Running ANN jobs in UVA-Rivanna

*** Make sure that Prof. Keller has added you to both the spin and spinquest groups in Rivanna. ***

Using Tensorflow with BKM2002-Formulation

- 1. Copy the sample files from the following Rivanna folder "/project/ptgroup/ANN_scripts/BKM-Formulation-Test/BKM-tf" cd /project/ptgroup/ANN_scripts/BKM-Formulation-Test/BKM-tf
- 2. Run the following commands on your terminal module load anaconda/2020.11-py3.8 module load singularity/3.7.1 module load tensorflow/2.1.0-py37 following step is needed to run only once (it will copy the relevant .sif file to your /home directory)

cp \$\$CONTAINERDIR/tensorflow-2.1.0-py37.sif /home/\$USER

(make sure that you have the same module loads included in your grid.slurm file)

3. Run the following command to submit the job ./jobscript.sh <Name_of_Job> <Number_of_Replicas>

/jobscript.sh CFF_BKM_tf_Test 10

Using PyTorch with BKM2002-Formulation

- 1. Copy the sample files from the following Rivanna folder "/project/ptgroup/ANN_scripts/BKM-Formulation-Test/BKM-PyTorch" cd /project/ptgroup/ANN_scripts/BKM-Formulation-Test/BKM-PyTorch
- 2. Run the following commands on your terminal

module load anaconda/2020.11-py3.8 module load singularity/3.7.1 module load pytorch/1.8.1

following step is needed to run only once (it will copy the relevant .sif file to your /home directory)

cp \$\$CONTAINERDIR/pytorch-1.8.1.sif /home/\$USER

(make sure that you have the same module loads included in your grid.slurm file)

3. Run the following command to submit the job \$./jobscript.sh <Name_of_Job> <Number_of_Replicas>

example: \$./jobscript.sh CFF_BKM_PyTorch_Test 10

Note:

If you download the code from GitHub to a Windows machine and then if you upload those files to Rivanna; then you will need to do the following steps

\$ chmod u+x jobscript.sh \$ sed -i -e 's/\r\$//' jobscript.sh

\$ sed -i -e 's/\r\$//' <all_files> in order to avoid any dos < - > unix conversions

** If you copy the fiels from /project/ptgroup/ANN_scripts/BKM-Formulation-Test/BKM-PyTorch then you don't have to do these above modification steps **

For more details check Zulkaida's folder on the github page: https://github.com/extraction-tools/ANN/tree/master/Zulkaida/BKM

Using Tensorflow with VA-Formulation

The following steps are for an example to submit a job for neural-net fit to 'N' number of kinematic settings in the data set (where N is an integer reflects to the range of kinematic settings which you will input in the sbatch command to submit the job).

- 1. Make sure that Prof. Keller has added you to both the spin and spinquest groups in Rivanna.
- Copy the sample files from the following Rivanna folder "/project/ptgroup/ANN_scripts/VA-Formulation-Initial-Test" \$ cd /project/ptgroup/ANN_scripts/VA-Formulation-Initial-Test

Here are the list of file that you need to have in your work directory:

Definitions

BHDVCStf.py
Lorentz_Vector.py
TVA1_UU.py

Data file dvcs_xs_May-2021_342_sets.csv
Main file Full_ML_fit_evaluation_Set2.py
Job submission file Job.slurm

- 3. Change the path(s) in the following files
 - 3.1) Highlighted line in "Job.slurm" file (please see below) with the correct path of 'your files'

```
bash-4.2$cat Job2.slurm

#!/usr/bin/env bash

#SBATCH -p standard

#SBATCH -c standard

#SBATCH -c 1

#SBATCH -t 16:30:00

#SBATCH -t 16:30:00

#SBATCH -d spinquest

module purge

module load anaconda/2020.11-py3.8

module load singularity/3.7.1

module load tensorflow/2.1.0-py37

singularity run —nv /home/$USER/tensorflow-2.1.0-py37.sif /home/cee9hc/ANN_GPD_Calc_Test/Full_ML_fit_evaluation_Set2.py ${SLURM_ARRAY_TASK_ID}
```

