < Wel) ' 0.010 ± 0.003 for
perpendicular data. This is an indication that the simple model prediction
may be insufficient.

2.1 15N model extension

The model can be readily extended to include mixing of the p3/2 state (only
the M = ±1/2 substates are allowed, to preserve the total nuclear 15N spin
I = (1/2)−). The M = ±1/2 angular momentum substates are (notation
C-G|ml,ms;M〉) √

1

3
|1,−1/2; 1/2〉 +

√
2

3
|0, 1/2; 1/2〉√

1

3
| − 1, 1/2;−1/2〉 +

√
2

3
|0,−1/2;−1/2〉 (21)

It is easily seen that 2/3 of the time the proton and N have parallel spins
(ms = +M ,) and 1/3 anti parallel, for a net 1/3 of the time having parallel
spins in the M = ±1/2 substates.

The net normalized number of aligned protons in 15N can be written in
terms of the contributions of the two states p1/2 and p3/2

N‖
N

= −1

3
Pp(1/2) +

1

2

1

3
Pp(3/2) (22)

where Pi represents the probability of the proton being in each state (
∑
Pi =

1,) and the extra 1/2 reflects the restriction to M = ±1/2 substates.
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Using (10) and substituting the measured values, one gets A15 = −0.026
for parallel data and A15 = 0.086 for perpendicular data. Since the substate
probabilities Pi add to unity, there is only one unknown,

N‖
N

= −1

3
+

1

2
Pp(3/2) =

A15

Ap

(23)

where Ap is the elastic asymmetry for free protons. P3/2 = 0.42 for parallel
data but it is negative (-0.91) for perpendicular, indicating that the ground
state of nitrogen may be more complicated than the model.

3 Deuteron

For ND3, we start with the counts asymmetry, including the contributions of
15N , 14N and unsubstituted protons, all of which polarize together with the
deuterium

ε =
L−R
L+R

=

Pb(N2P2σ2Ad +N15P15σ
15
p A

15
p +N14P14(σ

14
p A

14
p + σ14

n A
14
n ) +N1P1σ1A1)

N15σ15 +N2σ2 +
∑
NAσA

,

(24)

where the notation has been changed slightly, σA
p ≡ σp(A), etc., to fit in the

margins. Collecting the common terms, we have

ε =

f2Pb(P2Ad +
N15σp(15)
N2σ2

P15A
15
p +

N14

N2σ2
P14(σ

14
p A

14
p + σ14

n A
14
n ) +

N1σ1
N2σ2

P1A1)

(25)

f2 =
N2σ2

N15σ15 +N2σ2 +
∑
NAσA

.

We need to write A14,15
p,n in terms of proton Ap and neutron An asymme-

tries. For A15
p we use the SPS model discussed earlier for NH3 A15(W ) =

−A1(W )/3. For Ap,n14 we have contributions from the proton and the neu-
tron. However, there are no data on An at RSS kinematics, so we make use
of the relation between the deuteron asymmetry and the proton and neutron
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asymmetries σ2A2 = γ2(σ1A1 + σnAn) to solve for An

σ14
p A

14
p + σ14

n A
14
n = −1

3

(
σp(14)Ap(1−

σn(14)
σn(2)

σp(2)
σp(14)

) +
σ2Ad

γ2

σn(14)
σn(2)

)
,

The factor γ2 = 0.924 represents the effective polarization of the nucleons
in the deuterons (not exactly unity due to the deuteron D-state, where the
nucleons are aligned antiparallel with respect to the deuteron spin [2]).

The ratio (σn(14)σp(2))/(σn(2)σp(14)) is almost exactly one, so we neglect
the term involving Ap. Substituting and collecting terms

ε = f2Pb(P2Ad −
1

3

N15σ
15
p

N2σ2
P15A1 −

1

3

N14

N2

1

γ2

σ14
n

σ
(2)
n

P14Ad +
N1σ1
N2σ2

P1A1)

= f2PbP2

(
(1− 1

3

N14

N2

1

γ2

P14

P2

σ14
n

σ
(2)
n

)Ad − (
1

3

N15σ
15
p

N2σ2

P15

P2

− N1σ1
N2σ2

P1

P2

)A1)
)
(26)

Before proceeding to the full solution of eq.( 26) for Ad, we can estimate
the magnitude of the corrections involved, by looking at the numerical values
of the different factors as they apply to RSS.

Table 1. Numeric values of factors.

Labels Values Ratio Alternative ratio*
N1/N2 1%/99% 0.01
N14/N2 2%/(3*99%) 0.0067
N15/N2 98%/(3*99%) .330
P1/P2 4.4 2
P14/P2 0.48 0.33
P15/P2 -0.50 -0.4

*Polarization ratio from EST; alternative ratio from E143 technical run.

The main correction comes from the 15N contribution. Neglecting the
others one gets
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ε = f2PbP2

(
Ad −

1

3

N15σ
15
p

N2σ2

P15

P2

A1

)
= f2PbP2

(
Ad −

1

3
0.33× (−0.5)

σ15
p

σ2
Ap

)
= f2(W )PbP2Ad(W )

(
1 + 0.055

σ15
p (W )

σ2(W )

Ap(W )

Ad(W )

)
' f2(W )PbP2Ad(W )(1.055) (27)

taking the proton to deuteron resonances cross section ratio ∼ 0.5, and the
RSS measured ratio of raw proton to deuteron asymmetries ∼ 2. So the 15N
correction represents a ∼ 6% relative reduction to the measured deuteron
asymmetry.

Collecting the coefficients of A1 and Ad into

C1(W ) =
1

3

N15σ
15
p (W )

N2σ2(W )

P15

P2

− N1σ1(W )

N2σ2(W )

P1

P2

Cd(W ) = 1− 1

3

N14

N2

1

γ2

P14

P2

σ14
n (W )

σ
(2)
n (W )

(28)

the deuteron asymmetry corrected for the contributions of other polarized
nuclei is

Ad(W ) =
1

Cd(W )

( ε(W )

f2(W )PbP2

+ C1(W )A1(W )
)

(29)

Ignoring for the time being the W dependence of C1,2, we can estimate
the relative size of these corrections:

C1 ∼
1

3
× 0.330× 0.5× (−0.5)− 0.01× 0.5× 4.4 = −0.050

Cd = 1− 1

3
× 0.007

1

0.924
0.48× 1 = 1− 0.001 (30)

from which we conclude that the most important correction is C1; Cd is
entirely negligible.

3.1 Quasi-elastic (QE) region

In the QE region the contribution of the unsubstituted protons is not as neg-
ligible as in the inelastic, because the cross section σ1 is the elastic peak but
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σ15
p is the e–15N quasielastic one. Also, the asymmetry A1 is the elastic one

but for the bound 15N proton it is a quasielastic asymmetry. This requires
to split C1(W ) into two separate coefficients

C15(W ) =
1

3

N15σ
15
p (W )

N2σ2(W )

P15

P2

C1(W ) =
N1σ1(W )

N2σ2(W )

P1

P2

(31)

so the deuteron quasielastic asymmetry corrected for the contributions of
other polarized nuclei is

Ad(W ) =
1

Cd(W )

( ε(W )

f2(W )PbP2

+ C15(W )A1(W )− C1(W )Ap(W )
)

(32)

Here A1(W ) is the proton QE asymmetry and Ap is the elastic asymmetry.

Figure 1: C15(W ) and C1(W ) plotted vs W in the QE region. Cross sections
from radiated MC rates. Numbers of centers and polarizations from table 1.
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