- Similarly update the paths on "Full_ML_fit_evaluation_Set2.py" file Line numbers 22, 31, 154
- 4. For a quick test, you can change the "number of samples" to a small number to test (in other words "number of replicas") which is in line number 115: 'numSamples = 10' as an example. You can change this numSamples value to any number of replicas that you need.
- 5. Run the following commands on your terminal

\$ module load anaconda/2020.11-py3.8 \$ module load singularity/3.7.1 \$ module load tensorflow/2.1.0-py37

\$ cp \$CONTAINERDIR/tensorflow-2.1.0-py37.sif /home/\$USER

(make sure that you have the same module loads included in your Job.slurm file)

6. Run the following command

\$ sbatch --array=0-2 Job.slurm

Note: Here 0-14 means the number of kinematic settings that you want to run in parallel (this is parallelization of local fits), and as a part of the output you will see Results#.csv (where # is an integer number) files which contain distributions of Compton Form Factors (CFFs) from each (individual) local fit.

Below is an example of the above steps (up to step #6):

```
bash-4.2$mkdir ANN_test_code
bash-4.2$cd ANN_test_code/
bash-4.2$cd ANN_test_code/
bash-4.2$cp -r /project/ptgroup/ANN_scripts/Rivanna_test_code_for_ANN/* .
bash-4.2$ls
BHDVCStf.py Full_ML_fit_evaluation_Set2.py Job.slurm Lorentz_Vector.py TVA1_UU.py dvcs_xs_May-2021_342_sets.csv readme.txt
bash-4.2$pwd
/home/cee9hc/ANN_test_code
bash-4.2$vim Full_ML_fit_evaluation_Set2.py
bash-4.2$vim Job.slurm
bash-4.2$module load anaconda/2020.11-py3.8
bash-4.2$module load singularity/3.7.1
To execute the default application inside the container, run:
singularity run --nv $CONTAINERDIR/tensorflow-2.1.0-py37.sif
bash-4.2$ module load tensorflow/2.1.0-py37
To execute the default application inside the container, run:
singularity run --nv $CONTAINERDIR/tensorflow-2.1.0-py37.sif
bash-4.2$ cp $CONTAINERDIR/tensorflow-2.1.0-py37.sif /home/$USER
```

7. After you submit your job:

* You can view your jobs using the web-browser (please see the following screen-shots)

* You can find commands to check the status of your job, cancel job(s), other commands related to handling jobs using .slurm file etc. using the following

https://www.rc.virginia.edu/userinfo/rivanna/slurm/

8. At the end of your job, you will find several types of output files (please see the the following screenshot) Results*.csv These files contain CFFs distributions corresponding to each kinematic setting best-netowrk*.hdf5 These files are the 'best'/'optimum' neural-network files for each kinematic setting result_*.out These files contain the output while it's been running for each kinematic setting

bash-4.2\$ls					
BHDVCStf.py	Lorentz_Vector.py	Results2.csv	best-network0.hdf5	dvcs_xs_May-2021_342_sets.csv	result_1.out
Full_ML_fit_evaluation_Set2.py	Results0.csv	TVA1_UU.py	best-network1.hdf5	readme.txt	result_2.out
Job.slurm	Results1.csv	pycache	best-network2.hdf5	result_0.out	
bash-4.2\$					

Note: The true CFFs values which were used to generate these pseudo-data are given in 'https://github.com/extraction-tools/ANN/blob/master/Liliet /PseudoData2/dvcs_xs_May-2021_342_sets_with_trueCFFs.csv' **only** for the purpose of your comparison with what you obtain from your neural-net.

Important: Please consider that this is an example for running a neural-net fitting job on Rivanna for your reference.